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The use of replication-competent viruses for selective tumor oncolysis while

sparing normal cells marks a significant advancement in cancer treatment. HSV-1

presents several advantages that position it as a leading candidate for oncolytic

virotherapies. Its large genome can accommodate insertions over 30 kb or

deletions of multiple virulence genes without compromising lytic replication in

tumor cells. Additionally, anti-herpes drugs can inhibit its replication during

accidental infections. Importantly, HSV-1 does not integrate into the host

genome and cause mutations. The HSV-1 genome can be modified through

genetic engineering in two main ways: first, by reducing infectivity and toxicity to

normal cells via limited replication and assembly, altered protein-virus receptor

binding, and minimized immune evasion; second, by enhancing anticancer

activity through disruption of tumor cell metabolism, induction of autophagy,

improved immune recogni t ion , and modificat ion of the tumor

microenvironment. In this mini-review, we systematically examine genetic

modification strategies for oncolytic HSV-1 while highlighting advancements

from these modifications. Certain genetic alterations have shown efficacy in

improving clinical outcomes for HSV-1-based therapies. These modifications

include silencing specific genes and inserting exogenous genes into the HSV-1

genome. The insertion of exogenous genes has increasingly been used to

develop new oncolytic HSV-1 variants. Finally, we discuss limitations associated

with oncolytic virotherapy at the conclusion of this review. As more clinical trials

explore newly engineered therapies, they are likely to yield breakthroughs and

promote broader adoption for cancer treatment.
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1 Introduction

Recent advancements in cancer treatment include the

utilization of replication-competent viruses for selective oncolysis

of tumors, known as oncolytic viruses (OVs), while sparing normal

cells. This therapeutic approach can be employed either as a

standalone treatment or in combination with other therapies to

inhibit tumor progression (1). OVs encompass both wild-type and

genetically modified variants. Genetic engineering strategies aimed

at modifying these viruses involve deleting specific genes to limit

toxicity to healthy cells (2, 3), inserting genes to activate the

immune system, stimulate immune responses, or inhibit

angiogenesis (4–6), and combinations of these strategies.

Herpes simplex virus type 1 (HSV-1) possesses a genome

consisting of 152 kb of double-stranded linear DNA that encodes

approximately 85 protein-coding genes, with 47 being dispensable in

cell culture (7). HSV-1 has several advantages that position it as a

leading candidate for oncolytic virotherapy (OVT). Notably, its genome

contains two unique segments: one is the unique long (UL) segment

and the other is the unique short (US) segment; each is flanked by

inverted repeat (IR) elements. This genomic architecture allows for the

insertion of fragments exceeding 30 kb or deletion of multiple virulence

genes without compromising its lytic replication cycle within tumor

cells (8, 9). Additionally, anti-herpetic drugs can inhibit HSV-1

replication in cases of accidental infection (10). Importantly, HSV-1

does not integrate into the host genome nor induce insertional

mutations (7). Due to the above characteristics of HSV-1 virus, it has

three advantages compared to other oncolytic viruses. First, it has a

larger genome that can insert and accommodate multiple foreign genes.

Additionally, the use of acyclovir can easily control HSV-1 infections in

non-tumor cells. Finally, theoretically, HSV-1 has a lower likelihood of

causing insertional mutagenesis in infected cells.

Currently, there are two primary directions for genetic

modification of oncolytic HSV-1 (Figure 1). The first direction

focuses on reducing HSV-1’s infectivity and toxicity towards

normal cells by limiting viral replication and assembly (3, 11–13),

modifying proteins that bind viral receptors (14), and decreasing

mechanisms involved in viral immune evasion (15, 16). The second

direction aims to enhance HSV-1’s anticancer efficacy through

interference with tumor cell metabolism (17), induction of

autophagy (18, 19), improvement in immune recognition

processes (20–23), and alteration of the tumor microenvironment

itself (6, 24, 25). Several key gene modifications related to silencing

specific genes or introducing exogenous genes into the HSV-1

genome will be discussed separately.
2 Silencing genes

2.1 Gene g134.5

To enhance the selectivity of HSV-1 for infecting epithelial-

derived malignancies while minimizing the risk of infection in

healthy somatic cells and preventing uncontrolled spread of HSV-

1 to normal somatic cells, numerous research groups knockout the
Frontiers in Oncology 02
g134.5 gene. The diploid gene g134.5 located within the inverted

terminal repeats flanking the long unique sequence of HSV-1 DNA

is classified as a gamma-late or “leaky late” gene. It encodes ICP34.5,

a neurovirulent protein. ICP34.5 consists of 263 amino acids

organized into three main domains: the N-terminal domain, the

linker region, and the C-terminal domain. Those domains are

responsible for binding host proteins essential for both viral

replication and immune evasion (26–29).

