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Background: Although many researches have shown a relationship between

sleeping habits and the risk of developing colorectal cancer (CRC), there is a lack

of data from randomized controlled trials (RCTs) to support this point. Hence, this

study usedMendelian randomization (MR) to robustly assess whether five primary

sleep characteristics are directly linked with the risk of CRC occurrence.

Methods: In the performed study, the main Mendelian randomization analysis

was conducted using approaches such as Inverse Variance Weighting (IVW), MR

Egger, and weighted median method. To this end, five genetically independent

variants associated with the sleep-related characteristics (chronotype, sleep

duration, insomnia, daytime napping, and daytime fatigue) were identified and

used as instrumental variables. Publicly accessible GWAS (Genome-Wide

Association Study) data were used to identify these variants to investigate the

putative causal relationships between sleep traits and CRC. Additionally, we

conducted sensitivity analyses to minimize possible biases and verify the

consistency of our results.

Results:Mendelian randomization analyses showed that an morning chronotype

reduces the risk of CRC with the IVW method, hence, odds ratio (OR) of 1.21 and

95% confidence interval (CI) of 0.67-0.93, which is statistically significant at P =

5.74E-03. Conversely, no significant evidence was found to suggest that sleep

duration, insomnia, daytime napping, or daytime sleepiness have a direct causal

impact on CRC risk according to the IVW analysis.

Conclusions: Findings from our Mendelian randomization analyses suggest that

an individual’s chronotype may contribute to an increased risk of CRC. It is

advisable for individuals to adjust their sleep patterns as a preventative measure

against CRC.
KEYWORDS

colorectal cancer, chronotype, sleep duration, insomnia, daytime sleepiness, daytime
napping, Mendelian randomization
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Introduction

CRC occupies the third position in terms of prevalence among

all cancers and is the second most common cause of death related to

cancer (1). Data from 2023 show that CRC was diagnosed in

approximately 153,020 individuals, resulting in 52,550 deaths.

The evolution of surgical interventions and advancements in

systemic treatments have enhanced the five-year survival rate for

CRC, which has risen from 50% to 65% in various European regions

(2). Despite an overarching decrease in CRC’s incidence and

mortality rates, there’s an alarming uptrend in its occurrence

among those under 50 years of age (3). Epidemiological studies

have consistently identified several lifestyle and dietary elements as

potential risk factors for CRC, such as extended periods of sitting,

smoking, high alcohol consumption, and diets predominated by red

or processed meats (4).

The investigation into the relationship between various lifestyle

habits and the risk of cancer has intensified among researchers.

Beyond the traditionally acknowledged risk factors such as physical

activity levels, dietary habits, tobacco usage, alcohol consumption,

and body weight, recent studies have identified sleep patterns—

including the amount of sleep and the body’s natural sleep-wake

cycle—as contributing factors to cancer risk, particularly with breast

cancer highlighted in the literature (5, 6). Yet, the limited exploration

of how sleep duration and insomnia related to colorectal cancer has

remained unclear, with only a handful of observational studies

addressing this connection (7–9). Moreover, research delving into

the genetic underpinnings of the impact of sleep traits on colorectal

cancer is exceedingly rare.

MR represents a statistical methodology that employs genetic

variants as instrumental variables for probing the potential

causal relationships between exposures and outcomes, utilizing

data from observational studies (10). This approach emulates the

conditions of a randomized clinical trial through the principle

that genetic variants are randomly allocated at the moment

of conception (11). This methodology boasts significant

advantages. First, it utilizes genetic variation as a form of

‘natural experimentation’, where the random distribution of

alleles at conception inherently disconnects these genetic

factors from the environmental and lifestyle variables that

frequently obscure the true relationships in observational

research. Second, because the sequence and progression of a

disease do not alter an individual’s germline genetic composition,
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MR effectively navigates around the pitfalls of reverse causation

and confounding variables (12). Thus, MR is recognized as a

potent and reliable strategy for elucidating causal links.

