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Background: Cholesterol metabolism plays a crucial role in tumor progression

and immune response modulation. However, the precise connection between

cholesterol metabolism-related genes (CMRGs) and their implications for clinical

prognosis, the tumor microenvironment (TME), and the outcomes of

immunotherapy in gastric cancer remains to be fully elucidated.

Methods: Transcriptome data and related clinical information from 675 gastric

cancer patients were downloaded from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) databases. A total of 50 cholesterol

metabolism-related genes (CMRGs) were identified from the Kyoto

Encyclopedia of Genes and Genomes (KEGG, hsa04979). Consensus clustering

analysis was used to classify patients into distinct molecular subgroups, while

principal component analysis (PCA) was applied to develop a prognostic scoring

system for predicting survival and immunotherapy response. The scoring system

was validated using three independent cohorts of gastric cancer patients.

Results: Based on 49 CMRGs, 675 gastric cancer patients were categorized into

three distinct subgroups with varying prognoses, tumor microenvironment

features, and clinical characteristics. Further differential gene analysis and

consensus clustering identified two additional subgroups. The prognostic

scoring system developed through PCA demonstrated that the high-score

subgroup had significantly improved survival, higher tumor mutational burden

(TMB), and microsatellite instability (MSI), as well as a greater number of mutated

genes, indicating greater sensitivity to immunotherapy. This systemwas validated

in a real-world cohort undergoing immunotherapy. Additionally, the correlation

between GPC3 expression and cholesterol levels was confirmed, highlighting

GPC3’s potential biological role.
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Conclusion: This study highlights the importance of CMRGs in gastric cancer,

deepens our understanding of the tumor immunemicroenvironment, and guides

individualized immunotherapy.
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Introduction

Gastric cancer(GC)is the third leading cause of cancer-related

deaths worldwide (1). Despite advancements in treatment strategies,

the five-year survival rate for GC patients remains low (2, 3). In recent

years, immunotherapy particularly checkpoint inhibitor-based

approaches has shown promising potential in clinical studies (4).

However, tumor heterogeneity continues to pose significant

challenges, leading to drug resistance and relapse, which limit the

efficacy of immunotherapy. Consequently, a comprehensive

understanding of the mechanisms underlying differential responses

to immunotherapy, along with the development of reliable tools for

predicting prognosis and therapeutic outcomes, is crucial.

The progression of GC is a complex process heavily influenced by

interactions between cancer cells and the tumor microenvironment

(TME) (5, 6). Among abnormal TME metabolites, cholesterol plays a

pivotal role in GC (7, 8).Reprogrammed cholesterol metabolism, a

hallmark of cancer cells, promotes their proliferation, survival, and

progression by disrupting homeostasis and altering metabolic

pathways (9). Cellular cholesterol metabolism is mainly regulated by

two key transcription factors, SREBP2 and LXR. SREBP2 transcribes

genes that regulate cellular cholesterol levels above cholesterol

biosynthesis and uptake, while LXR transcribes genes that regulate

cholesterol efflux and inhibit cholesterol uptake to down-regulate

cellular cholesterol levels (10). Gastric cancer cells, as rapidly

proliferating cells, require high levels of cholesterol to meet

functional requirements such as membrane biogenesis and are

usually engage active SREBP2 signaling to upregulate cholesterol

biosynthesis and uptake. For instance, the cholesterol-derived

oncometabolite 25-HC, which is enriched in patients with GC,

promotes GC cell invasion by up-regulating TLR2/NF-kB mediated

MMP expression (11). Multiple lines of evidence indicate that

alterations in the cholesterol pathway can modulate the immune

system through diverse mechanisms, eliciting a broad range of

responses. Ma et al. revealed that cholesterol accumulation induces

CD8+ T cell exhaustion by suppressing IFN-g and GZMB production,

resulting in a non-inflamed tumor immune microenvironment
enes; GC, gastric cancer;
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(TIME) and impaired antitumor immunity (12). They proposed

cholesterol reduction as a potential strategy to restore T cell

function and enhance T cell-based immunotherapy. Ning et al.

demonstrated that the combination of simvastatin and PD-1

blockade synergistically enhances antitumor efficacy in GC

(13).Currently, the majority of studies tend to concentrate on one or

two genes within cholesterol metabolism while tumor development

typically arises from the intricate interplay of numerous genes. Hence,

it is imperative to comprehensively analyze the interrelationships

among multiple genes involved in cholesterol metabolism to

discover immune phenotypes and effective treatment strategies.