The principal function attributed to ICP34.5 involves

enhancing viral propagation across peripheral tissues alongside

central nervous systems, contributing significantly toward HSV,

and inducing neurovirulence via various mechanisms including

protein phosphatase I (PPI) dephosphorylating eIF2a, thus

preventing shutoff from host protein synthesis while enabling

continuous production (11, 30, 31). Furthermore, ICP34.5

converts proliferating cell nuclear antigen (PCNA) from repair

mode back toward a replicative state, crucially initiating HSV

replication (32).

Moreover, ICP34.5 inhibits antiviral signaling pathways

ensuring persistent infections. ICP34.5 disrupts retinoic-acid-

inducible gene I (RIG-I) signaling preventing interaction between

RIG-I and mitochondrial antiviral signaling protein (MAVS), a

pivotal adaptor inhibiting downstream activation IRF3 and

subsequent IFN production (33). Stimulator interferon genes

(STING) is another important player during antiviral responses

where N-terminal domain binds/inactivates STING, thereby

diminishing IRF3 activation/IFN secretion (34).

Additionally, ICP34.5 impedes autophagic processes through

Beclin binding interactions specifically targeting Beclin-1 (Atg6)

(35). Such engagement hinders this vital cellular defense

mechanism allowing enhanced pathogenesis while blocking class

II antigen presentation, further augmenting HSV virulence (36, 37).

Lastly, ICP34.5 also disrupts NF-kB activation suppressing

dendritic maturation and ultimately impairing effective adaptive

immunity against infection. The N-terminal domain of ICP34.5

interacts with IKKa/b, components of the IkB kinase complex,

while its C-terminal domain recruits PP1a. This interaction leads to
the dephosphorylation of IkB kinase, preventing the activation of

NF-kB, a transcription factor that regulates genes involved in

immune responses, inflammation, and cell survival (38, 39).

Through these combined mechanisms, ICP34.5 serves as a

critical factor in HSV-1 pathogenesis by supporting viral

replication, evading multiple immune pathways, and altering host

cellular functions. However, after silent gene g134.5, the oncolytic
efficacy of HSV-1 in malignant tumors of neurological origin (e.g.,

glioblastoma and neurofibroma) has decreased. In clinical

treatment, it is necessary to choose the oncolytic HSV-1 with

silent gene g134.5 according to the tissue source of the tumor.
2.2 Gene US11

To reduce immune evasion and subsequent uncontrolled viral

infection after the injection of oncolytic HSV-1 into patients, gene

US11 was selectively silenced. It can not only reduce the immune

evasion of oncolytic HSV virus immunocompromised patients but
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also decrease the replication and spread of the virus in healthy cells.

The US11 protein is a small basic phosphoprotein with a molecular

weight of approximately 18 kDa. Its coding region extends from the

ATG codon at residue 12,641 to the TAG stop codon at residue

12,158, resulting in a protein mass of 17,756 Da. The carboxy-

terminal half contains several arginine-X-proline (R-X-P) repeats

that confer RNA-binding capability (40). These repeats also harbor

nucleolar import and nuclear export signals that facilitate

localization within both nucleus and cytoplasm as required.

Encoded by the late g2 gene, US11 is expressed during later stages

of HSV infection and performs several crucial functions enhancing

HSV-1 survival within host cells (41).

Inhibition of protein kinase R (PKR) pathway alongside support

for viral protein synthesis are primary functions attributed to US11.

The PKR pathway becomes activated upon binding double-stranded

RNA (dsRNA), leading to phosphorylation of eIF2a, an event

typically halting protein synthesis as part of an antiviral response.

US11 exhibits high affinity for dsRNA, allowing it to sequester this

molecule away from PKR (42, 43). By obstructing PKR activation

through this mechanism, US11 prevents eIF2a phosphorylation, thus

sustaining viral protein synthesis. Furthermore, when expressed early

during infection, US11 can partially compensate for ICP34.5’s

function inhibiting eIF2a phosphorylation. This redundancy

enables HSV-1 to maintain ongoing translation even if ICP34.5 is

absent. However, both proteins are generally necessary for full

resistance against type I interferon (IFN) responses (43).

Additionally, US11 modulates various host antiviral pathways

facilitating escape from immune responses by HSV-1. During late
Frontiers in Oncology 03
phases when levels of dsRNA peak, US11 binds/sequesters dsRNA

effectively preventing MDA5/RIG-I activations, which subsequently

suppress IRF3 activity along with interferons production (44, 45).