In an effort to expand upon previous research, this investigation

employed Mendelian randomization, analyzing data from a

comprehensive genetic study examining sleep patterns and

GWAS concerning colorectal cancer. By exploring the potential

causal relationships between sleep behaviors and the risk of

colorectal cancer, this research aims to contribute towards the

development of more precise prevention and treatment strategies

for this disease.
Materials and methods

Data sources

Data pertaining to sleep traits and colorectal cancer have been

compiled and made accessible online (See Table 1). This study did

not necessitate ethical approval or informed consent, as it

exclusively utilized data from previously published sources.
Exposure

Daytime napping
A daytime nap refers to a brief period of sleep occurring during

daylight hours. Summary data on the habit of napping were derived

from a GWAS that included 452,633 adults of European descent

registered in the UK Biobank (13). Participants were surveyed about

their napping habits through a questionnaire that inquired, “Do you

engage in daytime napping?” with the options for responses being

“yes” or “no”.

Chronotype
The term chronotype refers to an individual’s inclination to

either go to bed and wake up early or stay up late and rise later, with

variations between these two extremes, which are also known as

circadian preferences. Genetic associations related to chronotype

were derived from published GWAS involving 403,195 individuals

of European ancestry who were part of the UK Biobank (14).

Participants provided information regarding their chronotype by

answering the question “Do you consider yourself to be?” with
TABLE 1 Summary of genome-wide association studies (GWAS) datasets in our study.

Phenotype Author, published year Consortium Sample size PMID Population

Chronotype Jones SE et al, 2019 (14) UKB 403,195 30696823 European

Sleep duration Dashti HS et al, 2019 (15) UKB 446,118 30846698 European

Insomnia Jansen PR et al, 2019 (17) UKB and 23andMe 1,331,010 30804565 European

Daytime sleepiness Wang H et al, 2019 (18) UKB 452,071 31409809 European

Daytime napping Dashti HS et al,2021 (13) UKB 452,663 33568662 European

Colorectal cancer 2023 FinnGen 314,193 NA European
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several possible responses, including “Definitely a ‘morning’

person,” “More of a ‘morning’ than ‘evening’ person,” “More of

an ‘evening’ than ‘morning’ person,” “Definitely an ‘evening’

person,” “Do not know,” or “Prefer not to answer”.

Sleep duration
The assessment of sleep duration within the UK Biobank

involved 446,118 participants of European descent. This

parameter was evaluated by querying participants on their total

sleep hours over a 24-hour period, requiring responses in whole

numbers. On average, participants reported 7.2 hours of sleep daily.

For analytical purposes, sleep duration was treated as a continuous

variable, which facilitated the categorization into two distinct

groups: those with short sleep duration (less than 7 hours) and

those experiencing long sleep duration (more than 9 hours).

Furthermore, an interval defining normal sleep duration was

established for those with 7 to less than 9 hours of sleep (15).

Insomnia
Insomnia, a prevalent sleep disturbance, manifests through

challenges in initiating sleep or premature awakenings with

subsequent inability to return to sleep, significantly deteriorating

individuals’ quality of life (16). Analysis of GWAS summary

statistics from a combined cohort of 1,331,010 participants,

encompassing individuals from the UK Biobank and the

23andMe database, has elucidated a genetic predisposition to

insomnia (17). The evaluation of insomnia-related symptoms

necessitates that participants respond to the query, “Do you

experience difficulty in initiating sleep at night, or find yourself

waking up during the night?”
Daytime sleepiness
Insights into the link between daytime sleepiness and genetic

factors were derived through analysis of GWAS data, which

encompassed a cohort of 452,071 individuals of European

ancestry registered with the UK Biobank (18). To evaluate

daytime sleepiness, subjects provided responses to queries

concerning unintentional sleep episodes, their alertness during the

day, and the effort required to stave off sleep while engaged in work

or educational activities.
Outcome

The collection of genetic data related to CRC was facilitated

through the FinnGen consortium, recognized as one of the

preeminent genetic databases across Europe (https://www.

