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Multiple Myeloma (MM) is the second most common malignancy of the

hematopoietic system, accounting for approximately 10% of all hematological

malignancies, and currently, there is no complete cure. Existing research

indicates that exosomal long non-coding RNAs (lncRNAs) play a crucial

regulatory role in the initiation and progression of tumors, involving various

interactions such as lncRNA-miRNA, lncRNA-mRNA, and lncRNA-RNA binding

proteins (RBP). Despite the significant clinical application potential of exosomal

lncRNAs, research in this area still faces challenges due to their low abundance

and technical limitations. To our knowledge, this review is the first to

comprehensively integrate and elucidate the three mechanisms of action of

exosomal lncRNAs in MM, and to propose potential therapeutic targets and

clinical cases based on these mechanisms. We highlight the latest advancements

in the potential of exosomal lncRNAs as biomarkers and therapeutic targets,

offering not only a comprehensive analysis of the role of exosomal lncRNAs in

MM but also new perspectives and methods for future clinical diagnosis and

treatment of multiple myeloma.
KEYWORDS
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1 Introduction

Multiple myeloma (MM) predominantly affects middle-aged and elderly populations

and is characterized by malignant proliferation of bone marrow plasma cells and abnormal

secretion of immunoglobulins and their peptide chains (1). It ranks second among

hematologic malignancies, comprising approximately 10% of all hematologic tumors in

high-income countries (2). MM-associated syndromes include recurrent infections,

anemia, bone pain, bone lesions, limb weakness, and kidney disease (3).
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Despite significant improvements in survival rates due to advances

in autologous hematopoietic stem cell transplantation and the

emergence of new drugs such as bortezomib, carfilzomib,

lenalidomide, and pomalidomide (4), patients with MM often

experience relapse, develop drug resistance post-treatment, and

remain incurable. With the rapid development of novel detection

technologies, such as fluorescence in situ hybridization, high-

throughput sequencing, gene chips, and quantitative polymerase

chain reaction, numerous studies have indicated the crucial role of

long non-coding RNAs (lncRNAs) in the pathogenesis and

progression of MM (5). Investigating the formation and evolution

of myeloma from the molecular and genetic perspectives can

provide a key theoretical foundation and practical value for its

prevention and treatment.

Extracellular vesicles (EVs) serve as bioactive transport

substances released by various cell types and play an important role

in the occurrence and development of various diseases (6–8). Recent

domestic and international studies have found correlations between

the types and quantities of EVs and the disease status and prognosis

of MM patients, providing new insights into the diagnosis, prognostic

assessment, and targeted therapy of MM (9, 10). In recent years, EVs

have shown promising potential in the pathogenesis, diagnosis,

prognosis, and treatment of MM (10).

Long noncoding RNAs (lncRNAs) are RNAs that are longer

than 200 nucleotides, possess diverse regulatory functions and are

transcribed by RNA polymerase II. They undergo splicing and

processing to form mature lncRNAs, which, however, are not

translated into proteins. lncRNAs regulate genes at the epigenetic,

transcriptional, and post-transcriptional levels (11, 12). Increasing

evidence suggests that dysregulation of lncRNA function is

implicated in various diseases, particularly cancer (5, 13).

LncRNAs in EVs associated with MM primarily regulate the

expression of genes and proteins within tumor cells through

mechanisms such as “competitive endogenous RNA (ceRNA)”,

“RNA duplex,” and “lncRNA-RNA-binding proteins (RBP),”

thereby affecting the occurrence, development, and drug

resistance of MM.

In recent years, there has been a plethora of research on the role

of extracellular vesicles (EVs) in multiple myeloma (MM); however,

the majority of studies have focused on microRNAs (miRNAs)

within EVs, with long non-coding RNAs (lncRNAs) constituting

only a small fraction. Yet, due to their sheer number, diverse

regulatory mechanisms, and significant functionality, lncRNAs

hold the potential to become the largest repository of targets for

the development of gene therapy drugs. Moreover, although some

exosomal lncRNAs associated with tumor development have been

identified, there are currently no anticancer drugs targeting these

exosomal lncRNAs on the market. Additionally, membrane vesicles

derived from cells, including exosomes and microvesicles, are

considered ideal delivery systems due to their low antigenicity,

low cytotoxicity, and ability to bypass endocytic pathways and

phagocytosis. The biodistribution of these membrane vesicles can

be tailored through their specific composition and cells of origin to

meet particular needs. Therefore, there is an urgent need to identify

exosomal lncRNAs associated with disease biology, to delve into

their cellular functions and biological mechanisms, in order to
Frontiers in Oncology 02
establish their basis as therapeutic targets for multiple myeloma.

