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Copper, an essential trace element and biochemical cofactor in humans plays a

critical role in maintaining health. Recent studies have identified a significant

association between copper levels and the progression andmetastasis of cancer.

Copper is primarily absorbed in the intestinal tract, often leading to an imbalance

of copper ions in the body. Colorectal cancer (CRC), the most common cancer

originating in the intestines, thrives in an environment with elevated copper

concentrations. Current research is focused on uncovering the relationship

between copper and CRC which has introduced new concepts such as

cuproplasia and cuproptosis, significantly deepening our understanding of

copper’s influence on cell proliferation and death. Cuproplasia is a kind of cell

proliferation mediated by the co-regulatory activities of enzymes and non-

enzymatic factors, while cuproptosis refers to cell death induced by excessive

copper, which results in abnormal oligomerization of lipacylated proteins and the

reduction of iron-sulfur cluster proteins. Exploring cuproplasia and cuproptosis

opens new avenues for treating CRC. This review aims to summarize the critical

role of copper in promoting colorectal cancer, the dual effects of copper in the

tumor microenvironment (TME), and strategies for leveraging this unique

microenvironment to induce cuproptosis in colorectal cancer. Understanding

the relationship between copper and CRC holds promise for establishing a

theoretical foundation for innovative therapeutic strategies in CRC.
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1 Introduction

Colorectal cancer (CRC) is the most common primary bowel

cancer, and its incidence is increasing. Currently, it is the third most

common cause of cancer and the second leading cause of cancer-

related death worldwide, with an incidence and mortality rate of

10.7% and 8.1%, respectively, in 2023 (1). CRC is characterized by

multistage progression, often associated with a poor prognosis, and

is frequently diagnosed at an advanced stage (2). The development

of sustained and highly effective drugs for CRC is challenging due to

the drug-resistance of CRC (3). The tumor microenvironment

(TME), which is the direct environment for the growth of tumor

tissues, plays an important role in promoting tumor cell

proliferation, metastasis, and escaping immune attack (4, 5).

Recent studies have shown that copper ions are absorbed through

the gastrointestinal tract and exhibit elevated levels in CRC and its

microenvironment, mediating its carcinogenesis and development

(6). In addition, copper ions can trigger several types of cell death

(7, 8). Therefore, understanding the mechanism of action of copper

ions in CRC and its targeting effects is crucial for the diagnosis and

treatment of CRC.

In general, cells are regulated to maintain a relatively balanced

state of copper ion levels through a series of precise manipulations,

known as copper homeostasis (9). However, to continuously

promote the proliferation and metastasis of CRC cells, they often

enrich for copper through high-expression copper ionophores,

which is conducive to the proliferation of CRC cells. This leads to

a persistently high level of copper ion concentration, making the

cells more prone to copper overload events, resulting in copper
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death (10). Cuproptosis, as a unique mode of cell death, has

attracted the attention of medical and pharmaceutical researchers

worldwide due to its rapid action (11). Furthermore, it is difficult to

develop resistance to copper-based drugs due to the tropism of CRC

cells towards copper. Therefore, using copper in the CRC

microenvironment to promote the occurrence of copper in

colorectal cells is expected to usher in a new era of CRC treatment.

This review article systematically summarizes the role of copper

in CRC research and describes its underlying mechanisms. It

elaborates on the transport mechanism and biological functions

of copper ions, focusing on copper homeostasis, copper growth, and

copper death in CRC cells. The article also discusses the unique

TME of CRC with high copper and hypoxia, the formation

mechanism of this microenvironment, and the promotion of

copper death in CRC cells. Additionally, the possible routes and

implications for achieving a cuproptosis-based treatment are

discussed, along with potential combinations of this new

treatment approach with existing treatments.
2 The role of copper in CRC

Copper plays an extremely important role in living cells. It is not

only an extremely important trace element that is conducive to

cancer metastasis (12), but its ability to accept electrons enables it to

convert between monovalent and bivalent, thus delivering electrons.

With many complex biochemical reactions (Figure 1), copper can

bind proteins and low molecular compounds by complexing with

histidine, cysteine, and methionine in biological systems, resulting
FIGURE 1

Copper homeostasis in cancer cells. Cu+ enters via CTR1 and can follow several pathways: ATOX1 transports copper to ATP7A/B in the Golgi for
vesicle storage or export, CCS delivers copper to SOD1, and copper enters mitochondria where COX17, SCO1, SCO2, and COX11 incorporate it into
COX for electron transfer. In the plasma, ceruloplasmin carries copper to maintain systemic balance. This figure is created with
BioRender (www.BioRender.com).
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in a range of biochemical effects (13). Numerous studies have

shown that elevated levels of copper promote the proliferation

and progression of cancer cells in both laboratory and clinical

studies (14–16). Notably, the latest research points out that copper

acts on a series of proteins associated with cell transduction and

death, and its cell physiological and pathological effects are further

explained (17). The growth, metastasis, and death of CRC are

closely related to copper, which is mainly reflected in copper

homeostasis, cuproplasia, and cuproptosis.
2.1 Copper absorption, excretion and
sequestration in CRC