finngen.fi/en). This comprehensive study, undertaken within the

FinnGen project’s scope, involved the participation of 6,509

individuals diagnosed with CRC, juxtaposed against a substantial

cohort of 287,137 controls. For researchers and interested parties,

the dataset was made accessible through a specific link, designated

in Table 1, enabling detailed examination and further analysis.
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Study design

In the context of MR studies, it is imperative to adhere to three

critical presuppositions (19): Firstly, there should be a robust

association between the genetic markers and the exposures

(namely, sleep traits). Secondly, these genetic markers must not

be influenced by any potential confounding variables. Thirdly, the

relationship between the genetic markers and the outcome (in this

case, colorectal cancer or CRC) should be mediated exclusively

through the exposures (again, sleep traits). This methodology was

also recently employed to explore the impact of sleep characteristics

on the likelihood of developing various conditions, such as liver

cancer and Systemic Lupus Erythematosus (20).
Selection of genetic instruments

In our study to pinpoint optimal IVs for investigating the

influence of sleep traits, we meticulously followed a structured

protocol. Initially, we sifted through GWAS data to identify

significant SNPs, adhering to stringent criteria (P-value less than

5 × 10-8 and r2 less than 0.1), ensuring only the most relevant

genetic markers were considered. To control for the influence of

weak IVs and potential distortion of results, the F-statistic formula,

F = R2(n - k - 1)/k(1 - R2), was used, where ‘n’ is the total number of

individuals in the exposure group, ‘k’ is the number of IVs used, and

R2 is the proportion of variance in the exposure An F-value less than

10 was considered as a poor relationship between the IVs and the

exposure which might result in the bias in the analysis. To maintain

the independence of the chosen IVs, we checked LD among the

SNPs, with the r2 threshold set to below 0.001 and the clumping

distance of 1Mb (21), hence preventing common genetic signals.

Finally, we meticulously chose SNPs for sleep traits, which

coincided with allele frequencies at CRC outcomes, leaving out

any palindromic SNPs to prevent uncertainty. When situations

arose where direct SNPs linked with the exposure were absent in the

outcome dataset, we performed substitute SNPs that had a high

linkage disequilibrium (R2 greater than 0.8) with pertinent traits,

improving the strength and perinatal of our instrumental

variable selection.
MR analysis

In the main MR analysis, we used the IVW approach. This

approach involves a regression analysis in which the effect of SNPs on

the outcome is plotted against their effect on the exposure, ignoring

the intercept and using the inverse of the variance of the outcome as

weights. Within the IVW framework, it is important to eliminate

SNPs that display pleiotropic behavior. This exclusion is critical since

the existence of horizontal pleiotropy violates one of the MR basic

premises—no horizontal pleiotropic effects. These effects distort the

causal inference derived from the MR analysis hence resulting in the

identification of wrong causative links (22).
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The MR-Egger approach is unique in the sense that it

incorporates an intercept in the weighted linear regression

analysis, using this intercept to measure the degree of horizontal

pleiotropic effects (23). The IVW method, unlike the MR-Egger

approach, is useful when genetic variants present with directional

pleiotropy. It requires that pleiotropic effects remain uncorrelated

with variant to exposure association and also assumes the absence

of measurement error. However, it should be pointed out that these

method is limited concerning the power of the other methods.

Method of weighted median (WM) requires cause to be linked

to at least more than half variables considered effective. This

approach, in combination with MR-Egger, helps to improve the

estimates given by the IVW procedure.
Sensitivity analysis

A comprehensive sensitivity analysis was performing in order to

guarantee the validity and consistency of the results of our research.

This method was developed to reveal any hidden biases, with special

emphasis on gene pleiotropy and data consistency differences. Our

analysis employed two sophisticated methods: and the MR-PRESSO

technique and MR-Egger regression. The two approaches are

equally good at managing issues that arise from horizontal

pleiotropy. Particularly, MR-PRESSO method has a feature that

allows the detection of outlier SNPs that can be removed from the

analysis. That is why the method is suitable for the detailed

evaluation of the influence of isolative SNPs on the results of the

study. This stage also provides an opportunity for a critical

comparison of the initial results and those which have been

corrected for the presence of outlying values (22). Cochran’s Q

test was used to further investigate the consistency of SNP

estimates, and hence any estimate variances. Another important

element of our methodology is the ‘leave-one-out’ sensitivity

analysis which, systematically dropped all IVs to test its

individual contribution to the aggregated MR estimates. Should

the omission of any IV have a significant impact on the MR

estimates as compared to the pooled data, the overall results are

said to be sensitive to that IV and accordingly, the findings should

be interpreted with caution.