In this study, we conducted a comprehensive analysis of 675

gastric cancer samples from TCGA and GEO databases to investigate

the role of cholesterol metabolism-related genes (CMRGs) in gastric

cancer. By examining the expression levels and mutation

characteristics of 49 CMRGs, we identified three distinct cholesterol

subgroups with unique prognostic and tumor microenvironment

profiles. Differentially expressed genes (DEGs) among these

subgroups were further analyzed, leading to the identification of

two additional gene-based subgroups, characterized by differences in

transcriptional expression, somatic mutations, copy number

variations, and gene methylation. We developed an innovative

prognostic scoring system, Chole-Score, which accurately predicts

patient prognosis, immune infiltration characteristics, immune

checkpoint inhibitor (ICI) response rates, and antitumor drug

sensitivity. Furthermore, we established a novel association between

GPC3 expression and cholesterol levels, validating GPC3’s functional

role in gastric cancer biology. These findings provide new insights

into the relationship between cholesterol metabolism and the tumor

immune microenvironment, offering a robust framework for

advancing individualized immunotherapy in gastric cancer.
Materials and methods

Data source and processing

Gene expression profi les along with the associated

clinicopathological data for patients with gastric cancer were

retrieved from the UCSC XENA database, specifically from the

TCGA-STAD project (https://xenabrowser.net/datapages/).

Additionally, the GSE62254 dataset was acquired from the

Gene Expression Omnibus (GEO) repository (https://
frontiersin.org
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www.ncbi.nlm.nih.gov/geo/). This study encompasses a total of 675

samples, comprising 375 samples from the TCGA-STAD dataset

and 300 from the GSE62254 dataset. To mitigate batch effects and

ensure consistency across datasets, batch normalization was

meticulously executed utilizing the ‘limma’ and ‘sva’ packages

within the R statistical environment.
Consensus molecular clustering based on
cholesterol metabolism-related genes

We identified 50 cholesterol metabolism-related genes (CMRGs)

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (Pathway: hsa04979). Of these, 49 genes were found to be

expressed in our integrated dataset. We employed the

‘‘ConsensusClusterPlus’’ (parameters: reps = 50, pItem = 0.8,

pFeature = 1, distance = ‘educlidean’) R package for consensus

clustering of the combined datasets, using expression levels of

CMRGs. Pam and educlidean distances were adopted as the

clustering algorithm and distance metric, respectively, with k = 3. To

evaluate the independence of each gene isoform within the clusters, we

conducted survival analysis and principal component analysis (PCA).
Enrichment analysis and
functional annotation

Gene Set Variation Analysis (GSVA) enrichment was performed

to explore the heterogeneity of various biological processes using

“GSVA” package. Hallmark gene sets “h.all.v2023.1.Hs.symbols.gmt”,

KEGG gene sets “c2.cp.kegg.v2023.1.Hs.symbols.gmt”,Reactome gene

sets “c2.cp.reactome.v2023.1.Hs.symbols.gmt”,wikipathways gene sets

“c2.cp.wikipathways.v2023.1.Hs.symbols.gmt” and biocarta gene sets

“c2.cp.biocarta.v2023.1.Hs.symbols.gmt” extracted from MSigDB

database were used for GSVA. Compare the differences between

pathways of 3 CholClusters, and the R package pheatmap can be

used to generate separate heatmaps for the comparisons between three

clusters. After identifying DEGs between CholClusters, GO and

KEGG analysis was performed employing the clusterProfiler package.
TME landscape analyses

To delineate variations in the tumor microenvironment (TME)

across cholesterol subgroups, we initially conducted an analysis of

stromal, immune, and ESTIMATE scores among the three

subgroups utilizing the ESTIMATE algorithm. The infiltration

levels of 23 immune cell types in each sample were quantified

using the CIBERSORT algorithm. Furthermore, we applied single-

sample gene set enrichment analysis (ssGSEA) to evaluate the

relative abundance of immune cells within various clusters.
Identification of DEGs and construction
of geneClusters

Differentially expressed genes (DEGs) across the three

CholClusters were identified utilizing the ‘limma’ package in R,
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applying criteria of an adjusted P value< 0.05 and a |logFC|>1.