The uptake and expulsion of copper by CRC cells is a complex

process involving multiple mechanisms and proteins. In nature,

copper mainly exists as Cu2+, but the human body primarily

absorbs Cu+. Metal reductases like six-transmembrane epithelial

antigen of the prostate (STEAP) and duodenal cytochrome b

convert bivalent copper to monovalent copper, enhancing its uptake

into cells through specific transport proteins at the cell membrane (18,

19). These transporters comprise copper transport proteins (CTRs)

and copper ion transport ATPases (ATP7A and ATP7B) (20). After

copper enters the cells, a portion is transported through ATP7A and

ATP7B, then enriched and stored in the Golgi apparatus and vesicles

(21, 22). Copper is primarily excreted from the body through the bile

and then eliminated via the intestine (23). At the cellular level, the

copper transporter ATP7A/B plays a crucial role in facilitating copper

excretion by removing excess copper from the cells. Under normal

conditions, these transporters are located in the trans-Golgi network

(TGN), where they move copper ions from the cytoplasm into the

TGN lumen. With increased copper exposure, ATP7A and ATP7B

relocate to either the plasma membrane or the intracellular vesicle

compartment. Meanwhile, ATP7A and ATP7B shuttle copper from

the trans-Golgi network to the post-Golgi vesicles. These vesicles

containing copper can merge with the cell membrane, releasing

copper into the surrounding environment (24, 25). Furthermore, in

the colorectal tract, copper is reabsorbed through specific transport

proteins such as CTR1 to maintain the body’s copper balance.

Under physiological conditions, copper enters the cell

membrane and is transported to various cellular substructures,

including the Golgi apparatus, cytoplasm, mitochondria, and

nucleus (26). The cytoplasm contains high concentrations of

glutathione (GSH) and metallothionein (MT), which are natural

chelators of copper ions (27, 28). These proteins are more

numerous than copper ions, so most of the copper in the

cytoplasm is in a chelated state. In addition, chelated copper is

not free in the cytosol, but is mediated by ATP7B for vesicle

sequestration (29). First, sequestrated copper can maintain a

negative concentration gradient of the cytoplasmic membrane,

thereby promoting copper uptake by CTR1 along the

concentration gradient (30). Second, sequestrated copper can

stabilize the concentration of free copper ions, prevent

cytotoxicity, and produce reactive oxygen species (ROS) (31, 32).

MT and GSH form an intrinsic defense mechanism against copper-

induced cytotoxicity. In addition, copper ions can bind to
Frontiers in Oncology 03
chaperone proteins, specifically the copper chaperone of

superoxide dismutase (CCS), which interacts with copper ions

and transports them to superoxide dismutase 1 (SOD1),

promoting the formation of disulfide bonds, which are essential

for their proper structure and enzymatic activity (33, 34). In

addition, CCS regulates the distribution of SOD1 in the

intermembrane space and cytoplasm in an oxygen-dependent

manner. This regulatory mechanism is essential to maintain ROS

levels in vivo and reduce ROS production by electron transport

chains, thereby preventing oxidative damage caused by copper

overload (35, 36). Notably, copper sequestration can affect copper

concentrations in the tumor microenvironment, thereby affecting

the aggressiveness and metastasis of tumor cells (37). The role of

copper in angiogenesis and inflammatory response may also be

influenced by sequestration, which is the key factor in tumor

progression (38, 39).
2.2 Copper-driven proliferation and
metastasis in CRC

Copper plays a complex and important role in the proliferation

of CRC, and this copper-dependent growth phenomenon is known

as cuproplasia, which promotes CRC cell proliferation by

promoting a series of enzymatic or non-enzymatic reactions in

CRC cells (40). Moreover, copper is also closely associated with the

spread of CRC (41).

Copper is a cofactor for many enzymes and is involved in key

processes such as cellular respiration and antioxidant defense.