We carefully identified secondary phenotypes connected to

each SNP specified as an IV using the PhenoScanner to minimize

the effect of possible horizontal pleiotropy from the confounding

variables. This step entailed elimination of SNPs that could

introduce bias in the association of sleep traits and CRC risk

factors, subsequently improving the specificity of the analysis (24).
Statistics analysis

In the present research, we applied the approach of Two-

Sample Mendelian Randomization (TSMR) to examine the

potential causative relationship between sleep characteristics

and CRC. This analytical process was facilitated through the

application of R software, version 4.4.0, making use of specialized
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packages: Two Sample MR, version 0.5.6 and MR-PRESSO, version

2.1 (25). The statistical significance threshold for our study was P

value less than 0.05 which implied a relationship existed between

the variables of interest and the health outcome that was

being investigated.
Result

The detailed descriptions of the IVs are provided across

Supplementary Tables S1-S5. Supplementary Table S6 elaborates

on the specifics of the instrument variables, including their Beta

coefficients, standard errors (SE), and P values. The layout of the

research methodology is depicted in Figure 1. The MR findings are

comprehensively presented in Table 2 and visualized in Figure 2.
Chronotype and CRC

In the study spearheaded by Jones et al. (14),an initial pool of

15,155 SNPs was identified, each possessing genome-wide

significance (P < 5 × 10-8) for potential use as IVs. The process of

refining this list involved the removal of 15,002 SNPs due to their

LD with other genetic variants, along with the exclusion of a

duplicate SNP (rs73581564). Additionally, in the phase dedicated

to correlating IVs with the outcomes, two SNPs were omitted owing

to the lack of corresponding outcome data, and a further duplicate

SNP (rs10520176) was eliminated. In the task of synchronizing the

exposure and outcome datasets, 26 SNPs were disregarded for

their palindromic nature. Consequently, a concise selection of 123

SNPs was finalized for inclusion in the MR analysis. The findings

from the IVW analysis suggested a notable positive link between

chronotype and the risk of CRC (Odds Ratio: 0.79, 95% CI: 0.67–

0.93, P= 5.74E-03), as illustrated in Table 2 and Figure 3. The MR-

Egger regression analysis (intercept P=0.81) did not reveal any

significant horizontal pleiotropic effects. Furthermore, the MR-

PRESSO method identified no outlier SNPs (P = 0.711), as

documented in Table 1, and the Cochrane Q test indicated an

absence of heterogeneity among the SNPs (Q = 123.72, P = 0.41),

also in Table 1. Employing the leave-one-out strategy underscored

the resilience of the overall MR findings, even after the sequential

exclusion of individual SNPs. Supplementary Table S1 meticulously

documents the IV details, affirming no presence of weak

instrumental variable bias given that the F statistics for each SNP

exceeded 10. The associations persisted after correction for

multiple testing.
Sleep duration

In the study led by Dashti et al. (15), an initial collection of 7,924

SNPs, each achieving the threshold for genome-wide significance (P

< 5 × 10-8), was gathered. The refinement process, which included a

clumping strategy to reduce redundancy and the exclusion of

duplicate SNPs, SNPs lacking associated outcome data, and
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palindromic SNPs, ultimately narrowed the pool to 58 SNPs for

further investigation. The analysis conducted using the IVW

method revealed no statistically significant causal relationship

between sleep duration and the risk of CRC (Odds Ratio: 1.01,

95% CI: 0.71–1.43, P = 0.97), as detailed in Table 2 and illustrated in

Supplementary Figures S1. Additionally, both the MR-Egger

intercept test (intercept P = 0.10) and the MR-PRESSO approach

(P = 0.20) found no evidence of horizontal pleiotropy influencing

the IV-outcome relationship, as reported in Table 2. The global Q

statistic further confirmed the lack of significant heterogeneity

among the SNPs (Q=66.27, P = 0.19), as mentioned in Table 2.