Survival-related DEGs were identified via univariate cox regression

analysis with an P value <0.001, and patients with STAD were

classified into two distinct geneClusters based on selected DEGs

using R package “ConsensuClusterPlus”.
Development of a CholScore
prognostic system

We adopted the PCA algorithm to create a scoring system based

on survival-related DEGs among the clusters in STAD named

CholScore according to the formula: CholScore =∑(PC1 + PC2)

where PC1 represents the largest proportion of the variance in the

initial expression lineage to be decomposed, followed by PC2. All

patients were classified into low-and high-CholScore groups at the

optimal cutoff, which was calculated using the survminerR package.

The Spearman correlation between CholScore and immune cells

was analyzed.
Stemness index calculation

This study employed the Stemness Index Workflow (https://

bioinformaticsfmrp.github.io/PanCanStem_Web/) to calculate

stemness indices (mRNAsi and mDNAsi), using a one-class

algorithm based on a signature from normal stem cells. The

mRNAsi is derived from a set of 11,774 genes, and the mDNAsi

is based on differential methylation patterns across 151 CpG sites.

Correlation between these indices and CholScore was analyzed.
Mutation and drug sensitivity analysis

For the analysis of somatic mutations in stomach adenocarcinoma

(STAD) across both low- and high-score groups, mutation annotation

format (MAF) files were generated using the “maftools” package in R,

with data from the TCGA database. We assessed the frequencies of

copy number variations (CNVs), encompassing both gains and losses,

and analyzed the proportion of single nucleotide variants (SNVs)

utilizing GSCA database information. Furthermore, the tumor

mutation burden (TMB) was computed for each STAD patient. The

half-maximal inhibitory concentration (IC50) values of

chemotherapeutic agents were determined using the “pRRophetic”

package in R, drawing on drug data from the Genomics of Drug

Sensitivity in Cancer (GDSC) database.
Prediction of immunotherapy response

To validate the prediction of immunotherapy efficacy of the

CholScore, three immunotherapeutic cohorts were used: melanoma

treated with pembrolizumab, an anti-PD-1 antibody (GSE78220);

melanoma treated with nivolumab, an anti-CTLA4 and anti-PD1

antibody(GSE91061); and advanced urothelial cancer treated with

atezolizumab, an anti-PD-L1 antibody(IMvigor210 cohort).
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Cell lines and culture

The human gastric cancer (GC) cell line HGC27 was sourced

from Zhong Qiao Xin Zhou Biotech, Shanghai, China, while the

AGS cell line was procured from Cellcook Biotech, Guangzhou,

China. The HGC27 cell culture was sustained in RPMI-1640

medium, acquired from Wisent, Shanghai, China, enriched with

10% fetal bovine serum (FBS, obtained from Wisent, Nanjing,

China) and 1% penicillin/streptomycin (sourced from Thermo

Fisher Scientific, Massachusetts, USA). Conversely, AGS cells

were propagated in F-12K medium (Wisent, Nanjing, China),

also supplemented with 10% FBS and 1% penicillin/streptomycin.

