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Background: The Apoptosis-Stimulating Protein of P53 (ASPP) family contributes

to apoptosis regulation and tumor suppression, with ASPP1 influencing

processes like cancer cell proliferation, invasion, and migration. Its expression

varies across cancer types, suggesting a potential role in oncogenesis.

Methods: This study investigates ASPP1’s role across various cancers using a

comprehensive bioinformatics approach. Data were extracted from public

resources, including The Cancer Genome Atlas (TCGA), GTEx, and the Human

Protein Atlas, and analyzed via tools such as cBioPortal, GEPIA, and TIMER2.

Statistical and network analyses were performed with R, Cytoscape, and Hiplot.

ASPP1’s function in colorectal cancer was further explored through in vitro

assays, including qRT-PCR, Western blotting, colony formation, Transwell, and

wound healing.

Results: ASPP1 expression exhibited significant variability across different

cancer types, with marked associations with patient outcomes, particularly

overall survival (OS) and disease-specific survival (DSS) across several cancer

types. In-depth protein-protein interaction (PPI) analysis revealed ASPP1’s

involvement in apoptosis and cancer progression networks. Functional

enrichment analysis further linked ASPP1 to key apoptotic signaling

pathways and transcriptional regulatory processes, underscoring its

potential impact on tumor biology. Additionally, the expression of ASPP1

correlates with immune cell infiltration patterns, including cancer-associated

fibroblasts and various immune markers, suggesting roles in immune

response modulation. In vitro assays with colorectal cancer cell lines

revealed significantly lower ASPP1 expression levels compared to normal

colon cells (HCM460), and ASPP1 overexpression experiments showed a

marked reduction in colorectal cancer cell proliferation, colony formation,

invasion, and migration abilities. These cellular findings align with the

bioinformatics predictions, highlighting ASPP1’s role as a suppressor of

metastatic traits in colorectal cancer.
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Conclusion: This study highlights ASPP1 as a forecasting biomarker in the

colorectal cancers and potentially across other cancers. The findings support

ASPP1’s involvement in tumor biology, particularly regarding cell proliferation

and metastatic potential, establishing a foundation for further investigation into

its therapeutic relevance.
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1 Introduction

Cancer continues to be a formidable health challenge

worldwide, with both incidence and mortality rates remaining

high despite significant advances in early detection, targeted

therapy, and immunotherapy (1). Cancer is a multifaceted disease

defined by the uncontrolled growth of cells, which gain the ability to

invade local tissues and spread (metastasize) to distant sites in the

body (2). This complexity underscores an urgent need for novel

therapeutic targets and a deeper understanding of the molecular

mechanisms that drive tumor initiation and progression. A

promising strategy to explore these mechanisms is through pan-

cancer analysis, an approach that integrates and examines multi-

omics data from a broad spectrum of cancer types. By analyzing

multiple cancers collectively, researchers can identify overarching

molecular patterns and pathways that may be pivotal to oncogenesis

and tumor evolution (3). Pan-cancer analysis has enabled the

discovery of key genetic alterations and pathways that are

commonly dysregulated, paving the way for identifying

therapeutic targets with potentially broad applications.

One critical biological process that is often disrupted in cancer is

apoptosis, or programmed cell death, which serves as a fundamental

mechanism for maintaining cellular homeostasis by eliminating

damaged or aberrant cells (4). Apoptosis functions as a safeguard

against malignancy; however, cancer cells frequently develop

mechanisms to evade apoptosis, thereby enabling their survival and

unchecked proliferation (5). This evasion is often facilitated by

alterations in apoptotic signaling pathways, which can be triggered

by a range of cellular stressors such as DNA damage, oxidative stress,

and activation of cell surface death receptors (6). Among the key

regulators of apoptosis is the ASPP (Apoptosis-Stimulating Protein of

p53) protein family, which includes ASPP1, ASPP2, and iASPP. These

proteins are of particular interest due to their interaction with the

tumor suppressor protein p53, a central figure in maintaining genomic

stability through its roles in DNA repair, cell cycle control, and

apoptosis induction (7–12). ASPP1 and ASPP2 enhance the pro-

apoptotic function of p53, promoting cell death in response to

damage, while iASPP acts as a negative regulator, inhibiting

apoptosis and thus potentially contributing to tumor progression

(13, 14).
02
Dysregulation of ASPP family proteins has been observed in

various cancer types, often correlating with poor prognosis. For

instance, reduced expression of ASPP1 has been associated with

worse outcomes in cancers such as acute lymphoblastic leukemia,

breast cancer, hepatocellular carcinoma, clear-cell renal cell

carcinoma, and colorectal cancer (10, 11, 15–17). These findings

suggest that ASPP proteins, especially ASPP1, may serve as valuable

biomarkers for prognosis and potential therapeutic targets.