Such inhibition impedes induction of ISGs establishment, hence

compromising antiviral states among infected cells. Another

important mechanism involves oligoadenylate synthetase (OAS)

pathway activated via dsRNA binding where US11 inhibits OAS

activity, blocking RNase L, thereby aiding virus evade degradation

while preserving infectivity (46).

Moreover, US11 plays pivotal roles regulating cell survival

pathways ultimately promoting enhanced replication through

prolongation of lifespans among infected hosts. Within nuclei,

US11 interacts with homeodomain-interacting protein kinase

HIPK2 responding stress signals including those arising from ER-

regulating cycle progression/pro-apoptotic signaling (47). By

antagonizing growth-arrest-induced HIPK2, HSV-1-infected cells

evade apoptosis, continuing to facilitate virion propagation (48).

Through multifaceted functionalities, US11 facilitates HSV-1

replication by preventing translational shutoff, inhibiting

immunological signaling and obstructing pro-apoptotic response.

By suppressing activations across PKR, OAS, MDA5, and RIG-I

enable HSV-1 to evade defenses and sustain syntheses, thus

augmenting survivability and pathogenicity. After the silencing of

US11, the therapeutic effect of a single injection of oncolytic HSV-1

may be transient. Throughout the course of treating malignant

tumors, multiple injections of oncolytic HSV-1 are required, and

continuous monitoring of tumor growth is necessary to evaluate

whether to administer oncolytic HSV-1 again.
FIGURE 1

The genetic modifications in Herpes Simplex Virus-1 (HSV-1) involve deletions and insertions. These majority modifications include the deletion of
genes such as g134.5, US11, US12, and UL39 and the expression of transgenes like GM-CSF and IL-12. These strategic genetic engineering
techniques are designed to enhance the oncolytic properties of HSV-1 while modulating immune responses to improve anti-tumor efficacy through
various mechanisms.
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2.3 Gene US12

One of the immune evasion mechanisms of HSV-1 is to inhibit

antigen presentation by binding to TAP, thereby preventing cytotoxic

T cells from recognizing infected cells. The protein encoded by the

US12 gene is key to binding with TAP. The US12 gene (ICP47) spans

residues 12,972 to 12,708 and encodes the immediate-early protein

ICP47, which consists of 88 amino acids. Similar to US1 at the

opposite end of the Us region, both the promoter region of ICP47 and

a significant portion of its 5′-non-coding mRNA are situated within

the terminal repeat (TR) sequences of HSV-1 (26). ICP47 plays a

pivotal role in HSV-1’s immune evasion strategy through various

mechanisms and polymorphic functions during different stages of

infection. It exhibits high-affinity binding to the transporter

associated with antigen presentation (TAP). By occupying TAP’s

substrate-binding site, ICP47 inhibits viral peptide loading onto

MHC class I molecules for presentation on cell surfaces to CD8+ T

cells, effectively blocking cytotoxic T lymphocyte (CTL) recognition

of infected cells and enabling HSV-1 to evade immune detection

(14, 49).

The function of ICP47 is polymorphic as infection progresses.

During early infection stages, it may impede RNA splicing, thus

limiting host and viral gene expression in a tightly regulated

manner. In later stages, however, ICP47 appears to facilitate viral

mRNA export from the nucleus into the cytoplasm, thereby

supporting efficient viral replication (50).

Deletion of US12 has been shown to enhance HSV-1’s oncolytic

potential and tumor-cell-killing ability alongside a stronger

immune response. This deletion places US11 under immediate-

early promoter control while enhancing replication efficiency in

tumor cells for HSV-1 strains lacking ICP34.5, suggesting

promising applications for oncolytic virotherapy (51, 52).

In summary, when ICP47 is deleted from its genome context, it

can serve as an effective tool to reduce immune evasion in

immunodeficient environments and tumor cells.
2.4 Gene UL39

The UL39 gene is situated within the Unique Long Region of the

HSV-1 genome and plays a critical role in viral replication and in

modulating physiological processes within host cells (53). To reduce

the spread of oncolytic HSV-1 proliferation within tumors, gene

UL39 is selected as the candidate gene to be silenced. Unlike certain

other HSV-1 genes, UL39 does not generate repetitive sequences

with adjacent regions of the viral genome, rendering it structurally

distinct. This gene is expressed early during the HSV-1 replication

cycle, prior to the entry of the viral genome into the host cell

nucleus (54, 55). Its initial translation depends on transcription and

translation mechanisms within host cells, enabling HSV-1 to swiftly

produce essential proteins for sustained infection (55).