Both cell lines were maintained under a controlled environment at

37°C, in a humidified atmosphere containing 5% CO2. Cholesterol

and methyl-b-cyclodextrin (MbCD) were procured from Sigma-

Aldrich, St. Louis, MO, USA.
Tissue specimens

Sixty gastric cancer (GC) tissues were procured from patients

undergoing surgical procedures at the First Affiliated Hospital of

Nanjing Medical University (Nanjing, Jiangsu, China). All collected

samples were promptly frozen in liquid nitrogen and preserved at ‐

80°C until required. None of the GC patients had received

preoperative chemotherapy or radiotherapy, and their diagnoses

were confirmed through meticulous pathological analysis. Approval

for this study was obtained from the Ethics Committee of the First

Affiliated Hospital of Nanjing Medical University, and written

consent was obtained from all participating patients.
RNA isolation, reverse transcription, and
quantitative PCR

Total RNA was extracted using TRIzol (ThermoFisher Scientific,

USA) and reverse transcribed to cDNA from 500 ng RNA using the

TRUEscriptRT kit (Proteinbio, China). qPCR was performed with

SYBR Green Supermix (US EVERBRIGHT, China) on a 7500 Real-

time PCR System (Applied Biosystems, USA) using specific primers

(Proteinbio, China). mRNA levels were normalized to b-actin and

analyzed by the 2−DDCT method, with assays run in triplicate.
RNA interference and plasmid transfection

To perform RNA interference, small interfering RNAs

(siRNAs) specifically designed to target GPC3 were procured

from GenePharma Biotechnology Co. Ltd (Shanghai, China).

Briefly, approximately 6 × 105 cells were plated in each well of a

6-well plate, reaching an approximate confluence of 80% after 24

hours in culture. Subsequently, a solution containing 50 nmol/L of

the siRNA and 7.5 mL of Lipofectamine 3000 (Thermo Fisher

Scientific, Massachusetts, USA) was prepared and allowed to

incubate at room temperature for 20 minutes before application

to the cells. Following a 48-hour incubation period, cells were

collected for further analysis.
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For plasmid transfection, plasmids encoding GPC3 and

corresponding empty vectors were generated by Miaolingbio

(Wuhan, China). Cells (6 × 105) were seeded in a 6‐well plate and

reached ∼80% confluence after 24 hours of culture. A mixture of 15

mg plasmid and 7.5 mL of Lipofectamine 3000 was incubated at

room temperature for 20 minutes and then added to the cells. Cells

were collected after 48 hours of culture.
Immunohistochemical and hematoxylin
and eosin staining

Immunohistochemistry (IHC) was conducted to assess GPC3

levels in the tumor tissue. Paraffin sections were deparaffinized,

rehydrated, and antigen-retrieved with sodium citrate (10 mM, pH

6.0) using microwave treatment for 20 min. Endogenous peroxidase

was blocked with 3% H2O2 for 10 min. Sections were blocked with

5% BSA, incubated with GPC3 antibody (Abcam, 1:100) at 37°C for

1 hr, then with HRP-linked secondary antibody (Abcam, 1:2000) at

37°C for 20 min. DAB and hematoxylin counterstaining were used

for visualization.

For histopathological analysis, hematoxylin and eosin (H&E)

staining was conducted on paraffin sections, which were

deparaffinized, rehydrated, stained with hematoxylin for 5 min,

differentiated in 1% hydrochloric acid alcohol, and stained with

eosin for 2 min, followed by washing and water immersion for

microscopic examination.
Colony formation assay

Cells were plated in six‐well plates at a density of 500 cells per

well and maintained in a complete medium for 10‐14 days. The

resulting colonies were fixed with 4% PFA at room temperature for

15 minutes and subsequently stained with a 0.1% crystal violet

solution for 30 minutes.
Wound‐healing assay

Cells (6 × 105/well) were cultured in 6-well plates until

confluent, then wounded with a 200 µL pipette tip, and rinsed

with PBS. Serum-free medium was used to inhibit proliferation.