Excessive accumulation of copper causes oxidative stress that can

lead to the degradation of key cancer-suppressor proteins, including

p53, affecting cell cycle regulation and inhibiting programmed cell

death, thereby improving the viability of CRC cells (42). In addition,

Copper can allosterically activate the E2 binding enzyme UBE2D1-

UBE2D4, leading to the binding of numerous proteins (including p53)

for ubiquitination and degradation (43). Otherwise, copper enzymes

activate mammalian kinases such as ULK1 and ULK2, which are

downstream targets of the nutrient-sensing kinase mTOR (target of

rapamycin) and targets of copper-dependent kinases (44). Notably,

disinhibition of ULK1 and ULK2 induces autophagy, allowing CRC

cells to recycle intracellular components to support biosynthesis and

bioenergy supply, particularly important in the TME (45, 46).

Epithelial-mesenchymal transition (EMT) play a crucial role in

the metastasis of CRC, and both processes are closely linked to

copper and copper-binding proteins. Copper is essential for the

lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) proteins

involved in the crosslinking of collagen and elastin. Cancer cells

secrete LOX that remodels the extracellular matrix to form pre-

metastatic niches, thereby recruiting bone marrow-derived cells

that promote EMT in CRC (47, 48). Moreover, the interaction

between the copper-mediated hypoxia response element and HIF-

1a promotes EMT in CRC through CCS activating the transcription

factors ZEB 1, ZEB 2, and Snail (49). Additionally, antioxidant 1

copper chaperone (ATOX1), a copper homeostasis factor, enters the

nucleus to activate transcription. This promotes the expression of

Cyclin D1 and NADPH oxidase subunit p47phox, critical for cell
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proliferation and response to oxidative stress. ATOX1 is also a vital

copper chaperone protein in human cells that helps maintain copper

balance. It carries copper ions from the cytoplasm to the secretory

pathway, which is essential for activating copper-dependent enzymes

involved in neurotransmitter biosynthesis, iron efflux,

neoangiogenesis, wound healing, and blood pressure regulation (50–

52). ATOX1 plays a role in regulating the distribution of copper ions

within cells, ensuring they are properly allocated to the organelles and

molecules that need them. This process helps prevent the improper

accumulation and toxicity of copper (53). In addition,ATOX1protects

cells from oxidative stress damage, potentially related to or

independent of its copper chaperone role (54). ATOX1 is involved in

the regulationandeliminationof cellular copper loadbypromoting the

transfer of copper ions to the secretory pathway through its interaction

with copper-transporting ATPases such as ATP7A and ATP7B (55).

The activity of ATOX1 is affected by the cell’s redox state and GSH

balance, as cysteine residues can form disulfide bonds regulated by

GSH and glutathione reductase (Grx1) (56). ATOX1 may also be

involved in the transfer of copper ions from the copper transporter

CTR1 on the cell membrane to intracellular copper chaperone, which

is essential for intracellular transport of copper ions (57).

Angiogenesis is crucial for tumor growth and metastasis, with

vascular endothelial growth factor regulating vascular growth. Copper

ions play a key role in the early stages of tumor vascular formation (38,

58). The activation of angiogenic factors includes basic fibroblast

growth factor, vascular endothelial growth factor (VEGF), tumor

necrosis factor-alpha, and interleukin-1 (IL-1). These factors, when

combined with endothelial cells, promote their transition from G0 to

G1 and induce proliferation (59). Moreover, copper ions can increase

theproductionof vasodilator nitric oxideandpromote angiogenesis by

altering the activity of endothelial nitric oxide synthase (60).
2.3 Biological toxicity of copper and
cuproptosis in CRC

From the perspective of tumor proliferation and metastasis,

CRC seems to maintain the abnormal state of copper metabolism

deliberately. CRC maintains high concentrations of copper ions in

CRC cells through a series of copper transporters and copper

chaperones (20, 53). This is due to the extensive involvement of

copper in the maintenance of the microenvironment, angiogenesis,

and rapid proliferation in CRC progression (6). This kind of copper

enrichment to promote self-proliferation is also called copper

proliferation. However, the over-enrichment of copper puts CRC

in a very dangerous situation due to the presence of cuproptosis, as

excess copper can lead to protein aggregation by binding to the lipid

acylated components of the tricarboxylic acid cycle (TCA), which in

turn leads to the loss of iron-sulfur protein clusters and ultimately

to protein toxic stress and cell death (11).

Copper is a heavy metal. Like other heavy metals, copper has

biological activity that leads to protein denaturation. However, this

does not fully explain the biological toxicity caused by excess copper in

cells. Excessive copper-promoting cuproptosis is a complex process.

Specifically, Copper enters cells via transporters like SLC31A1/CTR1

and SLC31A2/CTR2 (61), causing copper overload. In that case,
Frontiers in Oncology 04
copper can enter mitochondria and directly bind to the TCA FDX1-

modified TCAT in mitochondrial respiration, to induce the

oligomerization of lipoylated dihydro thioamide S-acetyltransferase

(DLAT). Oligomerization of lipoylated DLAT causes cytotoxicity and

induced cell death. In addition, the reduced ferredoxin 1 (FDX1)

reduces the bivalent copper to the monovalent copper, which has

greater cytotoxicity andcan induce conformational changes in theFe-S

cluster protein, which is more unstable (62). Under the double action,

the cells undergo proteotoxic stress, which eventually leads to cell

death (Figure 2).