Alterations in ASPP1 expression or function may provide insights

into the mechanisms through which cancers develop resistance to

apoptosis and continue to proliferate. Understanding these patterns

could inform therapeutic strategies aimed at reactivating apoptotic

pathways in tumor cells, thereby enhancing the efficacy of

existing treatments.

This study aims to perform a comprehensive pan-cancer

analysis of ASPP1 by examining its expression patterns and

genetic alterations across multiple cancer types. By leveraging

multi-omics datasets—including gene expression, DNA

methylation, and mutation profiles—we seek to elucidate the role

of ASPP1 in cancer development, progression, and treatment

response. Given ASPP1’s involvement in modulating apoptosis

and its dysregulation across several cancers, a better

understanding of its function could aid in the development of

targeted therapies and contribute to the advancement of precision

oncology. Preliminary in vitro findings have shown that ASPP1

overexpression can reduce proliferation and metastatic potential in

colorectal cancer cells, further suggesting its role as a tumor

suppressor and therapeutic target. Through this study, we hope to

provide new insights that could lead to innovative cancer therapies

and personalized treatment strategies, potentially improving patient

outcomes across a range of malignancies.
2 Materials and methods

2.1 Materials and reagents

The human colorectal cancer (CRC) cell lines HT-29, SW480,

and HCT116, along with the normal human intestinal epithelial cell

line NCM460, were cultured in MCCOY’S 5A, L-15, and RPMI
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1640 media (Solarbio, China) with the addition of fetal bovine

serum (CELL-BOX, China) under controlled conditions.

Transfections were performed using Lipofectamine 8000

(Beyotime Biotechnology, Shanghai, China), with penicillin-

streptomycin added to ensure sterility. For cell invasion

experiments, we employed a 24-well Transwell system (Corning,

NY, USA; 8-µm pore size) coated with Matrigel (Corning, NY,

USA). mRNA quantification was performed using the Two-Step

RT-qPCR Kit (Seven Biotech, Beijing, China) after total RNA was

extracted using the RNA Extraction Kit (Seven Biotech, Beijing,

China). The primary antibodies targeting b-actin were supplied by

Beyotime Biotechnology (Shanghai, China), and the antibodies

targeting ASPP1 were supplied by Affinity Biosciences (Jiangsu,

China). In addition, Beyotime Biotechnology (Shanghai, China)

provided HRP-conjugated secondary antibodies, including anti-

rabbit IgG and anti-mouse IgG.
2.2 Expression analysis of ASPP1 in
pan-cancer

We retrieved the human protein atlas database (https://

www.proteinatlas.org/) with ASPP1(PPP1R13B) at summary and

tissue groups in order to get the organs and tissues’ RNA and

protein expression summary (18). There are graphs showing the

expression in different organizations at RNA and protein levels.

According to their functional characteristics, tissues are divided into

color-coded groups. The image data pages for specific tissues are

linked once you select them from this list. Based on knowledge-

based annotation, data on protein expression is shown for 44

tissues. Using tissue groups, which consist of tissues with similar

functional properties, color coding is carried out. In the mouse-over

function, the protein scores for the analyzed cell types are displayed

for the selected tissue. The image data can be accessed by clicking on

the name of the tissue or the bar. Detailed descriptions of protein

annotation are available in Assays & annotations. Pan-cancer

datasets from TCGA and GTEx were utilized to examine ASPP1

mRNA expression in tumor and normal tissue samples. TPM data

were log2-transformed for subsequent analyses, allowing

comparisons between unpaired tumor and normal tissues across

various cancer types. Expression charts were generated separately

for each dataset to illustrate ASPP1 levels in cancerous and non-

cancerous tissues. Using the TCGA database, we also assessed

ASPP1 expression in paired tumor and adjacent normal tissues,

excluding cancer types that lacked corresponding normal samples

in TCGA. Data was analyzed with Wilcoxon signed-rank test to

determine statistical differences (19).
2.3 Exploring ASPP1’s Receiver Operating
Characteristic curve across various cancer
types in cancers

This study assesses ASPP1’s diagnostic value in cancers types.

ASPP1 ROC curves data were obtained and extracted from the

TCGA database using the STAR workflow in FPKM format.
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Perform ROC analysis on data using the pROC [1.18.0] package

to log2 transformation (value+1), and visualize the results using

ggplot2 [3.3.6] to plot The Area under Curve (AUC) (20). It is better

to have an AUC value closer to 1 as it signifies better performance

from the classifier. An AUC between 0.7 and 0.9 is regarded as good

accuracy, while an AUC of 1 or more is regarded as high accuracy.
2.4 Exploring ASPP1 expression’s impact on
cancers survival