ICP6, which is encoded by the UL39 gene and serves as the large

subunit of ribonucleotide reductase, is vital for converting

ribonucleotides into deoxyribonucleotides necessary for DNA

synthesis in viruses (56). Additionally, ICP6 can phosphorylate
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eIF2a, a key initiation factor, thereby suppressing host protein

synthesis and favoring production of viral proteins over cellular

functions. This mechanism facilitates enhanced viral replication

within infected hosts (57).

Another significant function attributed to ICP6 involves its

modulation of programmed cell death (PCD) processes in infected

cells through its receptor-interacting protein-homotypic interaction

motif (RHIM) (54). The RHIM domain prevents necroptosis by

obstructing RIPK1-RIPK3 complex formation (receptor-interacting

protein kinases 1 and 3) in human cells (58). Furthermore, it

promotes aggregation of RIPK1 that subsequently undergoes

degradation via aggrephagy, further diminishing necroptotic

activity (11). It also inhibits RIPK1/RIPK3-dependent necroptosis

in human cells. Beyond preventing necroptosis, ICP6 additionally

suppresses apoptosis by directly binding to and inhibiting caspase-

8. This dual inhibition strategy allows HSV-1 to circumvent major

apoptotic pathways while promoting both survival and proliferation

within host environments (53).

Inactivation of ICP6 through fusion with LacZ results in

restricted virus propagation primarily among dividing cells,

particularly tumor cells capable of supplying deoxyribonucleotides

via endogenous pathways (59). This tumor-specific characteristic

exhibited by mutated forms of ICP6 positions HSV-1 variants

makes them promising candidates for oncolytic therapies.

Although silencing the gene UL39 can limit the proliferation of

oncolytic HSV-1 after injection, enhancing the safety of this

oncolytic virus in clinical applications, the tumor-killing effect of

this oncolytic virus is also restricted, requiring a larger dosage and

multiple injections to achieve the desired effect.
3 Inserting exogenous genes

3.1 GM-CSF

Induction of immune cells to kill tumor cells is one of the key

mechanisms of oncolytic virus anticancer. In addition to the

immune activation of the viral particles themselves, the cytokine

genes carried by oncolytic viruses can be synthesized and released in

tumor cells, and this process also significantly improves the killing

efficacy of immune cells to tumor cells. Granulocyte-macrophage

colony-stimulating factor (GM-CSF) is a multifunctional cytokine

that plays critical roles in immune modulation, serving as a bridge

between hematopoiesis and immune activation (60, 61). Initially

identified as a growth factor that stimulates the differentiation of

bone marrow progenitor cells into granulocytes and macrophages,

GM-CSF also activates various signaling pathways, including JAK/

STAT, MAPK, and PI3K, through JAK2 activation, thereby

influencing immune functions (62–65).

GM-CSF enhances the survival, proliferation, and differentiation

of myeloid lineage cells such as neutrophils, macrophages, and

dendritic cells (DCs) (66). By promoting DC maturation, GM-CSF

improves antigen presentation capabilities and T-cell activation (60).

To enhance the phagocytic abilities of macrophages and their anti-

tumor activities, GM-CSF drives the polarization of these cells from
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an M2 (anti-inflammatory) phenotype to an M1 (pro-inflammatory)

phenotype (67). Furthermore, GM-CSF strengthens immune

recognition of cancer cell neoantigens by fostering antigen,

presenting cell generation, and elevating major histocompatibility

complex (MHC) expression, thereby reinforcing the overall immune

response against tumors (23, 68).

Oncolytic viruses (OVs) armed with GM-CSF lead to localized

cytokine expression within the tumor microenvironment while

enhancing tumor cell susceptibility to viral infection by driving

these cells into the cell cycle. This effectively converts “cold”
Frontiers in Oncology 05
tumors characterized by low immune activity into “hot” tumors

exhibiting high levels of immune activity (69). Additionally, GM-

CSF-armed OVs promote DC recruitment and maturation at tumor

sites, which enhances T-cell priming and generates robust anti-tumor

immune responses (70). This process can also foster long-term

immunological memory resulting in sustained anti-tumor effects.

The first oncolytic HSV-1 armed with GM-CSF, talimogene

laherparepvec (T-VEC), demonstrated significant anti-tumor

efficacy leading to FDA and EMA approval for melanoma therapy

(71–73). However, excessive GM-CSF release also aggravates the
TABLE 1 Genetic modification of the modified oHSV.