Sixteen regulators of cuproptosis were identified, including

FDX1, MTF1, DBT, CDKN2A, DLST, DLAT, LIPT1, LIAS, GLS,

DLD, PDHA1, PDHB, GCSH, SLC31A1, ATP7A, and ATP7B (11).

All of these proteins play important roles in the proliferation and

metastasis of CRC cells. At the same time, these known molecules

associated with copper death can play an important role in

predicting CRC progression. For example, low expression of

FDX1 in CRC was associated with a poor prognosis. Analysis of

the immune microenvironment showed a significantly lower

proportion of CD8+ T cells than in adjacent normal tissues, and

the opposite proportion of CD4+ T cells (63).

Non-codingRNAs (ncRNAs) areRNAmolecules that donot code

forproteinsbut insteadplayvarious regulatory roles ingeneexpression

and cellular processes (64–67). Based on their sizes, tructure, and

function, ncRNAs can be classified into different categories based on

their size, such as miRNAs, lncRNAs, small siRNAs, and circRNAs.

Non-coding RNAs (ncRNAs) related to cuproptosis play crucial roles

in the regulation process of CRC cells (Table 1). These RNAs include

microRNAs (miRNAs) and long non-codingRNAs (lncRNAs), which

participate in cuproptosis regulation through different mechanisms

and play crucial role in the occurrence of cuproptosis in CRC cells and

their prognosis prediction (68–70).
3 Tumor microenvironment and CRC
sensitivity to cuproptosis

The TME comprises the cellular surroundings of the tumor

cells, including immune cells, fibroblasts, endothelial cells,

mesenchymal stem cells (MSCs), and extracellular matrix (ECM)

(71). Various molecules in the TME maintain CRC cells activity,

leading to metastasis, immunosuppression, abnormal angiogenesis,

and drug resistance (72, 73). Compared to other types of cancer, the

TME in CRC has both common characteristics of a TME and

unique high copper levels (74). This unique TME makes CRC more

likely to survive in the intestine. However, this microenvironment is

characterized by hypoxia and copper-rich, which significantly

increases the sensitivity of CRC to cuproptosis (75).
3.1 Formation of a hypoxic, high-
copper environment

Compared to normal cells, CRC cells have significant

differences in biochemical metabolism. Due to the Warburg effect,

tumor cells continue to use glycolysis for energy even in the
frontiersin.org
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presence of oxygen. This phenomenon is also known as aerobic

glycolysis or biochemical reprogramming (76). This effect often

leads to the accumulation of lactic acid. The change in biochemical

reactions decreases oxygen demand, which further reduces oxygen

content in the TME. CRC cells require copper for their growth and

spread. These cells often have high levels of copper ionophores,

such as ATP7A/B, to absorb and retain copper (77). In addition, the

intestine, as the human body absorbs copper, has a higher copper

content than other tissues (78). This dual action results in a high

concentration of copper in the TME of CRC.
3.2 Redox imbalance induced by hypoxia

In the unique biochemical environment surrounding tumor cells,

oxygen levels are often low, leading tooxidative stress anddisruptionof

the redox balance in CRC cells (79, 80). Under normal circumstances,

cells maintain internal stability through a series of redox reactions to

adapt to environmental changes and sustain vital energy processes.

However, CRC cells may experience redox imbalance and this

imbalance can manifest as increased oxidative stress, where the

generation of oxidative species exceeds the capacity of antioxidant

defense systems, consequently elevating intracellular oxidative stress

levels.Ofparticular concern is thedisruptionof theGSHsystem,which

is crucial for the transition of copper valence in CRC cells (81). This

heightened oxidative stress can have diverse effects on CRC cells,

including increased sensitivity to copper (82, 83). In conditions of

oxidative stress, copper’s reactivity may be enhanced, facilitating its

interactionwith cuproptosis-targeting proteinswithin the cell, thereby

augmenting sensitivity to copper.
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3.3 Disruption of copper homeostasis in a
high-copper environment

Elevated levels of copper in both serum and tissue samples from

patients with CRC cell lines indicate a necessity for copper in tumor

proliferation. Dysregulation of copper homeostasis and the resultant

excess cuproplasia emerge as pivotal factors in CRC development (40,

84, 85). Copper homeostasis is a negative feedback regulation mode

that actively regulates the intracellular copper concentration. In

general, copper homeostasis is very stable and not easy to destroy,

but around CRC cells, due to their copper tropism, the copper

content is often an order of magnitude higher than in normal cells.