To assess the prognostic relevance of ASPP1 across 33 cancer

types, Kaplan–Meier survival analysis (http://kmplot.com/) was

applied. Disease-specific survival (DSS), overall survival (OS) and

progression-free interval (PFI) were analyzed using Cox regression

models. We visualized the total sample size, hazard ratios (HRs)

with 95% confidence intervals, and p-values from the Kaplan–Meier

analysis in forest plots created using ggplot2 (21, 22).
2.5 ASPP1 expression: impact on cancer
staging, immune, and molecular subtypes

The expression of ASPP1 gene was correlated with various

clinical pathological stages (stages I, II, III, IV) by using the GEPIA

Pathological Stage Plot online tool (http://gepia.cancer-pku.cn/) for

all cancer types. For plotting, we used log2(TPM + 1) to transform

the expression data (23). We evaluated the ASPP1 expression and

molecular subtypes, immune subtype by searching the TISIDB in

subtypes page (http://cis.hku.hk/TISIDB/). In order to construct the

Violin diagram, we selected cancer types using the Kruskal-Walli’s

test score based on the immune subtypes and molecular subtypes

bar charts (24).
2.6 Functional enrichment analysis
of ASPP1

To conduct functional gene enrichment analysis, we first used

STRING to identify ASPP1-binding proteins and construct its

protein–protein interaction network. Next, we employed the Similar

Genes Detection tool in GEPIA2 to retrieve ASPP1-correlated genes

across various cancer types. Using the clusterProfiler [v4.4.4] R

package, we then performed KEGG and GO enrichment analyses,

visualizing results as bubble charts created with ggplot2 [v3.3.6]. We

downloaded RNAseq data processed through TCGA STAR in TPM

format from the TCGA database to analyze gene correlations.

Correlation analyses were subsequently conducted, and results were

presented as scatter plots using ggplot2 [v3.3.6] (25).
2.7 Genomic alterations of ASPP1 in
pan-cancer

We queried the TCGA PanCancer Atlas studies for ASPP1

using cBioPortal (https://www.cbioportal.org/). The ‘Oncoprint’
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module was applied to examine the frequency of ASPP1 gene

alterations. Additionally, the ‘Cancer Types Summary, ’

‘Mutations,’ and ‘mRNA vs. Study’ modules were utilized to

explore somatic mutations and ASPP1 genomic profiles across

cancer types. Specific mutation sites were identified via the

‘Mutations’ module (18, 26).
2.8 Immune infiltration analysis in cancers

At TIMER2 (http://timer.comp-genomics.org/), we accessed the

‘Immune’ section, entering ASPP1 and cancer-associated fibroblasts

to examine the relationship between immune cell infiltration and

genomic alterations. The EPIC, MCPCOUNTER, XCELL, and

TIED algorithms were used to estimate immune infiltration in

TCGA samples. The resulting immune infiltration heatmap was

downloaded, and scatter plots displaying purity and infiltration

levels were generated by selecting Spearman’s p-values from the

output table (27).
2.9 Immunogenomic analyses of ASPP1
in cancers

Similar to previous data acquisition methods, we obtained

biochemical characteristics and RNA-sequencing results for ASPP1

from the TCGA dataset. To investigate immune-checkpoint and

immune-activation genes in immune environment, we employed an

R software package that integrates six advanced algorithms: MCP-

counter, xCell, TIMER, CIBERSORT, quanTIseq, and EPIC. The

expression levels of immune checkpoint transcripts were assessed

using markers such as PDCD1, CD274, IDO1, SIGLEC15,

HAVCR2, LAG3, CTLA4, and PDCD1LG2 (28). We also analyzed

the correlations between ASPP1 expression and eight genes that play a

role in immunecheckpointsusing thedataRpackage [4.0.3].Data from

two groups were analyzed using Wilcox’s test. P values<0.05 were

considered statistically significant (*p < 0.05). Furthermore, ASPP1

and TILs, Immunoinhibitors, Immunostimulators, MHC molecules,

Chemokine receptors, and Chemokines were analyzed using the

TISIDBdatabasemodules Immunomodulators andChemokines (24).
2.10 Experimental validation in vitro

2.10.1 Cell culture and transfection
This study employed human colorectal cancer cell lines HT-29,

SW480, HCT116, and the normal human intestinal epithelial cell

line NCM460. All cell lines underwent routine mycoplasma testing

to ensure a contamination-free environment. HT-29 and HCT116

cells were cultured in DMEM with 10% FBS and 1% penicillin-

streptomycin at 37°C in a 5% CO2 incubator, while NCM460 cells

were maintained in RPMI 1640 medium under identical conditions.

To induce ASPP1 overexpression, the ASPP1 gene was cloned into a

pEGFP-C1 vector and then transfected into HT-29 cells with

Lipofectamine 8000. The cells transfected with the ASPP1-
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pEGFP-C1 construct formed the experimental group, while the

control group consisted of cells transfected with the empty pEGFP-

C1 vector.