Wound healing was imaged at 0 and 24 hours, and areas analyzed

with ImageJ. Experiments were performed in triplicate.
Transwell assay

Transwell assays assessed migration/invasion, placing 3 × 104

cells in serum-free medium in the upper chamber and 10% FBS

medium (750 µL) in the lower chamber. After 36 hours, chambers

were fixed with 4% PFA for 30 minutes, non-migrated cells

removed, and migrated cells stained with 0.1% crystal violet for

20 minutes.
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Flow cytometric analysis of cell apoptosis

Apoptosis was assessed using an Annexin V-Alexa Fluor647 kit

(US Everbright, Suzhou, China). Cells (6 × 105) were cultured in 6-

well plates for 24h, then stained with Annexin V-Alexa Fluor647

(50 µg/mL) and propidium iodide (10 µg/mL) for 15 min in

darkness, followed by flow cytometry analysis (LSR, BD

Biosciences, San Diego, CA, USA).
Protein isolation and western blotting

GC cell lysates were prepared in RIPA buffer and protein

concentration measured using a BCA kit (both from Beyotime,

Haimen, China). Proteins were electrophoresed on 10% or 12.5%

SDS-PAGE and transferred to PVDF membranes (Millipore, USA).

Membranes were blocked, then incubated with primary antibodies

(1:1000, ab95363, Abcam, USA) overnight at 4°C, followed by HRP-

conjugated secondary antibodies for 1 hour at room temperature.

After washing, protein detection was performed with a Super ECL

kit (US Everbright, China), and quantification done using ImageJ

(NIH, USA) as needed.
Statistical analysis

Statistical analyses were conducted using R4.2.2 and GraphPad

Prism 6.0, including Pearson and Spearman correlation, Kruskal-

Wallis, and Pearson’s c2 tests for group variations and categorical

associations, respectively. Chi-square and Fisher’s exact tests were

used for differential mutations and gene copy number analyses.

Kaplan-Meier curves were generated using the “Survminer” R

package. All tests were two-tailed with P < 0.05 significance.
Results

Identification of molecular subtypes in
gastric cancer and construction of
distinct CholClusters

Among the 50 genes related to cholesterol metabolism

downloaded, 49 were found to be expressed in the merged

dataset. A univariate Cox analysis was conducted on these genes,

resulting in the identification of 21 cholesterol metabolism genes

(Supplementary Table S1). We developed a CMRGs network to

explore their interactions and prognostic value in gastric cancer

(Figure 1A), finding 6 genes as favorable and 15 as risk factors.

Furthermore, we conducted survival analysis by grouping the

expression levels of CMRGs to further investigate their prognostic

impact (Supplementary Figure S1A, displays genes with p<0.001).

To investigate the expression profiles of 49 CMRGs in gastric

cancer, an unsupervised clustering analysis was performed using the
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R package “ ConsensusClusterPlus “ to classify individuals into

three distinct types with the highest consensus, designated clusters

A-C, respectively (Figure 1B). Cluster A includes 342 patients,

Cluster B includes 246 patients, and Cluster C includes 87

patients. Survival analysis revealed that the overall survival of the

three clusters was significantly different. CholCluster C had the

worst prognosis in terms of overall survival, while CholCluster B

had the best prognosis (Figure 1C). The three CholClusters showed

significance in cholesterol metabolism-related genes’ expression

(Figure 1D). Additionally, by integrating cholesterol subgroups

with gastric cancer patients’ clinicopathological features into

heatmaps of 49 cholesterol metabolism-related gene expressions,

we observed higher expression levels in CholCluster C than in

CholCluster A and B, suggesting more active cholesterol

metabolism in Cluster C (Figure 1E). To delve deeper into the

functional characteristics, our study utilized GSVA enrichment

analysis with five comprehensive pathway databases (BioCarta,

Reactome, Hallmark, WikiPathways, and KEGG). This analysis

enabled us to identify and discern differential signaling pathways

among the three clusters (Figure 2, Supplementary Figures S1B, C).
Characteristics of the TME in three
distinct CholClusters

While some overlap was observed, PCA analysis indicated a

potential distinction between the three cholesterol metabolism

modification patterns (Figure 3A). ESTIMATE analysis revealed

TME differences among three clusters: Cluster A showed the

highest stromal, immune, and ESTIMATE scores, with Cluster C

and B following in order (Figure 3B). These results suggest that

individuals with gastric cancer in Cluster A demonstrate heightened

immune activity and reduced tumor purity. We also utilized the

ssGSEA function from the R package GSVA to compute the scores

of immune cell infiltration, thus comparing the disparities in

immune cell infiltration among different subtypes. The results

revealed that Cluster A was abundant in immune cell infiltrates,

including eosinophil, MDSC, macrophage, mast cell, monocyte,

natural killer cell and neutrophil (Figure 3C).