At such high copper concentrations, CRC cells are in fact on the verge

of undergoing cuproptosis. Therefore, in an environment with more

foreign copper, CRC cells will quickly uptake excessive copper,

triggering the process of cuproptosis, and leading to cell death (86).

Consequently, in environments abundant with exogenous copper,

CRC cells swiftly internalize excessive copper, triggering the process

of cuproptosis and eventual cell demise.
4 Strategies to enhance cuproptosis
in CRC

4.1 Therapeutic benefits of cuproptosis
in CRC

Cuproptosis is a completely new mode of cell death, and

treatment with other inhibitors of known cell death mechanisms
FIGURE 2

The process of cuproptosis in a cell. Cu+ enters the cell via the transporter SLC31A1 and can bind to GSH. ATP7B helps in transporting Cu+ into the
cell, where it interacts with elesclomol, forming a Cu2+-elesclomol complex. This complex can be reduced back to Cu+ by FDX1. DLAT, essential for
cuproptosis, aggregates when interacting with Cu+, and this process is facilitated by LIAS and Fe-S cluster proteins. DLAT aggregation leads to cell
death by cuproptosis. The presence of anti-DLAT inhibits DLAT aggregation, thereby preventing cuproptosis. The figure is created with
BioRender (www.BioRender.com).
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— including ferroptosis, necroptosis, and oxidative stress (87–89)

— has failed to eliminate copper ionophore-induced cell death. Due

to drug resistance, current treatments like chemotherapy,

radiotherapy, immunotherapy, and targeted therapy often do not

effectively combat colorectal cancer (2). However, a cuproptosis-

based treatment could effectively prevent this. First, the cause of

cuproptosis is an overload of copper ions in cells. However, CRC

cells require high levels of copper to maintain their proliferation

and metastasis, making it difficult to eliminate this cause. Secondly,

the sites of cuproptosis, such as FDX1 and DLAT, are relatively

conserved. This suggests that CRC cells may struggle to evade

cuproptosis through mutations (11). The cuproptosis pathway

offers advantages such as a brief duration, rapid progression,

widespread occurrence, and easy pharmaceutical targeting,

demonstrating its potential for treating colorectal cancer.
Frontiers in Oncology 06
4.2 Promotion of cuproptosis via
GAPDH inhibition

Glyceraldehyde-3-phosphate dehydrogena (GAPDH) is a key

enzyme in the sixth step of glycolysis, catalyzing the conversion of

glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate (90). In the

process of glycolysis, glucose enters cells via GLUT and is converted

to 6-phosphogluconate under the action of hexokinase (91).

Subsequently, it is isomerized to fructose-6-phosphate by

phosphoglucose isomerase. Then, glyceraldehyde-3-phosphate

(GAP) is formed under the catalysis of phosphofructokinase

(PFK) (92). However, for glycolysis products to enter the

mitochondria and participate in the TCA cycle, they must be

converted to pyruvate by GAPDH before further conversion to

acetyl-CoA to enter the mitochondria. This highlights the

significance of GAPDH in converting glucose into the universal

reactant acetyl-CoA in cells (Figure 3). Numerous studies have

confirmed that it is a potential therapeutic approach to inhibit

aerobic glycolysis in tumor cells (93–95).

GAPDH is an important enzyme in aerobic glycolysis. If the

activity of GAPDH is inhibited, it will directly inhibit the whole

aerobic glycolysis, making the energy produced by yeast greatly

reduced (96–98). In CRC, due to their special biochemical

environment (99, 100), tumor cell cells mainly rely on glycolysis

for energy, so inhibiting the activity of GAPDH will directly lead to

the reduction in energy gain leading to CRC. In the case of energy

shortage, the metabolic speed in CRC is weakened, and the copper

in cells will not be excluded by ATP7A/B, which will cause copper

retention in cells, leading to the destruction of copper homeostasis,

and eventually excessive copper accumulation and cuproptosis. In

addition, the inhibition of GAPDH will also reduce acetyl-CoA in

CRC. In such cells, both protein synthesis and DNA replication will

slow down, leading to the decreased proliferation, diffusion and

stress resistance of CRC.When cuproptosis occurs in CRC, cells will

be unable to remove the lipoylated proteins that are aggregation and

allowing them to exert toxic effects. Overall, the CRC showed an

increased sensitivity to cuproptosis.