Aim Target genes Related oncolytic HSV-1 References

Enhance the potency of oncolytic viruses

HCMV IRS1 C132,C134 (81)

HCMV TRS1 C130 (81)

GADD34 NG34, NG34 ScFvPD-1 (82)

MyD116 GD116 (83)

GALV-GP R- OncoVEXGALV/CD (84, 85)

Nestin g134.5 rQNestin34.5 (86, 87)

angiostatin complementary G47D-mAngio (88)

Enhance the host immune response against the tumor

EphA2 C172, C170 (89)

Flt3L ONCR-177, G47D-Flt3L (72, 90)

IL-15 VG161 (91)

anti-CTLA4 ONCR-177, RP2 (72)

Immunorecruitment and chemotactic infiltration

CCL2 M010, (92)

CCL4 ONCR-177 (72)

CCL5 OV-Cmab-CCL5 (93)

Cooperate with PD-1 inhibitor

anti-PD-1 Fab T3011

PD-L1B VG161 (91)

hPD-1scFv YST-OVH, NG34 ScFvPD-1 (94, 95)

Prodrug invertase
cytochrome P450 enzyme rRp450 (96)

Fcy::Fur OncoVEXGALV/CD (85)

Light-activated cytotoxicity KR G47D-KR (97)

Anti-inflammatory IL-4 R8306 (98)

Weaken the replication and re-transmission

UL55
HF10/C-REV (99)

UL56

US3 R7041, MG18L (100, 101)

UL23 Dlsptk (102)

Reduce immune escape

UL43

HF10/C-REV (99)UL49.5

LAT
HCMV, human cytomegalovirus; GADD34, growth arrest and DNA damage gene 34; MyD116, mouse myeloid differentiation protein 116; GALV-GP R−, gibbon ape leukemia virus membrane
R− glycoprotein; EphA2, ephrin type-A receptor 2; Flt3L, Fms-related tyrosine kinase 3 ligand; IL-15, interleukin-15; anti-CTLA4, anti-cytotoxic T lymphocyte-associated protein 4; CCL2,
chemokine (C–C motif) ligand 2; CCL4, chemokine (C–C motif) ligand 4; CCL5, chemokine (C–C motif) ligand 5; Fcy::Fur, yeast cytosine deaminase/uracil phospho-ribosyltransferase fusion;
KR, KillerRed; IL-4, interleukin-4; LAT, linker for activation of T cells; PD-L1B, programmed death-ligand 1 B; hPD-1scFv, humanized single-chain variable fragment against human PD-1;
UL55, UL56, UL23, UL43, UL49.5, unique long region 55, 56, 23, etc.; US3, unique short region 3.
Gray indicates the distinct objectives, pink denotes the inserted genes, and blue signifies the representative strains harboring different types of inserted genes. Green marks the knockout genes,
while yellow highlights the representative strains with various knockout genes.
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systemic symptoms, such as fatigue and elevated body temperature.

More attention is paid to the inflammatory status of patients

during treatment.
3.2 IL-12

To enhance the tumor resistance of NK cells and cytotoxic T

lymphocytes, interleukin-12 (IL-12) was selected as a candidate

gene for the insertion of oncolytic HSV-1. Its ability to reshape the

tumor microenvironment while augmenting responses to

checkpoint inhibitors underscores its therapeutic potential

particularly when combined with other cancer immunotherapies

establishing it as a formidable agent in anti-tumor immunity.

IL-12 facilitates CD4+ T-cell differentiation into Th1 cells that

secrete elevated levels of interferon-gamma (IFN-g), which

subsequently activates NK cells and cytotoxic T lymphocytes

(CTLs), thereby enhancing their anti-tumoral functions (74).

Moreover IL-12 amplifies both growth rates and cytotoxic

activities among NK cells alongside CD4+ and CD8+ T

lymphocytes, resulting in increased production of perforin and

granzyme B, which are key molecules essential for CTLs’ capacity

to eradicate tumor cells (74, 75). Additionally, IL-12 promotes

differentiation toward memory or effector T-cell phenotypes, thus

improving precision persistence within targeting residual or

metastatic malignant populations (76, 77).

Furthermore, IL-12 diminishes regulatory T-cell (Treg) and

myeloid-derived suppressor cell (MDSC) populations within

tumoral environments alleviating suppression mechanisms

detrimental toward effective antitumoral responses (5, 78). It also

drives macrophage polarization toward an M1 phenotype, a state

characterized by pro-inflammatory properties conducive for

inducing tumoricidal activity. By downregulating vascular

endothelial growth factor (VEGF), IL-12 effectively reduces

angiogenesis associated with tumors (25, 79).