In order to further investigate the potential biological functions

of each cholesterol metabolism pattern, we utilized the limma

package to identify 150 differentially expressed genes (DEGs)

associated with the cholesterol metabolism phenotype. A volcano

plot was then generated (Figure 3D). Subsequently, we employed

the R package clusterprofiler to perform Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis on the DEGs. Figure 3E revealed that lipid localization,

collagen-containing extracellular matrix and receptor ligand

activity were the most enriched BP, CC and MF, respectively. The

results of the KEGG enrichment analysis demonstrated that

cholesterol metabolism-related DEGs are mainly enriched in

pathways such as Staphylococcus aureus infection, complement

and coagulation and coronavirus disease-COVID-19(Figure 3F).
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FIGURE 1

Interactions of Cholesterol metabolism-related genes and their prognostic value and identification of Cholesterol metabolism -associated cluster. (A)
Interactions of Cholesterol metabolism regulators in GC. The circle diameter reflects the significance level of P values obtained from the Logrank
test: p < 1e-04, p < 0.001, p < 0.01, p < 0.05, and p < 1. (B) The heatmap displays the consensus matrix obtained through consensus clustering with
k = 3. (C) Significant variation in survival between the three Cholesterol metabolism-related patterns is depicted by Kaplan-Meier curves, with Log-
rank p values < 0.05. (D) Differential expression of Cholesterol metabolism-related genes in three clusters (p>0.05, **p<0.01,***p<0.001). (E)
Heatmap of genetic modification patterns. The term "ns" stands for "not significant," indicating that no statistically significant difference
was observed.
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Results showed that gastric cancer subtypes displayed diverse

cholesterol metabolism levels, and cholesterol metabolism genes

significantly influenced cell infiltration in the tumor microenvironment.
Identification of cholesterol metabolism-
related phenotypes and cholesterol scores

Next, the 150 DEGs related to cholesterol metabolism were

examined using univariate Cox regression analysis to identify genes

associated with overall survival (OS) in gastric cancer. We identified

17 genes significantly associated with the prognosis of gastric cancer

patients (p < 0.001) (Figure 4A, Supplementary Table S2). To

uncover the mechanisms behind prognostic DEGs in gastric

cancer, we conducted unsupervised consensus clustering based on

17 prognostic genes, resulting in two distinct patient clusters:

geneCluster A (422 cases) and geneCluster B (253 cases)

(Figure 4B). Survival analysis demonstrated that the survival rate

of geneClusterA was significantly higher than that of geneClusterB

(Figure 4C). Figure 4D illustrates the relationship between the

subtypes and clinical data. The expression levels of the majority

of DEGs related to cholesterol metabolism were significantly

upregulated in geneClusterB (Figure 4E).

To overcome the limitations of population-level analysis and

accurately predict individual variations in cholesterol metabolism,

we introduced a scoring system called the cholesterol metabolism

score. The scoring system, based on PCA and phenotype-related
Frontiers in Oncology 07
genes, quantifies cholesterol metabolism patterns in gastric cancer.

Survival analysis between high and low score groups indicated that

higher scores were associated with better prognosis (Figure 4F). The

Sankey diagram illustrates the relationship between subtypes,

scores, and prognosis status (Figure 4G). We also examined the

correlation between scores and immune cell infiltration

(Figure 4H). The results revealed a positive correlation between

the scores and several immune cells, such as activated CD4 cells and

neutrophils. However, it showed a negative correlation with many

immune suppressive cells, such as myeloid-derived suppressor cells

(MDSCs) and regulatory T cells. This might be associated with the

previously observed lower survival rates in the low-score group.
The prognostic value of the cholesterol
score in gastric cancer patients