In fact, under normal circumstances, tumor cells produce

energy through glycolysis, while mitochondrial respiration is

strictly inhibite (101). However, this does not mean that tumor

cells cannot undergo mitochondrial respiration. In the case of

GAPDH inhibition, CRC compensates for the lack of ATP and

acetyl-CoA by engaging in aerobic metabolism such as aerobic

respiration and lipid metabolism (102). Under this circumstance,

due to the opening of aerobic respiration, increased permeability of

the mitochondrial membrane, and changes in the redox

environment in cells, Cu (II) ions are more easily reduced to Cu

(I) ions and enter mitochondria to trigger cuproptosis.
4.3 Promotion of cuproptosis via copper
ion carriers

In the first step of cuproptosis, the copper ionophore mediate

the entry of copper ions into cells, playing an extremely important
TABLE 1 The comparison of cuproptosis related ncRNA.

Types Symbol Location Protein References

miRNA miR34A 1p36.22 ATP7A, ATP7B (68)

miR137 1p21.3 ATP7A, ATP7B (141)

miR205 1q32.2 ATP7A, ATP7B (142)

miR17 13q31.3 ATP7A, ATP7B (143)

miR-185 2q11.21 ATP7B (144)

miR-98 Xp11.22 ATP7B, PDHB (145)

miR-576 4q25 ATP7B, LIPTI (146)

miR-664a 1q41 DLAT (147)

miR-1271 5q35.2 DLAT (148)

miR-3133 2q37.3 DLAT, PDHB (74)

miR-452 Xq28 DLAT, LIAS (149)

miR-1976 1p36.11 LJAS (150)

miR-125b 11q24.1 DLD (151)

miR-876 9p21.1 DLD, MTF1 (152)

miR-125a 19q13.41 DLD, MTF1 (153)

miR-21 17q23.1 SLC31A1, FDX1 (154)

miR-708 llq14.1 SLC31A1 (155)

let-7i 12q14.1 SLC31A1 (156)

miR-9 1q22 GAS,
CDKN2, FDX1

(157)

IncRNA HOTAIR 12q13.13 CBX2 (158)

MEG3 14q32.2 ATP7A, ATP7B (159)

MATLATI 11q13.1 MTF1 (160, 161)

LINC02154 Xp22.2 FDX1, DLST (162)
Most data from EMBL and Genebank. As shown in the table, most of the ncRNA counterparts
are ATP7A/B, DLD, DLAT, SLC31A1d, etc., which also points to the direction for future
drug opening.
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role in the development of cell cuproptosis. Among them,

SLC31A1, responsible for transporting Cu (I) ions, plays a pivotal

role (61). On the surface of tumor cells, Cu (II) ions are reduced to

Cu (I) ions by STEAP, after which SLC31A1 facilitates their entry

into the cell, triggering subsequent reactions (103). Experimental

evidence has demonstrated that the use of CTR inhibitors can

significantly alleviate the extent of cuproptosis, underscoring the

regulatory role of CTR in cuproptosis (104).
4.4 Promotion of cuproptosis via
mitochondrial respiration

Mitochondria are the main targets of cuproptosis, characterized

by oxidatively damaging mitochondrial membranes and impaired

enzyme function in the TCA cycle (105–107). Metabolomic analysis

of cells treated with copper ions reveals a time-dependent increase

in the dysregulation of several TCA cycle-related metabolites.

Additionally, significant attenuation of cuproptosis is observed

upon inhibition of electron transport chain complexes I and II.

Furthermore, copper ions alter a range of metabolic enzymes by

lipoylation (11), a highly conserved posttranslational modification,

and all lipidated proteins participate in the TCA cycle, although

relatively few proteins are lipidated in mammalian cells. One such

lipidated protein is DLAT, a subunit of the pyruvate dehydrogenase

complex, and copper can directly bind to DLAT to promote the

disulfide bond-dependent aggregation of lipidated DLAT (108, 109)

(Figure 4). When tumor cells are in hypoxia, mitochondrial

respiration is inhibited, and copper is difficult to enter

mitochondria, and cuproptosis is greatly inhibited.
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4.5 Promotion of cuproptosis via FDX1 and
protein lipidation

FDX1 is a very small iron-sulfur protein that transfers electrons

from NADPH to mitochondrial cytochrome P450 by ferredoxin

reductase, involved in the aerobic metabolism of steroids, vitamin

D, and bile acids (110, 111). It can not only play the role of electron

transport but also can reduce the Cu (II) to the more toxic form

(112, 113). The researchers found that if the FDX1 gene is knocked

down with CRISPR-Cas9, not only will mitochondrial respiration

be inhibited, but copper will be more difficult to enter mitochondria,

but copper will also weaken its toxicity due to its inability, thus

greatly alleviating the effect of cuproptosis on cells (114).