This review aims to summarize the mechanisms and clinical

significance of exosomal lncRNAs in MM, emphasizing their

mechanisms and the latest advancements, and to reveal their

potential as effective therapeutic targets and diagnostic

biomarkers, in the hope of providing new therapeutic strategies

and clinical applications for MM.
2 Role of exosomes in the
pathogenesis of MM

EVs play crucial roles in MM pathogenesis and have received

significant attention in cancer research. Recent studies revealed

various aspects of EV biogenesis, regulation, and function in cancer

cells. Han et al. (14) have provided a comprehensive overview of EV

biogenesis mechanisms, emphasizing the therapeutic significance of

targeting EV biogenesis in cancer treatment. Guo et al. (15) focused

on the impact of EVs on the formation of premetastatic niches in

tumors, highlighting their effects on inflammation, immune

responses, and angiogenesis. Yang et al. (16) explored the link

between EVs and metabolic reprogramming in tumors and offered

new insights into cancer prevention and treatment. Additionally,

Paskeh et al. (17) discussed the novel roles of EVs in cancer

progression and reshaping the tumor microenvironment,

emphasizing their therapeutic value in cancer treatment. Zhang

et al. (18) have designed neutrophil-derived EV-like vesicles for

targeted cancer therapy, providing a unique approach for precise

cancer treatment using EVs. Collectively, research advancements in

tumor-derived EVs indicate that these EVs play multifaceted roles

in cancer progression, microenvironment remodeling, and targeted

therapy. These findings collectively enhance our understanding of

the complex interactions between EVs and tumors, and pave the

way for innovative strategies for cancer diagnosis and treatment.

Numerous studies have demonstrated that EVs released by the

host or cancer cells are involved in the initiation, growth,

infiltration, and metastasis of tumors. Furthermore, EVs play a

dual role in the communication between immune and cancer cells

by regulating tumor immune responses. EVs contain proteins,

cytokines, lipids, miRNAs, lncRNAs, and circular RNAs

(circRNAs) that play crucial roles in intercellular communication

and are involved in various physiological and pathological processes

(10, 19). Therefore, EVs play significant roles in the pathogenesis of

MM and serve as novel biomarkers and therapeutic tools in MM

(20). Different types of cells can release different types of EVs that

play important roles in the occurrence and development of various

diseases, with varying levels in patients with MM and healthy

individuals. Roccaro et al. demonstrated that BMSC-EXs derived

from patients with MM promote tumor growth, whereas BMSC-

EXs obtained from healthy donors inhibit MM cell proliferation

(21, 22). Wang et al. (23) demonstrated that EVs derived from bone

marrow adipocytes lead to MM drug resistance by inhibiting

chemotherapy-induced tumor cell apoptosis. Liu et al. (24)

showed that EVs from MM cells inhibit osteoblast differentiation

and enhance IL-6 secretion, leading to poor bone health.

Additionally, Frassanito et al. (25) emphasized the role of MM
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cell-mediated, EV-mediated miRNA regulation in altering the bone

marrow microenvironment and affecting disease progression. Long

et al. (26) demonstrated in vitro experiments using cell lines that

BMSC-derived EV miR-182 can be transferred to MM cells to

regulate their proliferation, metastasis, and resistance to

carfilzomib. Sun et al. (27) reported that cancer-associated

fibroblast (CAFs)-derived EV miR-21 entering MM endothelial

cells (MMECs) promotes MM proliferation, invasion, and

vascular formation. Liu et al. (28) revealed that C6-ceramide

treatment inhibited the proangiogenic activity of MM EVs,

providing insights into potential therapeutic strategies targeting

the EV pathway. EVs have a significant impact on the pathogenesis

of MM, owing to their influence on the bone marrow

microenvironment and their involvement in regulating immune

responses. Understanding the complex interactions of EVs in MM

may facilitate the development of new diagnostic and

therapeutic strategies.
3 Role of lncRNA in the pathogenesis
of MM

Recent studies have shown that lncRNAs participate in the

occurrence, progression, and metastasis of tumors (29). First,

lncRNAs can regulate the gene expression by interacting with

other RNAs such as mRNA and miRNAs, among which lncRNAs

act as large “sponges” that bind to miRNAs and form ceRNA

networks (30, 31). In this network, lncRNAs attract miRNAs,

reducing the available concentration of miRNAs and thereby

decreasing miRNA binding to the target mRNA, ultimately

leading to increased stability of the target mRNA and higher

transcriptional levels. Second, lncRNAs can interact with proteins

or DNA, affecting the chromatin structure and transcriptional

regulation (32, 33). lncRNAs regulate the chromatin status by
Frontiers in Oncology 03
interacting with chromatin-modifying enzymes or transcription

factors, thereby influencing the target gene expression.

Additionally, lncRNAs can serve as molecular bridges, regulate

protein-protein interactions, and affect cell signaling and gene

expression (33). These modes of action indicate that lncRNAs

participate in key processes of tumor cell transformation,

proliferation, apoptosis, and migration in multiple ways. We have

organized the lncRNAs mentioned in this article that affect the

occurrence and development of multiple myeloma into a table, as

shown in Table 1.

lncRNAs promote the occurrence and development of MM by

promoting MM cell proliferation and invasion, maintaining the cell

cycle, drug resistance, inhibiting osteogenesis, and reshaping the

TME. lncRNAs can directly mediate protein expression, activate

signaling pathways, or act as ceRNAs to regulate the miRNA

expression by acting on downstream genes, thereby promoting

the occurrence and development of MM (34). Conversely,

lncRNAs inhibit the occurrence and development of MM by

inhibiting the MM cell proliferation and cell cycle arrest and

promoting cell apoptosis.

