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Prediction of early postoperative
recurrence of hepatocellular
carcinoma by habitat analysis
based on different sequence of
contrast-enhanced CT
Yubo Zhang1,2, Hongyan Ma2, Peng Lei1*, Zhiyuan Li2,
Zhao Yan2 and Xinqing Wang1

1Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University,
Yinchuan, China, 2School of Clinical Medicine, General Hospital of Ningxia Medical University,
Yinchuan, China
Aim: To develop a habitat imaging method for preoperative prediction of early

postoperative recurrence of hepatocellular carcinoma.

Methods: A retrospective cohort study was conducted to collect data on 344

patients who underwent liver resection for HCC. The internal subregion of the

tumor was objectively delineated and the clinical features were also analyzed to

construct clinical models. Radiomics feature extraction was performed on tumor

subregions of arterial and portal venous phase images. Machine learning

classification models were constructed as a fusion model combining the three

different models, and the models were assessed.

Results: A comprehensive retrospective analysis was conducted on a cohort of

344 patients who underwent hepatic cancer resection at one of the two centers.

it was found that the combined SVM model yielded superior results after

comparing various metrics, such as the AUC, accuracy, sensitivity, specificity,

and DCA.

Conclusions: Habitat analysis of sequential CT images can delineate distinct

subregions within a tumor, offering valuable insights for early prediction of

postoperative HCC recurrence.
KEYWORDS

computed tomography (CT), early recurrence, habitat analysis, hepatocellular
carcinoma, machine learning
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Introduction

The incidence of hepatocellular carcinoma (HCC) ranks sixth

among malignant tumors globally, and it is the fourth leading cause

of cancer-related mortality (1). The preferred treatment for HCC is

surgical resection; however, research has indicated that

approximately 70% of patients who undergo surgical resection

experience recurrence within a span of 5 years (2–4). A

postoperative time point of 2 years is used as the threshold to

identify HCC recurrence as early and late recurrence. Various

studies suggest that patients with early recurrence exhibit a

significantly poorer prognosis than those with late recurrence (5).

Consequently, accurate assessment of recurrence risk holds

paramount importance in clinical decision-making and guiding

personalized treatment strategies (6).

In recent years, radiomics has emerged as a promising non-

invasive, high-throughput imaging technique for the diagnosis,

treatment, and prognosis of tumors (7). Conventional radiomics

studies typically analyze tumors as a whole, assuming their

heterogeneity but well-mixed. However, solid cancers have

significant spatial and temporal heterogeneity (8). They possess

varying compositions and spatial distributions of cell populations

within the same tumor (9). However, previous studies have

overlooked local phenotypic variations within tumors (10). The

technique of habitat analysis, which is a developing imaging analysis

method, involves partitioning groups of voxels with similar tumor

biology into subregions for enhanced visualization and

quantification of intra-tumor heterogeneity. This approach has

significant potential for personalized analysis (9, 11).

The use of hepatic contrast agent-enhanced MRI (CE-MRI) for

habitat imaging reportedly has predictive value in determining

microvascular invasion and recurrence-free survival after HCC

resection (12, 13). The accessibility and cost-effectiveness of CT

make it a preferred choice over MRI in clinical settings. However,

there is currently a lack of multi-institutional studies that explore

the extraction of subregion features from different sequences in CT

for habitat analysis to predict early recurrence of HCC. This study

was aimed at quantitatively and visually analyzing distinct

subregions within the tumor based on habitat analysis of

sequential CT images. We aimed to develop and validate an

efficient and non-invasive preoperative model for predicting early

postoperative recurrence of HCC, thus offering novel approaches

and concepts for personalized treatment and clinical management

of patients with HCC.
Materials and methods

Study population

This retrospective study was approved by the ethics committees

of the participating institutions, and the need for patients’ written

informed consent was waived because of the retrospective design.

General Hospital of Ningxia Medical University (Ethics Approval

Number: KYLL-2023-0232), People’s Hospital of Ningxia Hui
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Autonomous Region (Ethics Approval Number: 2023-LL-057).

Patients who underwent hepatic resection for HCC from January

2017 to January 2022 at either of the two medical centers were

included. The inclusion criteria were as follows: patients whose

initial treatment plan was hepatectomy for HCC and postoperative

pathology confirmed HCC and patients who underwent CT

examination within one month before the operation. The

exclusion criteria were as follows: (1) Patients with a preoperative

history of undergoing radiofrequency ablation (RFA), transarterial

chemoembolization (TACE), or radiation therapy; (2) patients with

preoperatively confirmed distant metastases; (3) patients with

preoperative CT images acquired at other centers or patients

having poor-quality CT images. In addition, (4) patients with

missing follow-up information. Patients recruited from center 1

were randomly assigned to training and internal validation datasets

in a 7:3 ratio. Patients from center 2 comprised the external

validation dataset. Patient selection flowchart is shown in Figure 1.