In addition, protein lipoylation also plays a key role in the

cuproptosis process (9, 11, 115, 116). Lipoylation is not common in

the biochemical environment of the human body. The proteins that

can undergo lipoylation are concentrated in mitochondrial

respiration, mainly TCA (117), among which the main roles are

LIPT1, DLD, LIAS, DLAT, PDHA1, and PDHB (118, 119). In the

cuproptosis process, TCA related proteins are lipoylated and

aggregated, resulting in the stalling of whole mitochondrial

respiration and great biotoxicity (120). Knockout of the above

protein genes can rescue the cell toxicity of copper ions.

It should be noted that FDX1 is an upstream regulator of

protein lipoylation throughout, and in fact that lipoylation of

proteins is inaccessible in the absence of FDX1. FDX1, as an

important component of the electron transport chain, does not

work without mitochondrial respiration (111, 121), which also

shows that the necessary condition for cuproptosis is

mitochondrial respiration.
FIGURE 3

The important role of GAPDH in glycolysis. In glycolysis, glucose enters cells via GLUT and is converted to 6-phosphogluconate by hexokinase.
Phosphoglucose isomerase then converts it to fructose-6-phosphate, which is transformed into GAP by PFK. For glycolysis products to enter the
TCA cycle in the mitochondria, GAP must be converted to pyruvate by GAPDH and then to acetyl-CoA. This underscores the importance of GAPDH
in converting glucose to acetyl-CoA. This figure is created with BioRender (www.BioRender.com).
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5 Integrating cuproptosis therapy with
existing CRC treatments

5.1 The combination between cuproptosis
and immunologic therapy

Immunotherapy of PD-1 with PD-L1 is an immunotherapy

strategy used to enhance the aggression of the immune system

against cancer. Programmed cell death protein 1(PD-1) is a cell-

surface receptor, whereas programmed death-ligand 1(PD-L1) is its

ligand (122, 123). Under normal circumstances, the binding of PD-

1 to PD-L1 can inhibit the activity of T cells, thus preventing the

excessive activation of the immune system and causing its own

tissue damage (124). However, in some cancers, tumor cells or other

cells will overexpress PD-L1 to inhibit the surrounding T cells by

binding to PD-1 to evade immune surveillance (125). The rationale

of PD-1 and PD-L1 immunotherapy is to use antibodies against

anti-PD-1 or anti-PD-L1 to block the binding between PD-1 and

PD-L1, thus releasing the inhibitory effect on T cells and enhancing

the tumor attack of the immune system (122, 123). This therapeutic

strategy has been shown to be effective in a variety of cancers,

including melanoma, non-small cell lung cancer, CRC, etc.

However, in the actual treatment, the effect of PD-1 and PD-L1

immunotherapy is not effective, because the tumor cells will

continuously make PD-1 to the cell surface.

For PD-1/PD-L1 immunotherapy to continue to work, it needs

to inhibit tumor cells to continuously make PD-1. This effect can be
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achieved by drugs that induce cuproptosis, which reduces PD-1

expression by promoting tumor cell death or interfering with

material synthesis in the cells. In addition, the strong specificity

between PD-1 and PD-L1 makes it possible to make relevant

targeted drugs, which will greatly improve the anticancer

properties of drugs and reduce the damage to normal cells in the

human body. In the latest study, researchers developed a sodium

alginate hydrogel composed of sodium dichloroacetate copper and

galactose to induce sustained atrophy, resulting in a reduction of

PD-L1 on the surface of CRC cells. When implanted into the tumor,

the preformed hydrogel can further crosslink in the presence of

physiological calcium ions (Ca2+), forming a hydrogel that controls

the release of elesclomol-Cu2+ (ES-Cu) and galactose. This hydrogel

effectively induces DLAT oligomerization and copper-induced cell

death in CRC cells. Additionally, the radiation-induced

upregulation of PD-L1 is abrogated in the presence of the

hydrogel, which releases ES-Cu and galactose. Consequently, the

tumor’s sensitivity to radiotherapy and immunotherapy is

significantly enhanced, further prolonging the survival of tumor-

bearing mice with both local and metastatic tumors (126).
5.2 The combination between cuproptosis
and chemotherapy

Chemotherapy is the cornerstone of treatment for CRC. After

years of development, several effective drugs, including
FIGURE 4

The inhibition of electron transport chain complexes I and II significantly reduces cuproptosis. Copper ions modify several metabolic enzymes
through lipoylation, a conserved posttranslational modification. Although few proteins are lipidated in mammalian cells, all lipidated proteins are
involved in the TCA cycle. One such lipidated protein, DLAT, is part of the pyruvate dehydrogenase complex. Copper can bind directly to DLAT,
promoting disulfide bond-dependent aggregation. This figure is created with BioRender (www.BioRender.com).
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capecitabine, 5-fluorouracil, and oxaliplatin, are widely used in

clinical practice (127). In many clinical treatments, drug

resistance of CRC often occurs, leading to treatment failure (128).