2.10.2 Quantitative Real-Time Polymerase
Chain Reaction

qRT-PCR was used to analyze ASPP1 mRNA expression in

both colorectal cancer and normal intestinal epithelial cells. Human

colorectal cancer cell lines HT-29, SW480, HCT116, and the normal

epithelial cell line NCM460 were cultured and harvested for

analysis. Total RNA was extracted from the cells using the

SevenFast Total RNA Extraction Kit. Following extraction, reverse

transcription was carried out, and quantitative real-time PCR (qRT-

PCR) was performed using the SevenFast Two-Step RT and qPCR

Kit. Fluorescence detection was confirmed through melting curve

analysis, and the mRNA levels of ASPP1 were quantified by the

2^–DDCT method, with b-actin as the internal reference gene. The

specific primer sequences for ASPP1 and b-actin used in this study

as follows:
ASPP1-F: 5′-ACCCTCTCAGAGCTCCAAGATAT-3′.
ASPP1-R: 5′-CTTGTCCTCTCATTGCACGAATT-3′.
b-actin-F: 5′-CAGATGTGGATCAGCAAGCAGGA-3′.
b-actin-R: 5′-CGCAACTAAGTCATAGTCCGCCTA-3′.
2.10.3 Western blotting
After two washes with PBS, total protein was extracted using

RIPA buffer, and concentrations were determined with a BCA

protein assay kit. Aspp1 and b-Actin proteins were separated by

SDS-PAGE and transferred to PVDF membranes for overnight

incubation with primary antibodies, followed by secondary

antibodies conjugated to HRP. And then we quantified grayscale

values using Image Lab.

2.10.4 Colony formation assay
The assay was conducted with two groups: a control group and

an ASPP1 overexpression group. Logarithmically growing cells were

treated with 0.25% trypsin to obtain single-cell suspensions, which

were then counted and resuspended in medium enriched with 10%

fetal bovine serum. A total of 1000 cells per well were seeded in six-

well plates and cultured for 14 days until distinct colonies were

visible. Colony numbers were analyzed using ImageJ software, and

differences between the two groups were statistically evaluated.

2.10.5 Wound healing assay
Cell migration capability was evaluated through a wound

healing assay. Control and ASPP1 overexpression groups were

seeded at a density of 1.2 × 10^6 cells per well in six-well plates.

Once the cells reached full confluence, a scratch was made with a

10-mL pipette tip. After washing with PBS to remove debris, the cells

were incubated in serum-free medium for 48 hours. Images were

captured at 0, 24, and 48 hours using a light microscope. Migration

rates were analyzed using ImageJ software.
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2.10.6 Transwell assay
A Transwell assay was conducted to measure cell invasion.

Matrigel was pre-thawed at 4°C and then applied to the upper

surface of the Transwell insert with 50 µL, which was incubated for

3 hours until a visible white coating formed. Cells from the control

and ASPP1-overexpressing groups were prepared at a density of 6 ×

10^4 cells in 200 µL of serum-free medium, while medium with 10%

FBS was added to the lower chamber. After 48 hours of incubation,

the inserts were removed, washed with PBS, and fixed in 4%

paraformaldehyde for 15 minutes. The cells were then stained

with 0.1% crystal violet for 20 minutes to enhance visibility. Cell

counts of those that had migrated through the membrane were

performed under an inverted microscope, and ImageJ software was

employed for image analysis.