The medical records provided preoperative clinical data for the

following parameters: age, sex, hypertension, diabetes, cirrhosis,

hepatic virus infection, total bilirubin (Tbil), g-glutamyl transferase

(GGT), systemic immune-inflammation index (SII), lymphocyte-

to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR),

aspartate aminotransferase-to-lymphocyte ratio (ALR), platelet to

lymphocyte ratio (PLR), alpha-fetoprotein (AFP), albumin (ALB),

platelet count (PLT), aspartate transaminase (AST), alanine

aminotransferase (ALT), maximum tumor diameter, and number

of tumors. Patients were postoperatively followed up on an

outpatient basis, with the follow-up commencing one month after

discharge and scheduled every three months during the first year.

The follow-up included serology (liver function tests and serum

alpha-fetoprotein levels) and imaging (chest CT scan and

abdominal CT or MRI). Second year onward, follow-up visits

were scheduled every six months. The follow-up period extended

until February 26, 2024, or until tumor recurrence, patient loss, or

death. Early recurrence of HCC was defined as the emergence of

new tumors within or outside the liver following treatment within 2

years postoperatively (14), with postoperative recurrence

determined through imaging or pathological examinations. The

time interval between hepatic resection and the first recurrence was

defined as the time to recurrence (TTR) for HCC. The study flow is

shown in Figure 2.
CT acquisition and scanning parameters

For imaging, center 1 used a 256-slice spiral CT scanner

(Brilliance iCT, Philips, Netherlands) or a 64-slice spiral CT

scanner (SOMATOM Definition, SIEMENS, Germany), and

center 2 used a 512-slice spiral CT scanner (Revolution Apex CT,

GE, America) or a 256-slice spiral CT scanner (Brilliance iCT,

Philips, Netherlands). For image acquisition, the patients were

positioned in the supine position and underwent the scan in one

breath-hold from the apex of the diaphragm to the lower edge of the

pubic symphysis plane. Scanning parameters included a tube

voltage of 100–120 kV and a tube current of 150–250 mA. The

matrix size was set at 512 × 512 pixels. For the area of interest, layer
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thickness and spacing were both set at 1 mm. Contrast agent

injection was performed using a double-barrel high-pressure

syringe (Stellant, Medrad Company, United States). A non-ionic

contrast agent (ioversol, concentration: 300 mgI/mL) was

administered through the elbow vein at a total volume of 1.5–2

mL/kg with an injection rate of 2.5–3.0 mL/s. After the injection,

saline flush with a volume of ~20 mL was performed before

scanning during the arterial phase, which lasted for 30–35 s,

followed by portal phase, which lasted for 60–65 s; delayed phase

scanning was performed at 120–150 s.
Frontiers in Oncology 03
Tumor segmentation and habitat
subregion generation

Tumor segmentation was performed using the ITK-SNAP

software (version 3.6, www.itk-snap.org). Two experienced

abdominal radiologists with 10 and 15 years of expertise

independently evaluated all CT images. They conducted a blind

assessment without access to clinical or pathological information

and manually delineated the region of interest by precisely outlining

the boundaries of the target lesion layer by layer. Before generating
FIGURE 2

Flowchart of this study.
FIGURE 1

Patient selection flowchart.
frontiersin.org

http://www.itk-snap.org
https://doi.org/10.3389/fonc.2024.1522501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1522501
subregions, accurately localizing the tumor in the CT image is

crucial. Each CT image was paired with a corresponding tumor

mask with an identical shape, from which the tumor region was

extracted. Subsequently, radiomics information within the tumor

was extracted by considering each pixel within it as a center point

and expanding it outward by 2 pixels in each direction, resulting in

a sliding window of size 5 × 5 × 5; radiomics features within this

window were then computed using Pyradiomics package (version:

2.12; https://pyradiomics.readthedocs.io/en/2.1.2/). Finally, all

features were scaled to a range of 0 to 1 for subsequent

clustering analyses.

Although increasing the window size and extracting more

radiomics features can enhance noise immunity, the

computational effort will exponentially increase with each

additional pixel or radiomics feature in the window because of

the requirement of performing feature extraction operations for

every tumor pixel. Therefore, this study set the number of radiomics

features to five, all of which were derived from Gray-Level Co-

occurrence Matrix (GLCM), including contrast, difference entropy,

joint energy, joint entropy, and correlation. GLCM can capture

subtle texture variations in response to irregularities and complexity

in images, making it a valuable tool for investigating tumor image

heterogeneity (15). Ultimately, each pixel’s local radiomics

information is transformed into a five-dimensional feature vector.