Moreover, IL-12 sensitizes neoplasms toward checkpoint inhibitors

like PD-1/PD-L1 blockade, thereby amplifying therapeutic efficacy (24,

80). With regard to promotion of tumor antigen presentation, death

induced through IL-12-stimulated effectors releases TAAs further

stimulating adaptive immunity assisting remaining malignant targets

recognized by activated T cells (76, 77).
4 Others

In addition to the aforementioned wide-ranging applications in

genetic modification techniques, several strategies for genetic

modification demonstrate significant potential for clinical

application (Table 1). A category of genetically modified viruses

has been developed to enhance viral replication and tumor-specific

cytotoxicity . The IRS1 and TRS1 genes from human

cytomegalovirus (HCMV) have been inserted into HSV-2 to

improve protein synthesis and replication by inhibiting PKR

kinase activity and autophagy, thereby facilitating robust viral

protein production and survival within tumor cells (81).
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GADD34 is homologous to g134.5; like MyD116, it can

substitute for g134.5 to restore viral replication in glioblastoma

and breast cancer cells, enhancing selective cytotoxicity (82, 83).

The Gibbon leukemia virus fusion glycoprotein (GALV-GP)

increases the efficiency of viral vector entry while inducing cell

fusion, significantly boosting tumor cell death in vitro and

promoting tumor shrinkage in vivo (84, 85). The Nestin promoter

drives selective replication in glioma cells, enhancing glioma

suppression when combined with cyclophosphamide (86, 87).

To induce and facilitate host immune responses against tumors,

numerous attempts have been made to insert various genes into

oncolytic viruses (OVs). EphA2 induces anti-tumor immunity by

generating EphA2-specific CD8+ T cells that are effective against

resistant tumors (89). Flt3L promotes dendritic cell development,

thereby enhancing both local and systemic anti-tumor immune

responses (90). IL-15 amplifies NK cell and CD8+ T-cell responses

while enhancing tumor-specific immune cycles as demonstrated in

pancreatic cancer models (91). Anti-CTLA4 antibody ONCR-177

increases the CD8+ T-cell response specific to tumor antigens,

effectively inhibiting metastatic tumors while bolstering memory

responses (103).

Some studies focus on immunorecruitment and chemotactic

infiltration of immune cells into tumors to improve the efficacy of

oncolytic viruses against malignancies. Chemokine genes such as

CCL2, CCL4, and CCL5 are incorporated into OVs to enhance

immune cell infiltration within tumors. For instance, a g134.5-
deficient HSV-1 expressing CCL2 along with IL-12 enhances

glioma killing capabilities (92), whereas OV-CIMab-CCL5

improves outcomes in glioblastoma patients (93).

Certain genetic engineering studies target synergy with immune

checkpoint inhibitors for enhanced anti-tumor effects. PD-1,

associated synergistic genes inserted into the HSV genome,

include single, stranded variable fragment PD-1 (ScFvPD-1),

variable region components of antibodies targeting programmed

death receptor one (anti-PD-1 Fab),and portions acting as PD -1

blockers (PD-L1B). Incorporating ScFvPD-1 sequences into NG34

virus augments anti-tumoral responses prolonging survival rates

observed across ovarian carcinoma models alongside those

exhibiting glioblastomas, demonstrating synergistic benefits when

paired with PI3K inhibitors (94, 104). The ScFvPD-1 gene is also

integrated within YST-OVH aiming at promoting systemic

antitumoral reactions through CTLA–4 or TIM–3 blockade (95).

Another broad category concerning genetic modifications

applied toward OV focuses upon prodrug activation mechanisms.

Infected tumoral environments allow the synthesis of prodrug

invertase produced intracellularly via virally encoded proteins,

converting non-toxic precursors and directly transforming them

into therapeutic agents. As early as 1998, cytochrome P450 was

introduced within HSV-I, enabling conversion processes whereby

cyclophosphamide becomes activated specifically inside malignant

tissues, leading toward notable anticancer effects evidenced across

medulloblastoma atypical teratoid/rhabdomyosarcoma brain

neoplasms among others (105, 106). This approach yielded

substantial advantages during treatment regimens involving
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TABLE 2 Published clinical trials with oHSV.

Year
(published)

Phase
oHSV
applied

Method Tumor References

2024 Phase IB orienx010 orienx010+anti-PD-1 Toripalimab melanoma (110)

2024 Phase II T-VEC T-VEC+radiotherapy cutaneous metastases from solid tumors (111)

2024 Phase II T-VEC T-VEC+pembrolizumab melanoma (112)

2023 Phase I CAN-3110 CAN-3110 glioblastoma (113)

2023 Phase II T-VEC T-VEC+surgery melanoma (114)

2023 Phase II T-VEC T-VEC+ipilimumab melanoma (115)

2022 Phase I T-VEC
T-VEC+CD1c (BDCA-1)+ +/− CD141 (BDCA-3)

+ myDCs
melanoma (116)