2.10.7 Statistical analysis
Based on three or more independent experiments, data are

expressed as mean ± SD. One-way ANOVA was used to compare

multiple groups, and statistical analyses were conducted using

GraphPad Prism 8.0 software. Differences between groups were

evaluated with single-factor ANOVA followed by Dunnett’s test,

with a significance level set at a = 0.05.
3 Results

3.1 ASPP1 expression landscape and pan-
cancer expression

The expression landscape of ASPP1 in humans is shown in

Figure 1A. ASPP1 mRNA and protein are widely expressed in a

variety of tissues and organs. A majority of the mRNA from the

ASPP1 gene is expressed in thyroid glands, heart muscle, testes,

cerebellum, skin, ovary, and esophageal, spleen, prostate and

salivary glands. (Figure 1B). High score tissues with ASPP1

protein level expression include adipose tissue, adrenal glands,

bronchi, caudates, cerebellums, cortexes, colons, duodenums,

endometriums, epididymis, and canaliculi. (Figure 1C). Analysis

of unpaired samples from 33 cancer and normal tissues revealed

that ASPP1 expression was significantly reduced in most cancer

types, including COAD, GBM, BLCA, BRCA, LUSC, PAAD,

READ, KIRC, LGG, LIHC, LUAD, TGCT, THCA, SKCM, STAD

and UCS. Conversely, increased ASPP1 mRNA level expression was

observed in DLBC, LAML, ACC, CHOL, THYM, and UCEC. No

significant differences were detected in KIRP, MESO, CESE, ESCA,

HNSC, KICH, OV, PCPG, SARC, or UVM. In comparison with

paracancerous tissue, ASPP1 mRNA expression was significantly

lower in BLCA, COAD, GBM, KIRC, LUAD, LUSC, THCA and

significantly higher in CHOL, LIHC, UCEC. The expression of

ASPP1 between cancers and normal tissues in paired sample has

increased significantly Lower in COAD, KIRC, LUAD, LUSC,

THCA and significantly higher in CHOL, LIHC, PRAD and

UCEC. There was no significant difference shown in BLCA,

BRCA, KICH, KIRP, PAAD, PCPG, CESC, ESCA, HNSC, READ,

SARC, SKCM, STAD, THYM (p > 0.05) (Figure 2).
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3.2 Exploring the diagnostic potential of
ASPP1 in various cancer types

As is the Diagnostic Value shown in Figure 3, COAD

(AUC=0.8) and LIHC (AUC=0.75) with an AUC exceeded 0.7

were considered moderately diagnostic, and those with an AUC

exceeded 0.9 were regarded as highly diagnostic contain CHOL

(AUC=0.971), GBM (AUC=0.967), THCA (AUC=0.904) which

displayed high diagnostic value.
3.3 Survival analysis of ASPP1 in cancers

Prognosis can be predicted using the Kaplan–Meier survival

analysis and display meaningful values using forest plots. ASPP1

expression was associated significantly with OS in 8 cancers using

Cox regression analysis with OS, DSS, and PFI analysis of cancers.

In KIRC, KIRP, LUAD, PAAD, high ASPP1 expression patients

group overall survival rates and BRCA, HNSC, KIRC, LUAD, OV,

PAAD DSS survival rates were statistically better than low

expression group. The LIHC, PCPG, READ, THCA OS survival

rates and STAD DSS survival rates were worse in cancers

(Figures 4, 5).
3.4 Expression of ASPP1 varies with cancer
stage, immune status and molecular
subtype in 33 cancers

Towards to a better understanding of ASPP1 in cancers, we

analyzed the ASPP1 expression in different stages, immune subtype

and molecular subtype. The results show that ASPP1 expresses

differs significantly differently in 6 cancer stages about CHOL (stage

I, II, IV), KICH (stage I, II, III, IV), KIRC (stage I, II, III, IV), LIHC

(stage I, II, III, IV), LUAD(stage I, II, III, IV), THCA(stage I, II, III,

IV) and significantly differently in 7 cancer molecular subtypes

include BRCA (Basal, Her 2, Lumu A, Lumu B, Normal), KIRP (C1,

C2a, C2b, C2c-CIMP), LUSC (Basal, Classical, Primitive,

Secretory), LGG (Classic-like, Codel, G-CIMP-high, G-CIMP-low,

Mesenchymal-like, PA-like), HNSC (Atypical, Basal, Classical,

Mesenchymal) , OV (Different iated, Immunoreact ive ,

Mesenchymal, Proliferative), PCPG (Corticaladmixture,

Kinasesignaling, Pseudohypoxia, Wnt-altered) (Figures 6A, B).

For immune subtypes, ASPP1 expresses significantly differently in

10 cancer types, including BLCA (5 subtypes), BRCA (5 subtypes),

CESC (3 subtypes), KIRC (6 subtypes), LGG (4 subtypes), LIHC (5

subtypes), LUAD (5 subtypes), LUSC (5 subtypes), THCA (5

subtypes), UCEC (5 subtypes) (Figure 6C).
3.5 Genetic alteration of ASPP1

A genetic investigation of ASPP1 expression across various

cancers was performed using 10,967 samples from 32 studies in

the TCGA Pan-Cancer Atlas via cBioPortal. Diverse genetic
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FIGURE 1

Overview of ASPP1 expression in human tissues and organs. (A) Expression of ASPP1 mRNA and protein in human tissues and organs; (B) A summary
of ASPP1 mRNA expression by nTPM in different parts of the body; (C) Summary of ASPP1 protein expression at different levels of expression in
different human tissues.
FIGURE 2

An analysis of ASPP1 gene expression in pan-cancer. (A) Analysis of unpaired samples for ASPP1 expression in 33 cancers and 33 normal tissues; (B)
Unpaired sample analysis of the 33 cancers and paracancerous tissues shows differential expression of ASPP1; (C) An analysis of 18 cancers and 18
paracancerous tissues was performed for the ASPP1 mRNA expression. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. ns, not significant.
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FIGURE 3

Curve of Receiver Operator Characteristics (ROC) for ASPP1 in 9 cancers. For ASPP1, cancers with an AUC > 0.6 are considered. (A) BLCA. (B) CHOL.
(C) COAD. (D) GBM. (E) KIRC. (F) LIHC. (G) PAAD. (H) THCA. (I) UCEC.
FIGURE 4

A forest plot illustrating ASPP1 OS (red), DSS (green), and PFI (blue) in 12 cancers. using the K-M method.
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mutations were identified, each potentially contributing to cancer

initiation and progression. Amplification, deep deletion, missense

mutations, and truncating mutations were the most prevalent

genetic alterations observed in ASPP1 as shown in Figure 7A.