Pixels showing similar radiomics features indicate tissue

homogeneity. We used a Gaussian mixture model clustering

technique to identify comparable subregions within the tumor. The

number of clusters, denoted as k, governs the granularity of the

clusters. In this study, we set k to 3 based on previous reports that

habitat area calculations with k = 3 yield greater robustness (16, 17).

After clustering the internal regions of the tumor and assigning

distinct color labels to each cluster, a cluster label map was generated

to depict the overall distribution pattern.
Radiomics feature extraction

Radiomics feature extraction was performed on tumor

subregions of arterial and portal venous phase images.

Preprocessing of CT images before feature extraction was done as

follows. To minimize differences caused by scanning equipment

and protocols, all CT images were first resampled to a voxel size of

1 × 1 × 1 mm3. Then, voxel intensity values were discretized by

using a consistent bin width of 25 HU to minimize image noise and

standardize intensities, thus ensuring uniform intensity resolution

in all tumor images. Eight filters were applied, including wavelet,

Laplacian of Gaussian (LoG), gradient, local binary pattern 3D,

exponential, square, square root, and logarithm. Unfiltered (raw

image) and filtered features were extracted for analysis using the

open-source Python package PyRadiomics (version 3.0.1; https://

pyradiomics.readthedocs.io/en/latest/index.html). For each region,

a total of 1561 features were extracted and classified according to

the following feature classes: 306 first-order features, 14 shape

features, 374 GLCM features, 272 gray-level size zone matrix

features, 272 gray-level run length matrix features, 82 neighboring

gray tone difference matrix features, and 238 gray-level dependence
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matrix features. A total of 4683 radiomics features were extracted

from the three habitat subregions of each sequence. PyRadiomics

adheres to the image biomarker standardization initiative. Z-Score

normalization was performed on the features extracted from the

training set, internal validation set, and external validation set.
Feature selection and model construction

To identify radiomics features with good reproducibility and

low redundancy, the features were initially subjected to an

independent-sample t-test to eliminate those with a P value

exceeding 0.05. Then, for features showing high repeatability,

Pearson correlation coefficients were computed to quantify their

relationship with each other. Only the pairs of features that showed

a correlation coefficient of >0.9 were retained. Finally, using the

least absolute shrinkage and selection operator (LASSO) algorithm,

stable radiomics features were incorporated into the LASSO

regression analysis by constructing a penalty function, l, to

shrink some regression coefficients to force some features to zero.

Based on the minimum value criterion, 10-fold cross-validation was

performed to determine the optimal l value. Radiomics features

with non-zero coefficients were screened according to the model

corresponding to the best l value. Thus, independent and stable

radiomics features were obtained. All screening features were

standardized using the Z-score method, and the mean and

variance were calculated for each column of features. Each

column of characteristics was converted to a standard normal

distribution by subtracting the mean and dividing by the

variance. Finally, based on the features and their corresponding

coefficients screened by the LASSO regression algorithm, a bar chart

of the feature coefficients was drawn to assess the degree of

importance of each feature. After feature fusion and screening,

machine learning classification models were constructed using the

scikit-learn machine learning library. The machine learning

classification models include logistic regression (LR), support

vector machine (SVM), decision tree (DT), random forest (RF),

extremely randomized trees (ExtraTree), extreme gradient boosting

(XGBoost), and multilayer perceptual machine (MLP). To reduce

overfitting, 5-fold cross-validation was performed to select the best

parameters for the classification model under training. Subjects’

work characteristic curves (ROC) were plotted, and the area under

the curve (AUC) was calculated.

A univariable LR analysis was performed to identify the risk

factors associated with early recurrence of HCC after resection on

the basis of clinical characteristics. Comparing the results of arterial

phase habitat radiomics and portal phase habitat radiomics

modeling, the optimal model outputs in the arterial and portal

phases were selected as arterial phase habitat radiomics signature

(artery-rad-hab-sign) and portal phase habitat radiomics signature

(portal-rad-hab-sign), respectively. Combining clinically relevant

risk factors and habitat radiomics signatures, we employed a

combined model. To comprehend and interpret the decision rules

acquired by the combined machine learning model, SHapley

Additive exPlanations (SHAP) values were calculated for each

predicted sample. The SHAP method, which is derived from
frontiersin.org
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game theory, was used to quantify the contribution of each feature