With F-statistics for all SNPs exceeding 10, the analysis indicated a

robust set of instrumental variables, free from the concern of weak

instrumental variable bias.
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Insomnia

From an initial selection of 228 SNPs known to be linked with

insomnia, a rigorous filtering process was applied. This process led to

the removal of 73 SNPs due to LD and an additional 2 SNPs were

excluded for lacking relevant outcome data. Further refinement was

made by eliminating 22 palindromic SNPs during the harmonization

of exposure and outcome data. Ultimately, 131 SNPs were deemed

suitable for inclusion as IVs in the two-sample MR analysis. The F-

statistics from this set of IVs indicated no significant risk of weak

instrumental bias, as detailed in Supplementary Table S3. The IVW

analysis revealed no statistically significant association between

insomnia and the risk of CRC (Odds Ratio: 0.97, 95% CI: 0.89–

1.06, P = 0.53), as shown in Table 1 and Supplementary Figure S2.
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TABLE 2 MR analysis for the causality of sleep traits with the risk of CRC.

Heterogeneity

Cochran’s Q Q_df P
value

lobal
st RSSobs

Outliers

125.67 _ 123.72 121 0.41

123.67 120 0.39

68.34 _ 66.27 57 0.19

63.13 56 0.24

164.44 rs769449
rs910187
rs1580173

162.10 129 0.03

160.23 128 0.03

146.96 _ 144.79 127 0.13

143.48 126 0.14

28.47 _ 26.89 32 0.72

26.37 31 0.70

(Continued)

M
e
n
g
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.14

16
2
4
3

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Exposure/Outcome Nsnp Methods OR
(95%CI)

SE P
value

Horizontal pleiotropy

MR-Egger regression MR-PRESSO

Egger
intercept

SE P
value

Global test
P value

G
te

Chronotype/CRC 152 IVW 0.79
(0.67-0.93)

0.09 5.74E-
03

1.37E-03 5.67E-
03

0.81 0.42

MR Egger 0.74
(0.45-1.23)

0.26 0.25

Weighted
median

0.77
(0.60-1.00)

0.13 0.04

Sleep duration/CRC 70 IVW 1.01
(0.71-1.43)

0.18 0.97 -0.02 0.01 0.10 0.20

MR Egger 2.89
(0.80-10.50)

0.66 0.11

Weighted
median

1.24
(0.76-2.03)

0.24 0.37

Insomnia/CRC 155 IVW 0.97
(0.89-1.06)

0.04 0.53 -8.71E-03 7.13E-
03

0.22 0.03

MR Egger 1.18
(0.86-1.61)

0.16 0.32

Weighted
median

0.95
(0.84-1.08)

0.06 0.45

insomnia(after the removal of
the outlier)/CRC

155 IVW 0.97
(0.89-1.06)

0.04 0.50 -7.31E-03 6.82E-
03

0.29 0.13

MR Egger 1.18
(0.86-1.61)

0.15 0.40

Weighted
median

0.95
(0.84-1.08)

0.06 0.45

Daytime sleepiness/CRC 38 IVW 0.56
(0.22-1.43)

0.48 0.23 -0.01 0.02 0.48 0.72

MR Egger 2.44
(0.04-
148.89)