2022 Phase III T-VEC T-VEC+pembrolizumab melanoma (117)

2022 Phase II G47D G47D glioblastoma (118)

2022
Phase
I/II

G47D G47D glioblastoma (119)

2022 Phase I T-VEC T-VEC melanoma (120)

2022 Phase IB orienx010 orienx010 melanoma (73)

2021 Phase II T-VEC T-VEC breast cancer (121)

2021 Phase II T-VEC T-VEC+surgery melanoma (122)

2021
Phase
IB/II

T-VEC T-VEC+external beam radiation therapy sarcoma (123)

2021 Phase II T-VEC T-VEC melanoma (124)

2021 Phase I T-VEC T-VEC+neoadjuvant chemotherapy breast cancer (125)

2020 Phase IB T-VEC T-VEC+pembrolizumab head and neck squamous cell carcinoma (126)

2020 Phase II T-VEC T-VEC+pembrolizumab sarcoma (127)

2019 Phase I HSV1716 HSV1716
relapsed or refractory extra-cranial

solid cancers
(128)

2019 Phase II T-VEC T-VEC melanoma (129)

2019 Phase III T-VEC T-VEC melanoma (130)

2018 Phase I HF10 HF10+erlotinib and gemcitabine pancreatic cancer (131)

2018 Phase II T-VEC T-VEC+ipilimumab melanoma (132)

2017 Phase I G207 G207 malignant brain tumors (133)

2016 Phase III T-VEC T-VEC melanoma (134)

2016 Phase I M032 M032 malignant brain tumors (135)

2015 Phase III T-VEC T-VEC melanoma (136)

2014 Phase I HF10 HF10 refractory superficial solid tumors (137)

2014 Phase I G207 G207+radiation malignant brain tumors (138)

2010
Phase
I/II

T-VEC T-VEC+chemoradiotherapy head and neck squamous cell carcinoma (139)

2010 Phase III T-VEC T-VEC melanoma (140)

2009 Phase II T-VEC T-VEC melanoma (141)

2006 Phase I NV1020 NV1020 hepatic colorectal metastases (142)
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diverse oncological conditions including but not limited to those

previously mentioned (96, 107, 108).

An additional strategy involves inserting a gene-encoding yeast

cytosine deaminase/uracil phospho-ribosyltransferase fusion(Fcy::

Fur) into HSV-I, prompting infected neoplastic entities capable of

synthesizing said construct. Fcy::Fur fusion catalyzes transformation

processes wherein five-fluorocytosine (5-FC) is converted selectively,

yielding toxic derivatives known as five-fluorouracil (5-FU),

effectively targeting only malignant cellular populations without

adversely affecting surrounding healthy tissue structures (85).

Recently, Kazuhide’s team successfully integrated killer red (KR)

gene allowing light-induced singlet oxygen generation, which

markedly enhanced overall effectiveness regarding treatments

administered under laser irradiation particularly noted among cases

involving both gliobastomatosis multiple myelomas (97).

To enhance safety profiles related specifically toward employing

HSV-1-based therapeutics aimed at combating cancers, certain

critical genomic deletions occur preventing uncontrolled

propagation/infection events. Two primary methodologies exist

focusing upon limiting risks tied closely together utilizing these

engineered strains. One method entails restricting replicative

capacity particle assembly through deletion, such as UL55, UL56,

US3, and UL23, thus confining resultant virulence strictly localized

around affected sites (99, 102, 109). Another tactic employs

removing particular loci inclusive of UL43, UL49.5, and LAT,

mitigating escape routes available and henceforth increasing the

likelihood of successful elimination efforts directed toward residual

pathogenic threats encountered post-treatment interventions (99).
5 Clinical trials

Preclinical studies have identified a substantial number of

oHSVs with diverse antitumor properties. To gain a deeper

understanding of the clinical application of oHSVs, we conducted

a review of 34 published oHSV clinical trials spanning the past two

decades (Table 2). Over half of these clinical trials were

concentrated in Phases I and II, comprising 67% of the total. The

three most common treatment methods were the injection of T-

VEC, the combination of T-VEC injection and pembrolizumab, and

the injection of G47D, which accounted for 26%, 11%, and 5.9% of

the total, respectively. Among the tumors targeted by oHSV clinical

trials, the top 2 were melanoma and brain tumors, representing 50%

and 17.6% of the total, respectively. The oHSV type most frequently

reported in clinical trials was T-VEC (n=22), accounting for 64% of

all clinical trials. Notably, 22 out of the 34 clinical trials were

conducted in the past 5 years, indicating a significant increase in

research interest in this field.
6 Discussion

In this review, we observed that the majority of oHSV clinical

trials have employed various forms of viral modifications, such as
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deletions of genes g134.5, US11, US12, and UL39, or the expression

of transgenes like GM-CSF and IL-12. We also explored various

gene modifications, which, despite not having been evaluated in

clinical trials, represent a promising direction for future oncolytic

virus research. Although oncolytic virotherapy is a promising anti-

tumor technique, it is still facing several challenges.