in the model toward increasing or decreasing the probability of a

single output.
Statistical analysis

Statistical analyses were conducted using R (version 4.0.2;

https://www.r-project.org) and Python (version 3.7.2; https://

www.python.org). Continuous variables are presented as mean ±

standard deviation, whereas categorical variables are expressed as

counts (n) and percentages (%). Categorical data were compared

using the chi-square test; normally distributed continuous variables

were assessed using the Student t-test, and non-normally

distributed continuous variables among multiple groups were

analyzed using the Kruskal–Wallis H-test. The model’s predictive

performance was assessed by evaluating the AUC of the subject’s

operating characteristic curve, as well as accuracy, sensitivity,

specificity values, calibration curves, and decision curve analysis

(DCA). In addition, Spearman’s correlation analysis was performed

to examine the correlation of radiomics characteristics of arterial

and portal phase habitats with clinical features. All statistical tests

were two-sided, and a significance level of P < 0.05 was used.
Results

Patient characteristics

We retrospectively collected 344 cases of hepatic cancer

resection from two hospitals. Center 1 included 243 patients with

a mean age of 56.19 ± 11.17 years. Patients in center 1 were divided

into a training set (n = 170) and an internal validation set (n = 73) in

a ratio of 7:3 using random assignment. Center 2 included 101

patients with a mean age of 57.64 ± 9.19 years. Patients in center 2

comprised the external validation set (n = 101). The demographic

and clinical characteristics of the training set, internal validation set,

and external validation set were compared. The results showed that

all variables had a P value of >0.05, and the difference was not

statistically significant. The data were comparable among the three

sets, as shown in Table 1. The univariable LR analysis identified age,

number of tumors, and AFP as clinically relevant risk factors, as

shown in Table 2.
Feature filtering

The LASSO regression analysis model was used for

dimensionality reduction of arterial phase habitat radiomics

features; the selection of penalty coefficients (l = 0.0110) and the

graphs of the feature screening process and feature coefficients with

l are shown in Figure 3. After the final screening of arterial phase

habitat radiomics features, 12 characteristics were retained.

The LASSO regression analysis model was used to perform

dimensionality reduction on the radiomics features of portal phase
Frontiers in Oncology
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habitat; the selection of the penalty coefficient (l = 0.0391) and the

graphs of the feature screening process, as well as the variation of

the feature coefficient with l, are shown in Figure 4. After the final

screening of the radiomics features of portal phase habitat, five

features were retained.
Model performance and validation

The optimal model among the clinical models was XGBboost,

as detailed in Attachment S1. The training set accuracy, sensitivity,

specificity, and AUC were 0.529, 0.442, 0.740, and 0.616 (95% CI:

0.5281–0.7041), respectively. The internal validation set accuracy,

sensitivity, specificity, and AUC were 0.634, 0.468, 0.618, and 0.639

(95% CI: 0.5338–0.7433), respectively, and the external validation

set accuracy, sensitivity, specificity, and AUC were 0.616, 0.500,

0.793, and 0.649 (95% CI: 0.5258–0.7712), respectively.

The optimal model in arterial phase habitat radiomics was

MLP, as detailed in Attachment S2. The training set accuracy,

sensitivity, specificity, and AUC were 0.741, 0.750, 0.720, and 0.766

(95% CI: 0.6864–0.8466), respectively. The internal validation set

accuracy, sensitivity, specificity, and AUC were 0.614, 0.717, 0.500,

and 0.569 (95% CI: 0.4557–0.6819), respectively, and the external

validation set accuracy, sensitivity, specificity, and AUC were 0.658,

0795, 0.448, and 0.615 (95% CI: 0.4832–0.7472), respectively.

The optimal model in portal phase habitat radiomics was LR, as

detailed in Attachment S3. The training set accuracy, sensitivity,

specificity, and AUC were 0.618, 0.567, 0.740, and 0.688 (95% CI:

0.5991–0.7759), respectively. The internal validation set accuracy,

sensitivity, specificity, and AUC were 0.545, 0.321, 0.792, and 0.509

(95% CI: 0.3954–0.6234), respectively, and the external validation

set accuracy, sensitivity, specificity, and AUC were 0.699, 0.727,

0.655, and 0.665 (95% CI: 0.5299–0.8009), respectively.