2.10 0.67
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Despite this, the global Q statistic pointed to heterogeneity among the

results (Q=160.23, P = 0.03). The MR-Egger method did not suggest

the presence of horizontal pleiotropy (intercept P=0.22), while the

MR-PRESSO method detected it (P = 0.03), identifying rs769449,

rs910187, and rs1580173 as outliers. Removal of these outlier SNPs

did not alter the findings (IVW, Odds Ratio: 0.97, 95% CI: 0.89–1.06,

P = 0.50) from Table 2, but it did resolve the heterogeneity (P=0.14),

underscoring the minimal evidence of weak instrument bias.
Daytime sleepiness

In the course of examining the potential link between daytime

sleepiness and colorectal cancer risk, our initial screening highlighted

5,657 SNPs significantly correlated (P < 5 × 10-8). A meticulous

filtering procedure was then employed to exclude SNPs compromised

by LD, resulting in the dismissal of 5,619 SNPs and an additional pair

of duplicates. Furthermore, SNPs exhibiting palindromic

characteristics were also excluded, leaving a total of 33 SNPs

qualified for inclusion in the MR analysis. The subsequent analysis,

utilizing IVW models, revealed no substantial link between daytime

sleepiness and the likelihood of developing colorectal cancer (Odds

Ratio: 0.56, 95% CI: 0.22–1.43, P = 0.23), as detailed in Table 1 and

depicted in Supplementary Figure S3. The MR-Egger intercept

examination suggested no evidence of horizontal pleiotropy, with

P-values exceeding 0.05. Additionally, the application of the MR-

PRESSO test (P=0.72) identified no outliers, while the Cochran Q test

demonstrated a lack of heterogeneity across the findings (Q=26.89,

P=0.72). A comprehensive account of the instrumental variables is

available in Supplementary Table S4. The F statistics for these genetic

instruments exceeded 10, underscoring their robustness.
Daytime napping

In the study conducted by Dashti et al. (13),an initial selection of

12,211 SNPs, each with a P-value less than 5 × 10-8, was identified for

their significant association with daytime napping habits. Following

this, seven SNPs found to be duplicates within the exposure dataset

were excluded. Furthermore, a substantial number of variants,

specifically 12,107 out of the 12,211, were removed due to LD with

other SNPs in the set. Additionally, SNPs lacking corresponding

outcome data and those identified as palindromic were also excluded

from the analysis. This rigorous screening process resulted in the

retention of 79 SNPs for subsequent two-sample MR analysis. The

study found no causal relationship between daytime napping and

colorectal cancer (CRC), as indicated by an odds ratio (OR) of 0.87

and a 95% confidence interval (CI) of (0.53–1.42), with a P-value of

0.58. Both the MR-Egger regression analysis, which yielded an

intercept P-value of 0.40, and the MR-PRESSO method, with a P-

value of 0.27, confirmed the lack of horizontal pleiotropy in the

instrumental variables related to the examined outcomes. Moreover,

the analysis showed no substantial heterogeneity in the link between

daytime napping and CRC, with a Q value of 85.55 and a P-value of

0.26. The specifics of the instrumental variables utilized are provided

in Supplementary Table S5. In addition, the F statistics for each single
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nucleotide polymorphism (SNP) effectively ruled out any weak

instrumental variable bias, as all F statistics were above 10.
Other analyses

In an effort to examine associations between 424 SNPs

identified in the primary MR analysis and potential confounding

factors, researchers turned to the PhenoScanner database. This

detailed review pinpointed five potential confounders: BMI,

frequency of alcohol consumption, history of smoking, and

overall height, which are elaborated in Supplementary Table S7.

By systematically excluding SNPs linked to these confounders with

significant genome-wide associations, the integrity of the MR

findings, along with the results from sensitivity analyses,

remained robust and aligned with earlier reports. These

outcomes, reinforcing the consistency of the analyses, are

thoroughly documented in Supplementary Table S8 and

illustrated across Supplementary Figures S5-S9.
Discussion

This investigation assessed the potential causal links between

five sleep-related traits—chronotype, daytime napping, sleep

duration, daytime sleepiness, and insomnia—and the risk of CRC.

Findings indicated a significant positive correlation between

chronotype and CRC incidence. Conversely, analyses did not

demonstrate causal associations between CRC risk and other

sleep traits such as daytime napping, the length of sleep, levels of

daytime sleepiness, or the presence of insomnia.

