Skip to main content

SYSTEMATIC REVIEW article

Front. Oncol.
Sec. Gastrointestinal Cancers: Hepato Pancreatic Biliary Cancers
Volume 15 - 2025 | doi: 10.3389/fonc.2025.1420599

Research Progress of MRI-based Radiomics in Hepatocellular Carcinoma

Provisionally accepted
  • 1 Southeast University, Nanjing, China
  • 2 Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, China

The final, formatted version of the article will be published soon.

    Background: Primary liver cancer (PLC), notably hepatocellular carcinoma (HCC), stands as a formidable global health challenge, ranking as the sixth most prevalent malignant tumor and the third leading cause of cancer-related deaths. HCC presents a daunting clinical landscape characterized by nonspecific early symptoms and late-stage detection, contributing to its poor prognosis. Moreover, the limited efficacy of existing treatments and high recurrence rates post-surgery compound the challenges in managing this disease. While histopathologic examination remains the cornerstone for HCC diagnosis, its utility in guiding preoperative decisions is constrained. Radiomics, an emerging field, harnesses high-throughput imaging data, encompassing shape, texture, and intensity features, alongside clinical parameters, to elucidate disease characteristics through advanced computational techniques such as machine learning and statistical modeling. MRI radiomics specifically holds significant importance in the diagnosis and treatment of hepatocellular carcinoma (HCC).Objective: This study aims to evaluate the methodology of radiomics and delineate the clinical advancements facilitated by MRI-based radiomics in the realm of hepatocellular carcinoma diagnosis and treatment. Methods: A systematic review of the literature was conducted, encompassing peerreviewed articles published between July 2018 and Jan 2025, sourced from PubMed and Google Scholar. Key search terms included Hepatocellular carcinoma, HCC, Liver cancer, Magnetic resonance imaging, MRI, radiomics, deep learning, machine learning, and artificial intelligence. Results: A comprehensive analysis of 93 articles underscores the efficacy of MRI radiomics, a noninvasive imaging analysis modality, across various facets of HCC management. These encompass tumor differentiation, subtype classification, histopathological grading, prediction of microvascular invasion (MVI), assessment of treatment response, early recurrence prognostication, and metastasis prediction. Conclusion: MRI radiomics emerges as a promising adjunctive tool for early HCC detection and personalized preoperative decision-making, with the overarching goal of optimizing patient outcomes. Nevertheless, the current lack of interpretability within the field underscores the imperative for continued research and validation efforts.

    Keywords: MRI, Radiomics, Hepatocellular Carcinoma, machine learning, Treatment, diagnosis

    Received: 20 Apr 2024; Accepted: 20 Jan 2025.

    Copyright: © 2025 Xie and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Rong Chen, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.