Recent studies have shown that lncRNAs can directly promote

the proliferation, invasion, and regulation of the cell cycle,

inhibition of bone formation, drug resistance, and TME

remodeling of MM tumor cells by targeting miRNAs, thereby

promoting the occurrence and development of MM and leading

to a poor prognosis. Liu et al. (35) demonstrated that MALAT1

regulates the expression of SOX13 by targeting miR-1271-5p

through a ceRNA mechanism, thereby promoting MM cell

proliferation, invasion, and glycolytic ability. In addition, lncRNA

MALAT1 is highly expressed in MM and acts as a competitive

endogenous RNA for microRNA-15a/16 to promote the expression

of vascular endothelial growth factor A (VEGFA), facilitating

angiogenesis in MM (36). Shen et al. (37) demonstrated that

knockdown of lncRNA AL928768.3 significantly inhibited the
TABLE 1 Mechanisms and targets of exosomal long non-coding RNAs in multiple myeloma.

LncRNA Mechanism Target/Pathway Function Donor Cells Recipient Cells Reference

MALAT1 ceRNA miR-1271-5p
miR-15a/16

Proliferation↑
Angiogenesis↑

Unknown
Unknown

MM Cells
MM Cells

(35)
(36)

H19 ceRNA miR-29b-3p
miR-532-3p

Drug resistance↑
Osteogenic differentiation↓

Unknown
Unknown

MM Cells
MM Cells

(38, 39)
(40)

NEAT1 ceRNA
RBP

miR-214
EZH2

TME remodeling
Immune escape

MM Cells
MM Cells

NK cells
NK cells

(42)
(85, 86)

LINC01003 ceRNA miR-33a-5p Apoptosis↓ Unknown MM Cells (43)

OIP5-AS1 ceRNA miR-410 Proliferation↑
Apoptosis↓

Unknown MM Cells (44)

LINC00461 ceRNA miR-15a/16 Proliferation↑
Angiogenesis↑

MSCs MM Cells (49)

RUNX2-AS1 duplexes
ceRNA

pre-mRNA
miR-6797-5p

Osteogenic differentiation↓
Osteogenic differentiation↑

MM Cells
MM Cells

MSCs
MSCs

(72)
(74)

PSMA3-AS1 duplexes pre-mRNA Drug resistance↑ MSCs MM Cells (75–77)

LOC606724 RBP METTL7A Apoptosis↓ Adipocytes MM Cells (89, 90)
"↑" represents a promoting effect, "↓" represents an inhibitory effect.
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MM cell proliferation and colony formation, induced MM cell cycle

arrest in the G0/G1 phase, inhibited the expression of CDK2 and

CCND1, and promoted P21 expression. Additionally, lncRNA H19

is reported to significantly upregulate in the serum of MM patients.

H19 indirectly regulates the MCL-1/Akt pathway by targeting miR-

29b-3p to induce MM resistance to bortezomib or doxorubicin (38,

39). In a recent study, H19 was shown to act as a sponge for miR-

532-3p to upregulate E2F7 and inhibit tumor suppressor gene

(PTEN) epigenetics. Guo et al. (40) concluded after in vivo

experiments that H19 disrupts the balance between osteogenesis

and osteolysis through Akt/mTOR signal transduction, leading to

reduced osteogenic activity and increased osteoclast activity,

promoting the occurrence and development of MM. Additionally,

EV-derived lncRNA RUNX2-AS1 can be delivered to mesenchymal

stem cells (MSCs) through vesicle transfer, inhibiting their

osteogenic activity (41). lncRNAs can also participate in the

remodeling of the TME in MM cells. For example, lncRNA

NEAT1, highly expressed, inhibits miR-214, upregulates the

expression and release of B7-H3, promotes M2 macrophage

polarization, and accelerates MM progression (42).

Few studies have shown that lncRNAs can also inhibit the

occurrence and development of MM through various pathways,

such as cell cycle arrest and the promotion of cell apoptosis. Using

the dual-luciferase reporter gene method, Wu et al. (43)

demonstrated that LINC01003 inhibits the MM cell vitality and

adhesion by upregulating the expression of the miR-33a-5p target

gene, PIM1, as a sponge for miR-33a-5p, promoting MM cell

apoptosis. In addition, OIP5-AS1 negatively regulates miR-410,
Frontiers in Oncology 04
and miR-410 further directly targets KLF10, thereby negatively

regulating KLF10 expression. KLF10 mediates the PTEN/AKT

signaling pathway, forming the OIP5-AS1-miR-410-KLF10/

PTEN/AKT signaling axis. Compared to normal tissues, the

lncRNA OIP5-AS1 is downregulated in MM tissues and miR-410

expression is upregulated, promoting MM cell proliferation, cell

cycle progression, and inhibition of cell apoptosis (44). In addition,

Jiang et al. (45) downregulated the expression of the lncRNA IRAIN

in vitro, promoting MM cell proliferation, and revealing its

potential as a new therapeutic target for MM. These lncRNAs are

expected to become new targets and biomarkers for MM treatment

with broad prospects for cancer treatment, as shown in Figure 1.
4 Role of exosomal lncRNA in MM

Exosomes associated with MM mostly carry proteins and RNA,

including non-coding genetic material, which are closely related to

various biological processes involved in the disease. Currently,

miRNAs are the most extensively studied substances in exosomes.

However, in recent years, there has been growing interest in the

lncRNA, both domestically and internationally, especially in the

field of MM. lncRNAs are excellent biomarkers, and their detection

in exosomes may have significant implications for patients with

MM. In addition, exosomes can be viewed as potential drug carriers

and are promising candidates for clinical therapies.