The arterial phase radiomics signature (artery_rad_hab_sign),

portal phase radiomics signature (vein_rad_hab_sign), and clinical

features were combined to establish the optimal model as SVM, as

detailed in Attachment S4. The training set accuracy, sensitivity,

specificity, and AUC were 0.876, 0.904, 0.818, and 0.902 (95% CI:

0.8470–0.9579), respectively. The internal validation set accuracy,

sensitivity, specificity, and AUC were 0.792, 0.925, 0.646, and 0.817

(95% CI: 0.7335–0.9009), respectively, and the external validation

set accuracy, sensitivity, specificity, and AUC were 0.877, 0.898,

0.833, and 0.896 (95% CI: 0.8108–0.9817), respectively.

Among the above models, the combined model emerged as the

optimal choice because of its superior accuracy, sensitivity,

specificity, and AUC compared to other models (Table 3,

Figure 5). The calibration curves show that only the combined

model simultaneously in the training set, internal validation set, and

external validation set predicted results in better agreement with the

actual results (Figure 6). In addition, the DCA comparing the

training set, internal validation set, and external validation set

showed that only the combined model had a net gain of patients

at most threshold probabilities (Figure 7). According to the SHAP

value analysis, artery-rad-hab-sign was the most important risk

factor in the combined model (Figure 8).
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TABLE 1 Demographics and clinical characteristics.

Feature name
Train
(n=170)

Internal validation
(n=73)

External validation
(n=101)

P value

Tbil, mmol/L 19.67 ± 23.13 18.87 ± 18.60 22.35 ± 27.53 0.195

GGT, U/L 89.59 ± 143.21 112.52 ± 185.12 99.70 ± 160.11 0.923

SII 442.00 ± 596.03 429.29 ± 354.36 369.96 ± 292.91 0.373

LMR 3.55 ± 1.45 3.54 ± 1.35 3.76 ± 1.33 0.077

NLR 2.38 ± 2.09 2.45 ± 2.27 2.17 ± 1.29 0.546

ALR 67.37 ± 54.16 83.94 ± 130.60 67.82 ± 56.87 0.601

PLR 117.63 ± 67.03 125.44 ± 54.96 109.79 ± 48.29 0.144

Age, years 0.900

<60 102 (60.00) 44 (60.27) 58 (57.43)

≥60 68 (40.00) 29 (39.73) 43 (42.57)

Sex 0.592

Female 46 (27.06) 17 (23.29) 22 (21.78)

Male 124 (72.94) 56 (76.71) 79 (78.22)

Hypertension 0.967

No 121 (71.18) 53 (72.60) 73 (72.28)

Yes 49 (28.82) 20 (27.40) 28 (27.72)

Diabetes 0.055

No 140 (82.35) 69 (94.52) 83 (82.18)

Yes 30 (17.65) 4 (5.48) 18 (17.82)

Cirrhosis 0.081

No 74 (43.53) 43 (58.90) 46 (45.54)

Yes 96 (56.47) 30 (41.10) 55 (54.46)

Hepatic virus infection 0.773

No 77 (45.29) 33 (45.21) 50 (49.50)

Yes 93 (54.71) 40 (54.79) 51 (50.50)

Maximum tumor diameter, cm 0.106

<5 94 (55.29) 26 (35.62) 69 (68.32)

≥5 76 (44.71) 47 (64.38) 32 (31.68)

Number of tumors 0.013

=1 137 (80.59) 57 (78.08) 94 (93.07)

≥2 33 (19.41) 16 (21.92) 7 (6.93)

AFP, ng/ml 0.908

<400 110 (64.71) 48 (65.75) 68 (67.33)

≥400 60 (35.29) 25 (34.25) 33 (32.67)

ALB, g/L 0.625

<40 112 (65.88) 45 (61.64) 61 (60.40)

≥40 58 (34.12) 28 (38.36) 40 (39.60)

PLT, 109/L 0.254

(Continued)
F
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Correlation of radiomics characteristics
with clinical factors

The results of the correlation study, which examined the

clinical features in relation to the characteristics of the arterial

and portal phases, showed that during the arterial phase, age

showed a significant negative correlation with sub3_log_sigma_
Frontiers in Oncology 07
2_0_mm_3D_firstorder_10Percentile and sub2_wavelet_

LLH_firstorder_Mean (Supplementary Figure S1). Moreover,

MVI showed a significant positive correlation with sub3_

exponential glrlm_RunVariance, sub2_wavelet_HHH_firstorder_

Skewness, and sub1_wavelet_LLH_gldm_GrayLevelNon

Uniformity. In the portal phase, APF and MVI were positively

correlated with sub3_sub3 gradient_glcm_Idmn and sub3_sub3
TABLE 1 Continued

Feature name
Train
(n=170)

Internal validation
(n=73)

External validation
(n=101)

P value

<125 34 (20.00) 9 (12.33) 22 (21.78)

≥125 136 (80.00) 64 (87.67) 79 (78.22)