Poor sleep quality is recognized as a potential contributor to

cancer incidence and mortality. Previous research highlighted a
Frontiers in Oncology 08
correlation between the sleep deficit resulting from shift work and

increased risks of type 2 diabetes, coronary heart disease, stroke, and

cancer (26). A comprehensive population-based analysis revealed

that night shift work elevates prostate cancer risk by disrupting

circadian rhythms. Research from multiple regions has established

an association between working night shifts and an elevated risk of

breast cancer, particularly for tumors that test positive for estrogen

receptor, progesterone receptor, and human epidermal growth

factor receptor 2 (27, 28). Additionally, there’s an established

connection between circadian rhythm disruptions and

gastrointestinal cancers. These rhythms play crucial roles in

regulating cell growth, immune equilibrium, gut barrier function,

microbial equilibrium, and metabolic processes. Disorders in

circadian rhythms lead to alterations in associated genes

(CLOCK, PER, BMAL1) (29). Furthermore, sleep disturbances

have been associated with cancer progression (30), with a study

by Lin et al. revealing a significantly higher colorectal cancer

prevalence among individuals with sleep disorders (31). As the

most prevalent sleep disturbance, insomnia’s relationship with

cancer risk was explored by Lin et al., showing that individuals

with insomnia had a notably increased cancer risk, suggesting

insomnia could serve as an early indicator of cancer development

(32). Research also identified a relationship between insomnia and

CRC incidents, where less frequent insomnia corresponded with a

reduced CRC risk (33). Findings also indicated that longer sleep

durations (8 hours and ≥9 hours) heighten colorectal cancer risk,

with men facing a higher risk than women in cases of prolonged

sleep (34). Additionally, extended napping has been linked to

increased mortality among CRC survivors, with both napping

frequency and duration correlating with elevated colorectal cancer

risks (27, 35). Current data also point to sleep-disordered breathing

and obstructive sleep apnea (OSA) as factors raising cancer

incidence. A national cohort study established an association
FIGURE 2

Associations of genetic liability to 5 sleep traits with risk of colorectal cancer in FinnGen study. OR, odd ratio; CI, confidence interval.
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FIGURE 3 (Continued)
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FIGURE 3 (Continued)

(A) Forest plot. The vertical axis represents the number assigned to each SNP, while the horizontal axis represents the confidence interval. (B)
Leave-one-out sensitivity analysis. Circles indicate MR estimates for chronotype on CRC using IVW fixed effect method if each single nucleotide
polymorphism was omitted in turn. The bars indicate the CI. (C) Scatter plot. The x-axis represents the effect of SNPs on exposure, and the y-axis
represents the effect of SNPs on outcomes. The slope is less than 0, indicating that the exposure factor is a favorable factor for the outcome. (D)
funnel plot showing the extent of heterogeneity among the individual Wald ratio estimates. (E) Density plot. The abscissa indicates the range of
SNPs, the ordinate represents the probability at the corresponding SNP value point.
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between obstructive sleep apnea and CRC (36). Chronotype,

determined by biological circadian and sleep-wake rhythms, and

influenced by work and social stress, may contribute to cancer

development if evening chronotypes disrupt circadian rhythms due

to misalignment with individual lifestyle behaviors (37).

The linkage between sleep disruptions and tumor development

encompasses various molecular mechanisms. Primarily, sleep
Frontiers in Oncology 11
disturbances in individuals with cancer trigger an inflammatory

response. These disruptions are recognized for initiating oxidative

stress and systemic inflammation, which culminate in endothelial

dysfunction and reduced oxygen supply to tissues. Such states

provoke changes in sympathetic nervous system activity, immune

responses, and the regulation of genes involved in cancer

development (38). Additionally, melatonin, which governs sleep-
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wake cycles, plays a critical role in the carcinogenic impact

associated with sleep disorders (39). This hormone has been

shown to inhibit tumor expansion through multiple mechanisms.

Specifically, melatonin promotes apoptosis in cancer cells, curtails

their proliferation, and influences angiogenesis and metastasis. It

also adjusts immune responses, impacts oncogenic signaling

pathways, and offers antioxidative benefits (40). Disruptions in

sleep patterns interfere with the normal release of melatonin.