Mutations accounted for the majority of all altered types,

including mutations, structural variants, amplifications, and deep

deletions. As shown in Figure 7B, 177 mutations were found

involving ASPP1 in pan cancers, including 136 missense

mutations, 25 truncating mutations, 7 Splice mutations, 7 Fusion

mutations and 2 Inframe mutations. The ASPP1 mutation were

most commonly seen in UCEC, SKCM, BLCA, COAD, ESCA.

Amplification was most commonly seen in UCEC, NSCLC, SARC,

OV and ACC. As shown in Figure 7C, deep deletions are most

commonly seen in BLCA, CHOL, and mature B cell neoplasms. A

shallow deletion, an amplification, and a gain in ASPP1 mRNA

expression was common among nearly all 30 cancers (Figure 7D).
3.6 PPI, functional and gene set
enrichment of ASPP1 in cancers

The STRING website was searched at the given threshold to

compile an interactive map of PPI interaction based on 47 genes

closely linked to ASPP1 (Figure 8A). The 47 interacting genes from

STRING were compared to the top 100 related genes from GEPIA2
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of ASPP1 using an interactive Venn diagram. In the repeat region,

only BAG5 (BCL2-associated athanogene 5) was duplicated,

indicating that ASPP1 plays an important role in cancer cell

apoptosis as shown in Figure 8B. Next, we analyzed the

correlation of molecular expression between ASPP1 and BAG5 in

different tumors using spearman analysis. A strong correlation was

found between ASPP1 and BAG5 in almost all cancer types except

LAML (R=-0.034) indicating that ASPP1 and BAG5 have strong

relation in cancers (Figure 8C). To determine the role of ASPP1 in

cancer function, KEGG pathway analysis and GO enrichment

analysis were conducted using ASPP1 correlated and interacted

genes. In GO enrichment analysis (BP), regulation of apoptotic

signaling pathways, dephosphorylation and intrinsic apoptotic

signaling pathways were three top GO enrichment pathways. A

number of DNA-binding transcription factors, RNA polymerase II-

specific DNA-binding transcription factors, and phosphoprotein

phosphatase activities had the highest GO enrichment analysis

(MF). Cell-cell junction, cell leading edge, and tight junction were

the top GO enrichment analysis (MF). As shown in the KEGG

analysis, Hippo signaling pathways, apoptosis, and measles

appeared to be the top three enriched pathways. ASPP1 is mainly

associated with apoptosis, dephosphorylation, DNA-binding

transcription, phosphoprotein activity, cell migration, and cell-cell

junction functions based on the results of GO/KEGG enrichment

analysis (Figures 8D–G).
FIGURE 5

A correlation between ASPP1 and prognosis in 15 cancers. (A-H) The OS K-M curve for ASPP1 in 8 cancer types. (I-O) An DSS analysis of ASPP1 K-M
curves in 7 cancers. The X-axis unit is month.
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3.7 Immune infiltration analysis in cancers

The immunemicroenvironment plays an important role in tumor

developmentwhich cancer associatedfibroblasts couldpromote tumor

progression. We observed that the ASPP1 expression has correlates
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positively with estimates value of cancer-associated fibroblast

infiltration in CHOL, LIHC, THYM, SKCM and negative correlation

with PAAD, THCA. A method of evaluating immune cell infiltration

was TIDE algorithm shows the same results in CHOL, LIHC, THYM,

SKCM, PAAD and THCA (Figure 9).
FIGURE 6

Correlations between ASPP1 expression and cancer stage, molecular subtypes, immune subtypes in cancers. (A)CHOL, KICH, KIRC, LIHC, LUAD,
THCA stages plots. (B) Molecular subtypes in BRCA, KIRP, LUSC, LGG, HNSC, OV, PCPG. (C) Immune subtypes in LGG, LIHC, BLCA, BRCA, CESC,
KIRC, LUAD, LUSC, THCA, UECE.
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3.8 ASPP1 immunogenomics analysis
in cancers