AST, U/L 0.463

<40 112 (65.88) 44 (60.27) 70 (69.31)

≥40 58 (34.12) 29 (39.73) 31 (30.69)

ALT, U/L 0.830

<50 128 (75.29) 53 (72.60) 73 (72.28)

≥50 42 (24.71) 20 (27.40) 28 (27.72)
TABLE 2 Univariable logistic regression analysis.

feature_name Log (OR) Lower 95% CI Upper 95% CI OR OR lower 95% CI OR upper 95% CI p_value

Age -0.124 -0.211 -0.037 0.883 0.81 0.964 0.019

Sex 0.025 -0.074 0.125 1.026 0.929 1.133 0.676

Hypertension -0.003 -0.098 0.093 0.997 0.907 1.097 0.963

Diabetes 0.05 -0.07 0.17 1.051 0.932 1.185 0.494

Cirrhosis 0.091 0.005 0.177 1.095 1.005 1.194 0.08

Hepatic virus infection 0.046 -0.04 0.132 1.047 0.961 1.141 0.38

Maximum tumor diameter 0.085 -0.001 0.171 1.088 0.999 1.186 0.105

Number of tumors 0.142 0.026 0.258 1.153 1.026 1.294 0.044

AFP 0.162 0.073 0.252 1.176 1.076 1.287 0.003

Tbil -0.001 -0.003 0.001 0.999 0.997 1.001 0.343

ALB -0.044 -0.133 0.046 0.957 0.875 1.047 0.421

PLT -0.019 -0.129 0.091 0.981 0.879 1.095 0.777

AST 0.085 -0.006 0.175 1.088 0.994 1.191 0.123

ALT 0.064 -0.034 0.161 1.066 0.967 1.175 0.284

GGT 0 0 0 1 1 1 0.698

SII 0 0 0 1 1 1 0.464

LMR -0.005 -0.036 0.025 0.995 0.965 1.025 0.773

NLR 0.01 -0.013 0.032 1.01 0.987 1.033 0.48

ALR 0 0 0.001 1 1 1.001 0.501

PLR 0 0 0.001 1 1 1.001 0.574

ALBI 0.021 -0.074 0.117 1.021 0.929 1.124 0.716
fr
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Log-sigM-2-0-MM3D_GLcm_IMC1. There was a significant

negative correlation between age and sub1_log-sigma-2-0-mm-

3D_firstonder_10Percentile. In the portal phase, APF and MVI

were positively correlated with sub3_sub3 gradient_glcm_Idmn

and sub3_sub3 log-sigm-2-0-mm-3D_glcm_Imc1. There was a

significant negative correlation between age and sub1_log-sigma-

2-0-mm-3D_firstonder_10Percentile.
Discussion

The high incidence of postoperative recurrence of HCC poses a

significant challenge to patient prognosis. Early recurrence is

among the most crucial factors impacting the prognosis of HCC

(18). Preoperative adjuvant therapy may mitigate the risk of HCC

recurrence; however, clear clinical models and methods for selecting

potential candidates are currently lacking. Furthermore, liver

transplantation remains the primary treatment option for liver

cancer. By identifying and evaluating patients at high risk for

postoperative recurrence, we can optimize the allocation of

limited organ resources and enhance their long-term prognosis

(19). A study conducted by Gu et al. (20) revealed that up to 30% of

patients with a high risk of postoperative recurrence developed

distant metastases, whereas the recurrence rate for extrahepatic

tumors was as high as 97.7%. Consequently, implementing

screening measures for individuals at a heightened risk of early
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postoperative HCC recurrence can facilitate the development of

personalized treatment strategies and postoperative surveillance

programs, ultimately enhancing patient survival.

In recent years, several studies have focused on early

postoperative HCC recurrence on the basis of CT images,

investigating the correlation between HCC recurrence and

radiomics features with promising predictive outcomes (21–23).

However, most studies have solely focused on extracting radiomics

features from the entire tumor region. This approach may introduce

confounding factors like hemorrhage, necrosis, cystic changes, and

edema, which can confound the heterogeneous expression and

subsequently compromise the predictive accuracy of the model.

The emerging technique of habitat analysis in imaging focuses on

subregional histology analysis, enabling more precise quantification

of tumor subregions associated with growth or invasiveness (24).

This method reveals the spatial heterogeneity of tumors,

distinguishing it from overall tumor radiomics analysis.