The role of lncRNAs in the pathogenesis of MM has attracted

increasing attention because of their potential impact on the disease
FIGURE 1

The regulatory role of long non-coding RNA (lncRNA) in the pathogenesis of multiple myeloma: lncRNA refers to long non-coding RNA; miRNA
refers to microRNA.
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process. Exosomal lncRNAs have been found to be involved in

various key mechanisms of MM, such as drug resistance, immune

escape, and tumor progression (23, 41, 46). For instance, Wang et al.

elucidated the inducing effect of m6A methylation in adipocyte-

derived exosomal lncRNAs on drug resistance in MM, providing

insights into previously unexplored mechanisms exacerbating MM

drug resistance and suggesting potential strategies to enhance

therapeutic efficacy (23). Their work also revealed the role of the

exosomal lncRNA NEAT1 in inhibiting NK cell activity and

promoting the immune escape of MM cells, offering a new

therapeutic potential for MM by targeting exosomal lncRNAs

(47). Long noncoding RNA 00461 (LINC00461) is an important

member of the lncRNA family that plays a role in the occurrence

and development of various cancers. Knockdown of LINC00461

enhances the antitumor effects of dexamethasone and promotes

apoptosis in MM cells. Similar effects were observed in studies

involving MSCs, and exosomes derived from MSCs promoted MM

progression of MM, indicating a possible association with

LINC00461 (48). Furthermore, other studies have demonstrated

the broader relevance of exosomal lncRNAs in cancer biology and

clinical management, as exosomal lncRNAs promote proliferation,

metastasis, and acquisition of drug resistance in various cancers,

including MM (36, 49). These findings collectively underscore the

importance of exosomal lncRNAs in the pathogenesis of MM and

highlight their potential as diagnostic markers and therapeutic

targets for disease management. Building on this foundation,

further analyses and discussions on the mechanisms of action of

exosomal lncRNAs in MM will be conducted.
4.1 “ceRNA”

ceRNA networks have attracted extensive research interest in

various cancers, including gastric cancer, intervertebral disc

degeneration, epithelial ovarian cancer, cervical cancer, and

hepatocellular carcinoma (50–54). Different RNA transcripts

compete for miRNA response elements to regulate free miRNA

expression, thereby facilitating mutual regulation. lncRNAs and

miRNAs are interrelated in cancer, and lncRNA-mRNA-miRNA

networks have been constructed in MM (30, 55–60). These findings

provide new hope for the diagnosis, prognosis, and treatment of

MM, and pave the way for the development of precision medicine.

lncRNAs regulate MM progression through a ceRNA mechanism,

demonstrating their potential clinical applications and biomarker

values (36). Exosomal lncRNAs are considered therapeutic targets

and biomarkers for malignant tumors, aiding in diagnosis,

prognostic assessment, and drug treatment research. The ceRNA

mechanism is illustrated in Figure 2.

Exosomal LINC00461 promotes the proliferation of MM cells.

MSCs, a major member of the stem cell family, play crucial roles in

tissue repair, cancer treatment, and immune regulation and are widely

used in the study and treatment of various human diseases (61).

Exosomal transfer of regulatory RNAsmediated byMSCs andMM cell

sources is a key feature of cancer cell formation, promoting the tumor

microenvironment, and regulating MM cell proliferation, spread,

invasion, and drug resistance (62, 63). The role of lncRNAs in MM
Frontiers in Oncology 05
proliferation and progression is increasingly being recognized, with one

lncRNA, LINC00461, promoting MM cell proliferation (64).

LINC00461 is located in the intergenic region between the human

chromosome 5 protein-coding genes MEF2C and TMEM161B. It is a

ceRNA associated with 18miRNAs and is overexpressed in respiratory,

digestive, urinary, nervous system, and hematological malignancies

(65). Deng et al. (49) demonstrated that the expression of LINC00461

in plasma cells from patients with MM was significantly higher in

MSCs from adjacent tissues than in those from the control group.

Moreover, LINC00461 is enriched in exosomes derived from MSCs of

adjacent tissues and transferred toMM cells, affecting their proliferative

ability. In gene knockout experiments, LINC00461 knockdown

resulted in MM cell apoptosis and G1 cell cycle arrest, significantly

inhibiting cell proliferation and migration. Overall, MSC-derived

LINC00461 plays an important role in regulating MM cell

proliferation, and its high expression significantly correlates with

patient prognosis and poor survival.

LINC00461 acts as a ceRNA to regulate the miRNA expression.

RNA structure analysis showed that miR-15a and miR-16 had two

binding sites for each phenotype of LINC00461. In MS2-RIP

radiolabeling immunoprecipitation assays, compared to the empty

vector MS2, miR-15a/16 directly bound to LINC00461 and was

enriched in MS2-LINC00461. Moreover, in cells overexpressing

LINC00461, the expression levels of miR-15a and miR-16 were

significantly lower than those in control group (49). In conclusion,

exosomal LINC00461 has a sponge effect on miR-15a and miR-16,

which is capable of binding and downregulating their expression.

Zhang et al. (66) showed that low expression of miR-15a/16 in

patients leads to increased expression of CABIN1 mRNA,

promoting tumor proliferation. Essentially, miR-15a/16 directly

targets CABIN1 mRNA and negatively regulates CABIN1

expression at both the mRNA and protein levels in MM cells. In

another study, VEGFA, a target gene of miR-15a/16, affected

angiogenesis in MM by regulating the expression of VEGFA (67).