The effectiveness of oncolytic viruses (OVs) is modest despite

good safety. Viral genetic engineering improvements may enhance

efficacy, but there are still obstacles in clinical trials, like balancing

viral replication and immune responses, optimizing delivery routes,

and achieving tumor-specific targeting.

During oncolytic virotherapy, it is imperative to achieve

equilibrium between viral proliferation and the host’s anti-viral

immune response. The ideal immune response is to allow viral

replication early in oncolytic virotherapy and to initiate humoral

immunity and clear the virus quickly at the end of treatment. The

host immune system is crucial for tumor elimination but can clear

OVs prematurely, limiting their therapeutic potential. Optimizing

virus delivery and suppressing early immune responses give the

virus more time for anti-tumor action. One of the strategies

currently ongoing is to optimize delivery methods so that the

virus moves silently into tumor cells before the host generates an

immune response to clear the virus. Another strategy is to suppress

the host immune response early on treatment, thereby improving

the infection efficiency of the oncolytic virus. Upon completion of

therapy, the introduction of antiviral medications expedites the

virus’ elimination (143).

The current delivery methods include intratumoral injection

and intravenous delivery. Intratumoral injection has the limitation

of accessible tumors and is practically difficult in deep-seated or

metastatic cases. For inaccessible tumors, imaging-guided or

surgical approaches are required, which further complicate

intratumoral injection. Intravenous delivery is more convenient

than intratumoral injection. However, it requires high specificity to

target tumors effectively, not to mention that it has risks of systemic

toxicity and immune clearance.

Moreover, OVs asmonotherapymay not achieve best therapeutic

results. OVs are usually combined with other therapies, including

immune checkpoint blockade or traditional anti-tumor therapies, to

increase efficacy. Recently, integrating OVs with chimeric antigen

receptor (CAR)-T cell therapy has emerged as an option. It could

facilitate targeted delivery while improving bioavailability and

enhancing tumor specificity. Furthermore, optimizing timing and

dosing remains crucial for maximizing synergy between OVs and

CAR-T cells (144, 145). A comprehensive regimen combining

stereotactic body radiotherapy, oncolytic virotherapy, and

pembrolizumab was used in clinical studies of metastatic non-

small-cell lung cancer. The results demonstrate the superior

prognosis of the comprehensive treatment regimen over

conventional chemotherapy and pembrolizumab alone (146).

Potential safety issues of oncolytic virus therapy have also been

suggested in clinical trials. For example, tumor cells died in large

numbers after virus injection, resulting in the release of large

amounts of antigenic material and cytokines. If the above-
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mentioned process occurs in a short time, it can lead to the life-

threatening cytokine release syndrome. In addition, after the death

of tumor cells, intracellular substances enter the circulation system

and affect the coagulation system, which can lead to thrombosis or

bleeding events. In addition, viruses may also cause insertional

mutagenesis in host cells; for instance, the oncolytic adenovirus-

based studies have found out the integration of viral genes into the

host genome. As a kind of DNA virus, the possibility of insertional

mutagenesis of HSV-1 virus is relatively small in theory, while long-

term observation and studies are also needed toward this issue

(147). Oncolytic HSV-1 has the potential to move through blood–

brain barrier and infect the central nervous system, which, on the

one hand, makes this type of oncolytic virus a candidate for the

treatment of neurogenic malignancies, and on the other hand,

increase the risk of central nervous system virus infection during

the treatment of other tumors. Genetic modification is commonly

used as one of the preventive strategies to reduce the pathogenicity

of oncolytic viruses and improve their specificity for tumor cells.

For example, G47D silenced g134.5, UL39, US12, and US11 genes

simultaneously (118). Clinical trials have shown that this kind of

virus can barely replicate in vivo; therefore, treatment with the right

dose of injected virus can safely treat tumors. Another preventive

strategy is to combine oncolytic virus therapy with tumor immune

checkpoint therapy or chemotherapy to kill the tumor while

reducing the amount of oncolytic virus injection during the

treatment. This strategy is currently widely used in clinical trial,

such as the use of T-VEC virus strain combined with anti-PD-1

treatment (112, 126, 127).

As an increasing number of clinical trials explore newly

engineered oncolytic virotherapies, these advancements are poised

to yield significant breakthroughs in related research and promote

the widespread adoption of oncolytic virotherapy for

cancer treatment.
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