In the present study, to objectively extract the internal subregions

of the tumor, we used feature extraction using the GLCM for each

pixel within the tumor region. Subsequently, to generate three distinct

subregions, clustering was performed on these pixels based on their

local features. The GLCM effectively captures subtle texture variations

in response to irregularities and complexities of the image, which is

significant for investigating tumor heterogeneity (15). The division of

arterial and portal venous phases was incorporated into the subregion

clustering, taking into account the distinct characteristics of tumors
FIGURE 3

(A, B) Arterial phase habitat radiomics feature selection using the LASSO regression. LASSO coefficient profiles of the 12 candidate habitat radiomics
features. Optimal l was identified using 10-fold cross-validation based on the minimum value criterion. (C) The histogram of the feature importance:
the Y-axis indicates the selected 12 features, and the X-axis represents the coefficient of arterial phase habitat radiomics.
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during different blood supply phases. This approach ensures accurate

habitat mapping by avoiding the omission of specific imaging voxels

with varying blood supply phase characteristics due to different

sequencing methods. The findings suggest that distinct subregions

within the arterial and portal venous phases of enhanced CT images

have a certain predictive value for early postoperative HCC

recurrence. The AUC values in the training set for arterial and
Frontiers in Oncology 09
portal venous phases were 0.766 (95% CI: 0.6864–0.8466) and

0.688 (95% CI: 0.5991–0.7759), respectively, indicating a favorable

prediction compared to the model based solely on clinical features,

which had an AUC value of 0.615 (95% CI: 0.5281–0.7041).

Subsequently, we developed a combined model incorporating

subregion features from different sequences along with clinical

features, which significantly improved prediction performance
FIGURE 4

(A, B) Venous phase habitat radiomics feature selection using LASSO regression. LASSO coefficient profiles of the five candidate habitat radiomics
features. Optimal l was identified using 10-fold cross-validation based on the minimum value criterion. (C) The histogram of the feature importance:
the Y-axis indicates the selected five features, and the X-axis represents the coefficient of portal phase habitat radiomics.
TABLE 3 Model performance comparison.

model_name Accuracy AUC (95% CI) Sensitivity Specificity Task

Clinic 0.529 0.616 (95% CI: 0.5281-0.7041) 0.442 0.740 Train

Clinic 0.634 0.639 (95% CI: 0.5338-0.7433) 0.468 0.618 Internal validation

Clinic 0.616 0.649 (95% CI: 0.5258-0.7712) 0.5000 0.793 External validation

Artery-Rad-Habitat 0.741 0.766 (95% CI: 0.6864-0.8466) 0.750 0.720 Train

Artery-Rad-Habitat 0.614 0.569 (95% CI: 0.4557-0.6819) 0.717 0.500 Internal validation

Artery-Rad-Habitat 0.658 0.615 (95% CI: 0.4832-0.7472) 0795 0.448 External validation

Portal-Rad-Habitat 0.618 0.688 (95% CI: 0.5991-0.7759) 0.567 0.740 Train

Portal-Rad-Habitat 0.545 0.509 (95% CI: 0.3954-0.6234) 0.321 0.792 Internal validation

Portal-Rad-Habitat 0.699 0.665 (95% CI: 0.5299-0.8009) 0.442 0.740 External validation

Combined 0.876 0.902 (95% CI: 0.8470-0.9579) 0.904 0.818 Train

Combined 0.792 0.817 (95% CI: 0.7335-0.9009) 0.925 0.646 Internal validation

Combined 0.877 0.896 (95% CI: 0.8108-0.9817) 0.898 0.833 External validation
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when compared to individual models alone. The combined model

showed superior predictive ability in the training set, internal

validation set, and external validation set, with AUC values of

0.902 (95% CI: 0.8470–0.9579), 0.817 (95% CI: 0.7335–0.9009), and

0.896 (95% CI: 0.8108-0.9817), respectively, highlighting their

complementary nature in enhancing personalized diagnosis. In

addition, the calibration curves of the combined model showed

remarkable consistency between the predicted and actual results.

Moreover, the DCA curves showed that the combined model holds

substantial clinical significance in predicting early recurrence of HCC.

These findings suggest that our study offers valuable insights for

HCC management.

The SHAP method was used to analyze the individual

contribution of each feature in the model toward the final

prediction of the observation (25). This analysis significantly

enhanced the interpretability of the machine learning model (26).

The findings revealed that arterial phase habitat radiomics features

were the most influential risk factors, followed by portal phase
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radiomics features. This indicates that hemodynamics and

microenvironment of HCC are associated with aggressive biological

behavior (27) and that early recurrence may be attributed to tumor

aggressiveness. The analysis of the correlation between the arterial

and portal phase habitat radiomics and the clinical features revealed a

close association of different subregional areas in each phase with age,

AFP, and MVI (Supplementary Figure S1). This suggests varying

levels of invasiveness among different subregions. Furthermore, it is

notable that most of our extracted features were derived from wavelet

features, which effectively capture heterogeneity at multiple spatial

scales (28, 29).