Calin et al. (68) showed that miR-15a/16, a natural antisense

transcripts of BCL2, directly interact with BCL2 and negatively

regulates its expression at the transcriptional level. BCL2, as an

important gene that regulates tumor cell apoptosis, plays a crucial

role in mediating MM cell apoptosis and drug resistance.

In summary, exosomal LINC00461 has a sponge effect on miR-

15a/16, affecting the expression of downstream genes such as

CABIN1 mRNA, VEGFA, and BCL2, and forming a ceRNA

regulatory network centered on LINC00461-miR-15a/16, thereby

influencing MM proliferation, invasion, and apoptosis. The ceRNA

network centered on exosomal LINC00461 is still in the early stages

of research, and its specific relationship with MM has not yet been

elucidated. The interaction between LINC00461-miR-15a/16 may

be influenced by other molecular stress conditions, making it

difficult to elucidate the intrinsic regulatory mechanisms of

LINC00461. In conclusion, the complex interaction between

lncRNAs and MM cell proliferation emphasizes the importance of

further studies on the regulatory roles of these ncRNAs in the

pathogenesis of MM. Understanding the mechanism by which

lncRNAs such as LINC00461 promote MM cell proliferation may

pave the way for the development of new therapeutic interventions

against this hematological malignancy.
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4.2 RNA duplexes

Extensive studies have demonstrated the complex role of

exosomal lncRNAs in MM. In addition to the ceRNA mechanism

mentioned above, lncRNAs can bind to mRNA to form RNA

duplexes. The molecular interactions of lncRNAs play crucial

roles in tumors (69, 70). Understanding the role of RNA duplexes

in MM is key to understanding the molecular mechanisms

underlying this complex disease. In MM, RNA duplexes play

important roles in regulating gene expression, cell signaling, and

intercellular communication. Understanding the various roles of

exosomal lncRNAs in MM, from intercellular communication to

targeted therapy through the formation of RNA duplexes with

transcripts, will contribute to a better understanding of the

molecular mechanisms underlying the occurrence and

progression of MM. The lncRNA lncRUNX2-AS1 formed an

RNA duplex with the precursor mRNA of RUNX2, reducing the

osteogenic potential of MSCs (Figure 3). The exosome-mediated

transfer of lncRUNX2-AS1 from MM cells to MSCs has been

identified as a potential mechanism for inhibiting osteogenesis. Li

et al. (41) demonstrated that exosomes derived from U266 or

MM1S MM cells significantly reduced bone nodule formation in
Frontiers in Oncology 06
cocultured MSCs. Exosomes derived from MM cells with knocked-

down RUNX2-AS1 reduced the intracellular levels of RUNX2-AS1

in MSCs and diminished their osteogenic capacity. Therefore, high

levels of RUNX2-AS1 in MSCs were significantly correlated with

the osteogenic activity. Antisense lncRNA can bind to mRNA

through complementary base pairing, affecting the mRNA

alternative splicing (71). Fluorescence in situ hybridization and

reverse transcription PCR showed gene overlap between RUNX2

and RUNX2-AS1, but in opposite transcriptional directions.

Overexpression of RUNX2-AS1 in MM cells significantly reduced

the RUNX2/pre-RUNX2 ratio. After RNase protection experiments

on RNA in bone marrow stromal cells, followed by reverse

transcription PCR probing for the products, it was found that the

overlapping portion of the transcripts was protected and not

degraded (41). Therefore, RUNX-2AS1 acts as a highly specific

sensor for mRNA and forms an RNA duplex with RUNX2 through

overlapping base pairs. This interaction blocks the splicing of the

RUNX2 pre-mRNA, thereby negatively regulating RUNX2 mRNA.

Unlike the lncRNA-miRNA axis, RUNX2 is a direct target gene of

RUNX2-AS1, which directly regulates osteoblast differentiation and

indirectly regulates osteoclast differentiation (72). In mouse models,

Xu et al. (73) found that osteoblasts lacking RUNX2 produce a
FIGURE 2

MREs, miRNA Response Elements. The competitive endogenous RNA mechanism: When an RNA2 molecule binds miRNA through a miRNA binding
site, it can prevent miRNA from binding to other RNAs that share the same binding site, thereby reducing the inhibitory effect of miRNA on those
other RNAs (such as RNA1), resulting in an increased expression level of these other RNAs (RNA1). This interaction, regulated by miRNA, creates a
complex regulatory network that impacts the balance and regulation of gene expression.
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highly chemoattractive and immunosuppressive bone marrow

microenvironment, affecting the localization and progression of

MM to new bone sites. In summary, the exosomal lncRNA RUNX2-

AS1 derived from MM cells acts as a natural antisense transcript of

RUNX2 and directly binds to and downregulates the expression of

RUNX2 in bone marrow stromal cells, thereby inhibiting

bone formation.

Furthermore, in studies by Arumugam et al. (74), the lncRNA

RUNX2-AS1 also had a sponge effect on miR-6797-5p, forming the

RUNX2-AS1/miR-6797-5p/RUNX2 axis, negatively regulating the

expression of RUNX2, and promoting osteoblast differentiation.