To further evaluate ASPP1’s relationship with immune

regulation and immune infiltration, we built 7 different types of

heat maps to compare ASPP1 to markers associated with immune

cells. A positive correlation was observed between ASPP1
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expression and the immune score in multiple tumor tissues,

whereas a negative correlation was observed between ASPP1 and

CD4+ T cells at rest, B cells at plasma, and B cells at native. In many

cancer types, ASPP1 exhibits a negative correlation with activated

CD4+ T cells, gamma delta T cells, CD8+ T cells, and memory B

cells. To assess the relationship between ASPP1 and immune

checkpoint-related genes, a heatmap was generated for several key
FIGURE 7

Genetic alterations of ASPP1 in pan-cancer. (A) The frequency of gene alterations in ASPP1. (B) An overview of gene alterations in ASPP1. (C) The
frequency of mutations in ASPP1 in cancers has changed. (D) An analysis of the number and type of mutations in the ASPP1 gene in cancers.
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genes. Results show that A positive correlation exists between

ASPP1 expression and immune checkpoint genes in THYM,

PCPG, LIHC, LAML, KIRC and negatively correlated with

THCA, SARC, LUSC, LUAD, LGG, HNSC, CESC, BRCA, BLCA.

A negative correlation was seen between ASPP1 and most TILs,

immunoinhibitors and immunoostimulators especially in THCA.
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Immunostimulators KIR2DL1 and KIR2DL3 lack sufficient data in

most cancers. According to ASPP1, MHC molecules are positively

correlated with TGCT but negatively correlated with other cancers.

For most chemokine receptors, ASPP1 expressed a negative

correlation with KIRC, COAD, LGG, LUSC, THCA, and

positively correlated with TGTC. There are a few chemokines that
FIGURE 8

An enrichment analysis of genes related to ASPP1. (A) An analysis of the ASPP1 interaction network using the STRING database. (B) A correlation
analysis between ASPP1-correlated genes and ASPP1-interacted genes. (C) An analysis of the correlation between ASPP1 and BAG5 in various
cancers. (D-G) ASPP1 and interacted genes enriched for GO/KEGG pathways.
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are positively correlated with ASPP1 in cancers, such as CCL28,

CX3CL1, CXCL14, and CXCL17. It was found that ASPP1 was

negatively correlated with chemokines in THCA (Figures 10A–H).
3.9 Vitro experiment to validate

The relative mRNA expression levels of ASPP1 in various

colorectal cancer cell lines (SW480, HCT116, HT-29, HCM460)

were assessed using quantitative RT-PCR. The results indicate that

ASPP1 expression is significantly lower in SW480, HCT116, and

HT-29 cells compared to HCM460 cells (Figure 11A). Analyses of

WB further confirmed the differential expression of ASPP1 protein

among these cell lines, revealing that SW480, HCT116, and HT-29

exhibit reduced ASPP1 protein levels relative to HCM460, with

statistical significance (p < 0.05, Figure 11B). Colony formation

assays demonstrated a notable decrease in colony numbers in

ASPP1 overexpression (ASPP1-OE) cells compared to the

negative control (NC) cells (Figure 11C). Additionally, wound

healing assays tracked the migration process over time, showing a

significant reduction in the migration rate of ASPP1-OE cells

relative to NC cells (Figure 11D). Finally, crystal violet staining of

invasive cells revealed that the ASPP1-OE group had significantly

fewer invasive cells than the NC group (p < 0.05, Figure 11E).
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Apoptosis-stimulating protein of p53, also known as ASPP1

(PPP1R13B), plays an important role in regulating apoptosis and

has been linked in multiple cancer types (29). It promotes the

release of pro-apoptotic proteins from the promoter of pro-

apoptot ic prote ins , enhances the DNA-binding and

transactivation functions of P53, and promotes the expression of

downstream pro-apoptotic genes (BAX, PUMA) (9). There has

been a significant downregulation in the expression level of ASPP1

in various forms of human cancer, including acute lymphoblastic

leukemia, breast cancer, hepatocellular carcinoma bearing hepatitis

B virus, clear cell renal cell carcinoma, and colorectal cancer (CRC)

(10, 11, 15–17). Downregulation of ASPP1 may enable NF-kB to

promote invasion and migration by activating Snail2, ultimately

leading to epithelial-mesenchymal transition (EMT) (30). Here, we

performed a thorough analysis of the ASPP1 gene across multiple

cancer types. Our aim was to explore the potential role of ASPP1 in

cancer and its implications for clinical practice.

According to our findings, ASPP1 expression is dysregulated in

several types of cancer. This study demonstrated significant

downregulation of ASPP1 in GBM, KIRC, LGG, BLCA, COAD,

LIHC, BRCA, PAAD, SKCM, STAD, LUAD, PRAD, READ, LUSC,

UCS, THCA and TGCT, suggesting this protein might be involved

in tumor suppression. On the other hand, ASPP1 has been found to
FIGURE 9

ASPP1 expression is associated with immune infiltration of cancer-associated fibroblasts. (A). Correlation of ASPP1 expression with CAF (TIMER2.0).
(B) Correlation of ASPP1 expression with purity and infiltration level in cancers.
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be upregulated in certain cancer types, such as ACC, CHOL, DLBC,

LAML, UCEC and THYM. Based on these findings, ASPP1 may

assume a context-dependent role in the progression of various

cancer types. A further examination of ASPP1 expression and

clinicopathological characteristics of cancer patients was

conducted. In light of our findings, the AUC of ROC for five

cancer types, including COAD, LIHC, CHOL, GBM and THCA,
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exceeded 0.7, indicating the high diagnostic effectiveness of ASPP1.