The heterogeneity within a tumor, which can be observed as

local or global differences on CT images, is likely attributed to

variances in tumor cell composition or properties. These habitat

analysis features offer more precise information on the aggressive

characteristics of HCC and enable better quantification of tumor

subregions closely associated with growth or aggressiveness (24).

This further highlights the significance of using habitat analysis
FIGURE 5

Model ROC curves. The combined model’s AUC in the training set, internal validation set, and external validation set is higher than that of the
other models.
FIGURE 6

Calibration curves (A) training set, (B) internal validation, (C) external validation only. The combined model predictions are in good agreement with
the actual results.
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techniques to characterize the intricate microenvironment of

tumors. Invasive subregions reportedly play a crucial role in

prognosis and treatment response medicine.

This study used a habitat analysis approach to integrate radiomics

features from diverse tumor subregions with clinical variables,

resulting in better predictive performance than models solely using

radiomics features or clinical data. The study was conducted across

multiple centers, and themodel’s predictiveperformancewas validated

by testing it on an external dataset, demonstrating its robustness across

different datasets and scanners. However, this study has several

limitations. This was a retrospective study lacking precise

correspondence between CT image habitats and pathology samples,

necessitating more comprehensive prospective studies to investigate

the behavior of biology within each habitat. The definition of manual

segmentation boundaries can be contentious because of subjective
Frontiers in Oncology 11
observer tendencies when outlining tumors. Furthermore, the current

study did not explore the correlation between genomic profiles and

radiomic phenotypes; thus, future research should incorporate

additional dimensions of data to further enhance the model’s

predictive performance.

In conclusion, habitat analysis enables the quantification and

visualization of distinct subregions within the tumor, providing

valuable information for predicting early postoperative recurrence

of HCC. We herein successfully developed a combined model that

can preoperatively predict early postoperative recurrence of HCC

on the basis of subregional features of CT images and clinical

characteristics. The external validation set confirms the model’s

stable and strong predictive performance. This can provide a more

accurate basis for the development of clinical treatments and

monitoring programs.
FIGURE 8

SHAP analysis of the combined model. The color represents the value of the variable, with red representing the larger value and blue representing
the smaller value. Arterial phase habitat radiomics signature was the most important risk factor in the combined model.
FIGURE 7

DCA curves. The Y-axis represents the net benefit, and the X-axis shows the threshold probability that the expected benefit of the treatment is equal
to the expected benefit of not receiving treatment. In the combined model of the (A) training set, (B) internal validation set, and (C) external
validation set, most patients with threshold probability have net benefit.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1522501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1522501
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by The Medical

Research Ethics Review Committee of Ningxia Medical University

General Hospital. The studies were conducted in accordance with

the local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.

Written informed consent was obtained from the individual(s) for

the publication of any potentially identifiable images or data

included in this article.
Author contributions

YZ: Conceptualization, Software, Writing – original draft. HM:

Data curation, Writing – original draft. PL: Writing – original draft,

Funding acquisition, Project administration, Supervision, Writing –

review & editing. ZL: Writing – original draft, Formal analysis. XW:

Validation, Writing – original draft. ZY: Investigation, Writing –

original draft.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Frontiers in Oncology 12
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1522501/

full#supplementary-material

SUPPLEMENTARY FIGURE 1
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Glossary

HCC hepatocellular carcinoma
Frontiers in Oncology
CT computed tomography
RFA radiofrequency ablation
TACE transarterial chemoembolization
Tbil total bilirubin
GGT g -g lu tamy l t rans f e ra se , S I I , s y s t emic immune-

inflammation index
LMR lymphocyte-to-monocyte ratio
NLR neutrophil-to-lymphocyte ratio
ALR aspartate aminotransferase-to-lymphocyte ratio
PLR platelet to lymphocyte ratio
AFP alpha-fetoprotein
ALB albumin
PLT platelet count
AST aspartate transaminase
14
ALT alanine aminotransferase
TTR the time to recurrence
GLCM Gray-Level Co-occurrence Matrix
LASSO least absolute shrinkage and selection operator
LR logistic regression
SVM support vector machine
DT decision tree
RF random forest
XGBoost extreme gradient boosting
MLP multilayer perceptual machine
SHAP SHapley Additive exPlanations
DCA decision curve analysis
MVI Microvascular cancer thrombus
ROC receiver operating characteristic
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