Most studies reporting ceRNA communication between RNA

molecules have focused on binary interactions between two

transcripts, but these interactions are mediated by one or more

miRNAs. The two regulatory modes of the exosomal lncRNA

RUNX2-AS1 illustrate the complexity of the relationships

between the components in ceRNA regulatory networks.

The lncRNA, lncPSMA3-AS1, forms an RNA duplex with the

precursor mRNA of PSMA3, promoting resistance to proteasome

inhibitors in MM. In previous studies, lncRNA PSMA3-AS1 was

shown to regulate the expression of corresponding miRNAs in

various tumors, such as cholangiocarcinoma, gliomas, and

pancreatic ductal adenocarcinoma (75–77). Xu et al. (78) showed

that the mRNA levels of PSMA3 and PSMA3-AS1 in CD138+ MM

cells were significantly elevated in patients with bortezomib-
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resistant MM compared with those in patients with bortezomib-

sensitive MM. PSMA3-AS1 is mainly encapsulated in MSC-derived

exosomes, transferred to MM cells, and enriched therein, further

affecting their resistance to proteasome inhibitors. Kaplan-Meier

analysis showed that high levels of PSMA3 in CD138+ MM cells

correlated with decreased progression-free survival and overall

survival in patients with MM, and high levels of PSMA3 could

also serve as an independent prognostic factor for patients with MM

receiving bortezomib treatment. All the above findings indicate a

correlation between PSMA3-AS1 and disease progression and

proteasome inhibitor resistance in patients with MM.

The target gene of PSMA3-AS1 is the sense transcript PSMA3.

Fluorescence in situ hybridization and nuclear-cytoplasmic

fractionation analyses showed that PSMA3-AS1 coexists in both

the nucleus and cytoplasm. PSMA3 and PSMA3-AS1 are located on

chromosome 14p23.1, and PSMA3-AS1 overlaps with intron 7 of

PSMA3 by 2029 nucleotides. Previous studies have shown that

antisense transcripts can regulate the sense transcript in two ways:

first, by positively regulating the expression of the sense transcript,

and second, by negatively regulating its expression (79). After

blocking new RNA synthesis with a-amanitin, the loss of PSMA3,

PSMA3-AS1, GAPDH, and 18s RNA was measured. The results

showed that knocking out PSMA3-AS1 reduced the stability of

PSMA3, whereas PSMA3-AS1 overexpression increased the

stability of PSMA3. This finding suggests that PSMA3-AS1 can
FIGURE 3

IncRNA forms RNA duplexes with mRNA: In the left signaling pathway, exosomal lncRNA binds to pre-mRNA through base complementary pairing,
forming RNA duplexes that block alternative splicing of mRNA, thereby reducing the osteogenic potential of mesenchymal stem cells (MSCs); In the
right signaling pathway, exosomal lncRNA forms RNA duplexes with pre-mRNA through base complementary pairing, enhancing the stability of
mRNA. E1, E2, and E3 represent exons.
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form a duplex with PSMA3, increasing its stability of PSMA3 by

reducing its degradation and thereby positively regulating the

expression of PSMA3 (78).

Previous studies have shown that PSMA3 encodes the alpha 7

subunit of the proteasome, which plays an important role in its

formation and function (80). PSMA3 and PSMA3-AS1 knockout

resulted in decreased proteasome activity in MM cells, whereas

overexpression increased proteasome activity. In summary,

PSMA3-AS1 can bind to PSMA3-AS1 pre-mRNA and increase its

stability, promoting the proliferation of MM cells and proteasome

activity, and conferring resistance to proteasome inhibitors in MM

cells, as shown in Figure 3. In vivo experiments by Xu et al. (78)

showed that exogenously injected therapeutic PSMA3-AS1 siRNA

effectively increases the sensitivity of U266 xenografts to

carfilzomib, significantly prolonging overall survival when

combined with carfilzomib treatment. These experiments further

demonstrate how the biological activity of the exosomal lncRNA

PSMA3-AS1 can be transmitted between different cell types,

affecting cell function, and may serve as a therapeutic target for

MM bone lesions. RNA-based therapies, particularly siRNA, have

shown great potential in cancer treatment because they can silence

key genes in tumor progression (81). In vivo siRNA delivery can be

achieved through various methods such as liposomes, lipid

nanoparticles, polymeric nanoparticles, viral vectors, proteins and

peptides, and exosomes, to enhance the stability of siRNA and

cellular uptake efficiency, and to overcome delivery barriers (82).

Preclinical and clinical studies have demonstrated the potential for

treating solid tumors and hematological malignancies, as well as

cancer immunotherapy. This indicates a novel signaling pathway

involved in drug resistance and highlights the role of exosomes in

intercellular communication in the context of this disease.
4.3 IncRNA RBP

Complex interactions between exosomal lncRNAs and RBPs

have garnered significant attention. Exosomes are EVs involved in

intercellular communication and are associated with the progression

and drug resistance of MM (83). RBPs have been identified as

promising biomarkers for MM and the construction of RBP

signatures can effectively predict the prognosis of patients with

MM. The interaction between lncRNAs and RBPs plays a crucial

role in the occurrence and development of cancer (84–86), such as

regulating target gene expression, RBP activity and stability, and

lncRNA expression levels (11). These findings emphasize the

importance of further exploration of these molecular mechanisms

to develop new therapeutic strategies and improve patient prognosis.