Melatonin has been identified as a significant factor in preventing

and slowing down the progression of CRC by inhibiting tumor cell

proliferation and promoting cell death. Research has highlighted

melatonin’s role in CRC prevention and treatment through its

influence on lipid metabolism and the composition of the gut

microbiome (41). According to Kvietkauskas et al., optimal levels

of melatonin and glycine can diminish the growth of CRC liver

metastases by exhibiting antiangiogenic properties (42). Therefore,

melatonin emerges as a potential adjunctive therapy for advanced

CRC. Moreover, the relationship between sleep disturbances and

cancer progression is further explained through the lens of various

hormones such as growth hormones, prolactin, dopamine, estrogen,

leptin, and ghrelin. Ghrelin, in particular, is implicated in tumor

advancement and reduced survival rates (43), while leptin is known

to stimulate the production of pro-inflammatory cytokines TNF-a
and IL-6, thereby facilitating cancer cell proliferation (44). Earlier

research indicates that insufficient or suboptimal sleep can

compromise immune functionality by inhibiting the release of

hormones critical for immune stimulation, such as growth

hormone, prolactin, and dopamine (45). The complex interplay

between the HPA axis and the sympathetic nervous system is

crucial for the maintenance of regular sleep patterns, which

subsequently influence immune system responses. In our research,

we could not confirm direct associations between daytime napping,

feelings of sleepiness during the day, insomnia, sleep duration, and

the incidence of colorectal cancer (CRC). Nonetheless, it is plausible

that these sleep behaviors could have an indirect effect on the risk of

developing CRC via the mechanisms mentioned above.

Our research offers several distinct advantages. At the forefront,

it is the first of its kind to delve into the genetic relationships

between a comprehensive spectrum of sleep patterns and CRC risk.

This approach not only addresses the limitations present in prior

observational and cross-sectional studies but also significantly

enhances the breadth of research within this domain. To ensure

the robustness of our findings, we meticulously selected genetic

instruments from a vast pool of published genetic associations,

utilizing large-scale GWAS to minimize the influence of potential

weak instrument bias. Moreover, through detailed sensitivity and

heterogeneity analyses, and a methodical evaluation of possible

confounders, the study upholds the integrity and reliability of its

conclusions. A pivotal aspect of our methodology was the use of the

MR-PRESSO technique, which effectively identified and eliminated

any potential bias in our Mendelian Randomization results due to

the pleiotropic effects associated with sleep traits, further solidifying

the validity of our findings.

While our research provides valuable insights, it also encounters

certain limitations. Primarily, the dataset predominantly originates

from European GWAS, involving participants from the UK Biobank
Frontiers in Oncology 12
who are generally more educated and healthier. This raises questions

about the applicability of our findings across diverse populations.

There might have been an overlap among participants, with daytime

sleepiness potentially encompassing daytime napping, which, along

with overlapping samples in the two-sample MR analysis, could have

exaggerated the outcomes. Secondly, the reliance on self-reported

questionnaires for gathering sleep-related data might have introduced

biases. Future endeavors could benefit from incorporating device-

measured sleep parameters. Thirdly, the absence of large-scale studies

focused on specific age groups or genders precluded an in-depth

analysis of these variables. Additionally, our application of a two-

sample MR analysis, based on two extensive GWAS datasets,

presupposes a linear association between sleep traits and colorectal

cancer risk, not accounting for possible non-linear dynamics or

stratified effects. Lastly, the study did not explore other sleep-

related factors such as snoring, OSA, and overall sleep quality that

may influence colorectal cancer risk. These aspects will be addressed

as reliable data become available.
Conclusion

In conclusion, our MR findings suggest that an individual’s

chronotype has a contributory role in the development of CRC and

propose that modifying sleep habits could serve as a preventive

measure against CRC. While the study acknowledges the possibility

of minor effects that it could not exclude, it underscores the need for

more comprehensive MR analyses or extensive RCTs in the future

to verify the influence of sleep traits on CRC risk. Concurrently,

ongoing research aims to unravel the underlying biological

mechanisms linking sleep-related characteristics with CRC.
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