This is due to the unique microenvironment and metabolic pattern

of CRC. Treatment targeting cuproptosis can avoid and even utilize

the microenvironment characteristics of CRC. While conventional

chemotherapeutic agents typically work by blocking or interfering

with DNA replication, cuproptosis operates through a different

mechanism, that is, excess copper can lead to protein aggregation by

binding to the lipid-acylated components of the TCA, which in turn

leads to the loss of iron-sulfur protein clusters and ultimately leads

to protein toxic stress and cell death (129). Additionally, there is a

type of drug that can enhance cuproptosis by targeting GAPDH,

and these drugs can block glycolysis, reduce the energy and raw

material source needed for DNA replication, and inhibit the

proliferation of CRC cells (130). Based on this, the combination

of traditional chemotherapy and targeted cuproptosis drugs will

greatly improve the effect of traditional therapy.
6 Discussion

Overall, copper ions play an important role in the development

of CRC. Copper is an essential trace element inside cells and is

involved in various biochemical processes, but its abnormal

accumulation in CRC is closely related to the proliferation and

metastasis of tumor cells. Copper ions affect cell signaling

and apoptosis, which in turn promote tumor proliferation and

metastasis. In the TME of CRC, the high levels of copper ions

interact with the metabolic properties of tumor cells to create a

hypoxic, high-copper environment. This environment not only

promotes the survival of tumor cells but also increases their

sensitivity to cuproptosis. Studies have shown that the induction

of cuproptosis in CRC cells can be achieved by regulating the level

of copper ions, offering new insights for CRC treatment.

The mechanism of cuproptosis is very different from that of

ferroptosis andapoptosis (11).Comparedwithapoptosis, cupoptosis is

more like a stress response to high concentrations of copper ions. It

does not have a large number of complex genes and proteins behind

apoptosis, nor does it have the characteristic apoptotic bodies and keep

cell membranes intact like apoptosis (131). Cuproptosis is more

efficient and has a shorter pathway than ferroptosis. In CRC,

cuproptosis is more likely to occur because of copper accumulation,

which is necessary for the tumor’s progression (132). However,

cuproptosis, ferroptosis, and apoptosis are not unrelated. Previous

studies have shown that disorders of copper metabolism can lead to

cancer cell death through apoptosis, paraptosis, ferroptosis, and

caspase-independent cell death (133–136). In addition, both copper

and ferroptosis lead to increased intracellular oxidation levels,

especially the disruption of the GSH redox system, and the

imbalance of intracellular redox can lead to apoptosis (137). This

shows that there is a certain correlation and similarity between the

three in terms of progress.
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Treatment regimens based on cuproptosis present several

advantages for CRC. Due to natural copper accumulation in the

TME, these treatments require less intervention to improve

efficiency compared to other drug regimens. Cuproptosis also

features a shorter death pathway, making it harder for CRC to

develop drug resistance. Additionally, the TME has the highest

copper concentration in the body, allowing for targeted treatment

that minimizes systemic toxicity and side effects. These factors

highlight the significant potential of using cuproptosis to treat CRC.

However, cuproptosis-based treatment regimens have some

limitations, as a critical step in cuproptosis is the entry of copper

into the mitochondria to bind to the lipoylated protein in TCA, which

is important for mitochondrial opening, or mitochondrial respiration

in the cell (138). Tumor cells primarily use glycolysis for energy due to

theWarburg effect, which keeps their mitochondria nearly closed and

limits copper entry, posing a challenge for cuproptosis-based

treatments (139). However, this is not an insurmountable issue, and

combining glycolysis-inhibiting drugs with copper proptosis could

effectively address this problem, as the aerobic oxidation of tumor cells

will compensate for the increase (140). In the future, the combination

of related drugs will provide a broader prospect for the cuproptosis-

based treatment.

Overall, studying how copper ions affect immune cells, stromal

cells, and other components in the TME, as well as how these cells

in turn affect the metabolism of copper ions, will enhance our

comprehensive understanding of the TME, copper, and CRC. In

addition, developing drugs that can induce cuproptosis in CRC

cells, particularly targeting key aspects of copper metabolism and

cuproptosis, as well as exploring the potential of combining

cuproptosis with traditional chemotherapy and immunotherapy.

This will further innovate and improve the mode of CRC treatment

and enhance the quality of treatment and living standards for patients.

The cuproptosis-based drug is showing its great potential in treating

CRC and will pioneer a new era of CRC therapy.
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