Exosomal lncRNA NEAT1 binds to EZH2 and promotes

immune escape of MM cells. NEAT1 is a long non-coding RNA

that binds to EZH2 and regulates the expression of its downstream

effectors (87, 88). EZH2 is a histone methyltransferase involved in the

occurrence and development of various tumors (89, 90). The

interaction between NEAT1 and EZH2 enables EZH2 to bind to

the promoter region of PBX1, thereby inhibiting PBX1 expression

through H3K27 trimethylation, as shown in Figure 4. Studies have
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shown that NEAT1 can affect EZH2 modification of target gene

promoter regions by interacting with EZH2, thereby regulating gene

expression (47). In this study, NEAT1 inhibited PBX1 expression by

recruiting EZH2, thereby suppressing NK cell activity and promoting

the immune escape of MM cells. Natural killer (NK) cells are

important immune cells with cytotoxic and inhibitory activities

against cancer cells. However, MM cells can evade immune

surveillance by inhibiting NK cell activity. These findings provide

new strategies for the treatment of MM, and exosomal lncRNA

NEAT1 has the potential to become a new therapeutic target for MM.

Exosomal LOC606724 binds to METTL7A and inhibits

apoptosis in MM cells. In current research, lncRNAs play

important regulatory roles in the interaction between MM cells

and adipocytes, with adipocytes promoting obesity-induced

myeloma (91, 92). Studies have also identified interactions

between lncRNAs and RNA-binding proteins and identified

METTL7A as an RNA methyltransferase. Further experiments

showed that MM cells promoted the packaging of lncRNAs into

adipocyte-derived exosomes via METTL7A-mediated lncRNA

m6A methylation. Previous experiments have demonstrated that

MM cells can reprogram adipocytes through direct intercellular

interactions, upregulating EZH2 expression and activating histone

methylation in adipogenic factor promoters (93). This suggests that

the methylation modifications of lncRNAs play an important

regulatory role in MM. Conversely, adipocyte-derived exosomes

protect MM cells from chemotherapy-induced apoptosis. Wang

et al. (23) showed that two lncRNAs, LOC606724 and SNHG1, were

significantly upregulated in MM cells exposed to adipocyte-derived

exosomes. LOC606724, as a bridge connecting eIf4E and c-Myc,

upregulated the c-Myc protein in MM cells at the post-

transcriptional level (Figure 4). This indicates the existence of a

malignant cycle between MM cells and adipocytes. Blocking this

exosome-mediated malignant cycle may be a potential strategy to

improve treatment efficacy.

In summary, exosomal lncRNAs have multiple mechanisms in

MM, including the regulation of cell apoptosis, methylation

modifications, and protein transformation. These findings provide

important clues for a deeper understanding of MM pathogenesis,

and offer potential targets for developing new therapeutic strategies.

However, further research is needed to validate these findings and

explore the association between lncRNAs and MM, which will

greatly assist in devising more effective treatment strategies for

patients with MM.
5 Exosomal lncRNAs as therapeutic
targets in MM: clinical implications

Currently, research on exosomal lncRNA in multiple myeloma

(MM) is still in its infancy, and as a novel diagnostic and therapeutic

approach, it faces several challenges. Firstly, the techniques for

exosome isolation and purification vary at present, and the yield of

native exosomes is too low to meet the demands of clinical

applications. It is crucial to optimize and upgrade the isolation

and purification technologies for exosomes to enhance their purity
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and yield (94). Secondly, the mechanism of action of exosomal

lncRNA in MM is not yet fully understood, necessitating further

basic and clinical research, as well as multicenter collaborative

studies, to fully explore the role of exosomes in aiding the

diagnosis, prognosis assessment, and treatment guidance of MM.

Thirdly, the high heterogeneity of multiple myeloma complicates

the study of the role of exosomal lncRNA in MM (95). Fourthly, the

identification of biomarkers: although the abnormal cargo in

exosomes can be used as cancer biomarkers for the detection or

screening of early prognosis in MM patients, identifying these

biomarkers remains a challenge. Combining DNA signal

amplification techniques with the signal enhancement

characteristics of nanomaterials offers a promising solution to

address these limitations and improve the efficiency and accuracy

of exosome detection (96). Fifthly, the determination of therapeutic

targets: identifying exosomal lncRNA as therapeutic targets requires

in-depth research into their specific roles and mechanisms in the

progression of MM. In summary, we believe that exosomal lncRNA

may play a significant role in the diagnosis and treatment of

multiple myeloma in the future.

Compared to traditional drug delivery systems, exosomes offer

outstanding biocompatibility, high specificity, and effective drug

release capabilities (97–99). Loading drugs into exosomes enables

precise delivery to affected sites, thereby enhancing treatment
Frontiers in Oncology 09
efficacy and reducing adverse reactions. Additionally, exosomes

have potential as diagnostic tools because they contain rich

information on biomarkers that can be utilized for early disease

diagnosis and treatment prediction (100, 101). For example,

circulating exosomes can serve as cancer biomarkers and aid in

early detection and monitoring. Furthermore, recent studies have

suggested that ceRNAs can also serve as potential therapeutic

targets and biomarkers for analyzing the pathogenesis of

malignant tumors (57, 102, 103), demonstrating significant

clinical application and research significance. There are also

abundant data suggesting that exosomal lncRNAs can serve as

potential therapeutic targets for malignant tumors (104–106),

aiding in diagnosis, prognosis prediction, early assessment of

specific drug treatment effects, and drug resistance issues, and

even indicating directions for exploring the mechanisms of

malignant tumor formation.