A survival analysis showed that ASPP1 expression is correlated with

DSS, OS and PFI in a number of tumor types. A lower ASPP1

expression in most cancers was associated with an adverse

prognosis. As a result, to identify patients at high risk of

metastasis and poor outcomes, ASPP1 downregulation may be a

prognostic marker for cancer progression.
FIGURE 10

Correlations between ASPP1 and immune-related genes in cancer. (A) Immune Correlations. (B) Immune checkpoint. (C) TILs. (D) Immunoinhibitors.
(E) Immunostimulators. (F) MHC molecules. (G) Chemokine receptors. (H) Chemokines. Red represents positive correlation, blue represents negative
correlation, and the darker the color, the stronger the correlation. *p < 0.05, **p < 0.01, ***p < 0.001.
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Mutations in ASPP1 are most commonly found in UCEC,

SKCM, BLCA, COAD, and ESCA, suggesting that ASPP1

mutations might play oncogenic roles. Our functional enrichment

analysis of ASPP1-associated genes provided insights into the

molecular mechanisms underpinning ASPP1’s role in cancer. In

our analysis, we found that ASPP1 regulates the cell cycle, repairs

DNA, and initiates apoptosis among other biological processes. By

modulating these key cellular processes, ASPP1 may exert its

tumor-suppressive properties. Among the ASPP1-associated

genes, we found significant enrichment of several signaling

pathways, notably the Hippo and p53 pathways. Several of these

pathways have been established as contributing to cancer

development, supporting the hypothesis that ASPP1 is also

involved in cancer development. Recent research has indicated

that ASPP1 is significantly downregulated in colorectal cancer

(CRC) cells, which influences p53-mediated apoptotic pathways

and facilitates cancer progression (31). In alignment with these

findings, as illustrated in Figures A and B, ASPP1 expression levels

in colorectal cancer cell lines such as SW480, HCT116, and HT-29

were markedly lower compared to those in normal intestinal
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epithelial cells like HCM460, highlighting the potential role of

ASPP1 in colorectal carcinogenesis.

Colony formation assays revealed that ASPP1 over express in

CRC cells resulted in a substantial reduction in colony numbers,

indicating its role as a growth inhibitor. Additionally, wound

healing assays demonstrated decreased migration in ASPP1-

overexpressing cells, reinforcing the notion that ASPP1 may play

a critical role in curbing metastasis. These results suggest that the

downregulation of ASPP1 enhances the proliferation, migration,

and invasion of CRC cells, thereby contributing to cancer

progression (11). Moreover, the reduction of cancer cell

proliferation and migration associated with ASPP1 overexpression

point to its potential as a therapeutic target in CRC.

Further investigation is warranted to clarify the underlying

molecular processes by which ASPP1 operates in CRC,

particularly its interactions with non-p53 pathways. Our findings

support the assertion that ASPP1 functions as a tumor suppressor

in CRC cells, with its reduced expression correlating with increased

proliferation, migration, and invasion. Targeting ASPP1 may

provide novel therapeutic strategies for patients with CRC.
FIGURE 11

Expression and functional verification of ASPP1 in colorectal cancer cells. (A) Relative ASPP1 mRNA expression levels in different colorectal cancer
cell lines. (B) Western blot analysis of ASPP1 protein expression in colorectal cancer cell lines. (C) Colony formation assay of NC and ASPP1-OE cells.
(D) Wound healing assay showing migration capacity of NC and ASPP1-OE cells at 0, 24, and 48 hours. (E) Transwell invasion assay comparing the
invasive potential of NC and ASPP1-OE cells. *p < 0.05; **p < 0.01. ***p < 0.001.
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5 Conclusions

In this study, we present a detailed investigation into the role of

ASPP1 in cancer, confirming its expression and function in

colorectal cancer cell lines. Dysregulation of ASPP1 has been

documented across various cancer types and correlates with

clinical characteristics and patient prognoses. Furthermore, our

functional enrichment analysis highlights the significant

involvement of ASPP1 in multiple signaling pathways and cellular

processes that contribute to cancer progression. Given these

findings, ASPP1 emerges as a promising prognostic marker and

therapeutic target, particularly in colorectal cancer. Targeting

ASPP1 may hold significant therapeutic potential in cancer

treatment. Nonetheless, Additional study is required to clarify the

specific mechanisms through which ASPP1 influences colorectal

cancer cells.
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