An increasing number of studies have revealed the clinical

significance of exosomal-derived lncRNAs in MM treatment,

which play a key role in the diagnosis, treatment, and monitoring

of various cancers (107–109). In acute myeloid leukemia (AML),

extracellular lncRNAs LINC00265, LINC00467, UCA1, and

SNHG1 are promising biomarkers for disease diagnosis and

treatment monitoring (107). Similarly, Zhao et al. emphasized the

predictive value of the lncRNA PCAT1 in patients undergoing MM-
FIGURE 4

Interactions between lncRNA and RNA-binding proteins: In the left signaling pathway, lncRNA suppresses the expression of downstream effectors
(mRNA) by recruiting RNAbinding proteins; In the right signaling pathway, LOC606724 acts as a bridge connecting eIF4E and c-Myc, upregulating c-
Myc protein at the post-transcriptional level in MM cells.
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induced therapy, linking it to prognosis and treatment response

(110). In MM, the interaction between exosomal lncRNAs and drug

resistance mechanisms has attracted attention. Exosome-mediated

SNHG16 promotes dexamethasone resistance by transferring side

population cells to main population cells, revealing a new

mechanism for MM exosome transfer (109). Similarly, the

exosomal lncRNA NEAT1 inhibits the activity of natural killer

(NK) cells, promoting MM immune escape via the EZH2/PBX1 axis

(47). These findings highlight the diagnostic, prognostic, and

therapeutic potential of exosomal lncRNAs in the treatment of

MM. Additionally, the exploration of extracellular vesicle proteins

as MM biomarkers emphasizes the development prospects of liquid

biopsy to improve patient stratification and prognosis (111, 112). In

summary, exosome-derived lncRNAs represent valuable targets for

MM treatment and provide insights into disease monitoring, drug

resistance mechanisms, and prognostic stratification. Elucidation of

these molecular mechanisms holds great promise for advancing

personalized treatment strategies for patients with MM and

improving clinical outcomes.
6 Prospects and limitations

The mechanisms of action of exosomal lncRNAs are highly

complex and diverse. According to current research findings, the

mechanisms of exosomal lncRNAs primarily include the following

aspects: epigenetic regulation, transcriptional regulation, post-

transcriptional regulation (113), miRNA sponge function,

molecular decoy and guide functions, scaffold functions,

interactions with proteins, regulation of cellular localization, and

serving as precursors to small non-coding RNAs (114). These

mechanisms demonstrate the multifunctionality and importance

of lncRNAs in cell biology and disease pathogenesis. They are not

only involved in a variety of physiological and pathological

processes but also provide new perspectives for disease diagnosis

and treatment. In multiple myeloma, the interactions of lncRNA

with RNA (ceRNA and RNA duplexes), lncRNA with DNA

(IncRNA RBP), and lncRNA with proteins (IncRNA RBP) are

more representative and play a very important role in the

occurrence and development of multiple myeloma. In

comparison, the mechanisms of other exosomal lncRNAs in

multiple myeloma warrant further exploration.

The role of exosomal lncRNAs in multiple myeloma (MM)

remains a relatively new field of study, particularly in terms of their

application in the diagnosis and treatment of MM. Exosomal

lncRNAs hold the potential to serve as biomarkers, which could

be employed as monitoring items for the diagnosis and prognostic

assessment of MM, a key aspect of personalized medicine and

precision therapy. We have explored the possibility of exosomal

lncRNAs as therapeutic targets, including their roles in drug

resistance, immune evasion, and tumor progression, providing a

theoretical foundation for the development of new treatment

strategies. The review integrates the latest research findings,
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as well as their potential applications in disease monitoring,

mechanisms of drug resistance, and prognostic stratification. By

analyzing the role of exosomal lncRNAs in MM from multiple

perspectives, including molecular biology, genetics, and epigenetics,

the review offers new insights into the field of MM research and

potential new tools for clinical diagnosis and treatment.
7 Conclusion

Although an increasing number of genetic and epigenetic events

that lead to the occurrence and development of MM have been

identified, their roles in the diagnosis, treatment, and clinical

outcomes of MM remain unclear. Recent studies have confirmed

the involvement of lncRNA dysregulation in the transcriptional,

post-transcriptional, and epigenetic regulation of MM. Multiple

lncRNA-based diagnostic and prognostic models have been

established (58). Compared to traditional sources of lncRNAs,

exosomal lncRNAs are widely present in various body fluids and

exhibit high cell and tissue specificity, making it possible to

construct novel, minimally invasive biomarkers for cancer

diagnosis and prognosis using exosomal lncRNAs (115, 116).

Furthermore, combined with the continuously evolving ceRNA

network, RNA duplexes, RNA-binding proteins, and other

molecular mechanisms centered on MM, establishing reliable

prediction models based on exosomal lncRNA expression

characteristics, assisting in identifying new drug targets through

ceRNA regulatory networks, and utilizing nucleic acid-targeted

therapy to avoid MM drug resistance and disease progression will

have significant implications for the diagnosis and treatment of

MM patients.
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