Cytokines mediate key interactions between immune and non-

immune cells in the tumor microenvironment (TME). Figure 5A

demonstrates the heterogeneity in the relationship between the

score and various chemokines, interleukins, interferons, their

receptors, and other cytokines. It is worth noting that high scores

are associated with upregulation of certain anti-tumor factors, such

as IL18, while being correlated with downregulation of certain pro-

oncogenic factors, such as IL33, IL4R, IL6, and IL34. Furthermore,

in order to investigate the association between scores and the
FIGURE 2

GSVA of biological pathways between three clusters.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1518010
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2024.1518010
FIGURE 3

Differences in the tumor microenvironment between subgroups and functional enrichment analysis. (A) PCA shows different distributions between
the three subgroups. (B) Stromal score, immune score, and ESTIMATE score analyses between three subgroups. (C) The abundance of 23 infiltrating
immune cell types in the three different subgroups (ns p>0.05, **p<0.01, ***p<0.001). (D) Volcano plot show differential expressed genes in three
clusters. (E, F) GO and KEGG enrichment analyses of DEGs among three subgroups.
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FIGURE 4

Construction of geneClusters and CholScores. (A) 17 genes exhibit a significant prognostic correlation identified through univariate Cox regression
analysis, where the respective P-values are less than 0.001. (B) The heatmap representative of the consensus matrix generated by performing
consensus clustering with a value of k = 2. (C) The top 12 genes with significant differences in mutation rates between the high and low-score
groups, arranged in ascending order of p-values (*p<0.05, ***p<0.001). (D) A heatmap represents the expressions of 13 genes among the two gene
subgroups, along with clinicopathological characteristics. (E) The differential expression patterns of the 13 genes within the two clusters (ns p>0.05,
***p<0.001). (F) The Kaplan-Meier curves for survival analysis carried out on both high and low-score groups. (G) A Sankey diagram illustrates the
relationships among cluster, gene cluster, Cholscore, and survival status. (H) The relationship between immune cells and Cholscores, where red
denotes a positive correlation, and blue denotes an inverse correlation (*p<0.05).
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FIGURE 5

The correlation between CholScores and cytokines, along with GSVA analysis and assessment of clinical prognosis based on CholScores. (A) A
heatmap depict the relationship between scores, chemokines, interleukins, interferons, their receptors, and other cytokines (p>0.05, *p<0.05,
**p<0.01, ***p<0.001). (B) The correlation between scores and 50 hallmark pathways. (C) The relationship between LAG3 expression level and
CholScores. (D) Differences in LAG3 expression between high and low CholScore groups. (E) Comparison of the CholScores between individuals in
the Alive and Dead groups and examines the proportion of individuals with high and low CholScores in each group. (F) Comparison of the
CholScores between individuals in the Stage I-II and Stage III-IV groups and examines the proportion of individuals in each high and low CholScore
group within these stages. (G) Comparison of the CholScore between individuals in the Recurrence and No recurrence groups and examines the
proportion of individuals in each high and low CholScore group within these recurrence categories.
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activity of hallmark pathways, we performed Gene Set Variation

Analysis (GSVA) enrichment analysis. The GSVA analysis

conducted on the hallmark pathways displayed an enrichment of

multiple signaling pathways, including MTORC1 signaling, MYC

targets V2, E2F targets, G2M checkpoint, and DNA repair, within

the high-scoring group (Figure 5B).

Existing studies have shown that elevated LAG3 expression is

unfavorable for the immunotherapeutic response in gastric cancer

patients (14, 15). Therefore, we analyzed the correlation between

LAG3 expression levels and cholesterol score, aiming to

preliminarily explore the relationship between cholesterol score

and the immunotherapeutic outcomes in gastric cancer patients.

According to our findings, a higher score was associated with

increased LAG3 expression levels, potentially indicating poorer

immunotherapeutic efficacy in the high-score group of patients

(Figures 5C, D).

We aimed to investigate the association between the cholesterol

score and prognosis, as well as clinical characteristics. Results

indicated that higher scores were associated with patient survival,

early-stage (I-II) cancer, and absence of recurrence, correlating with

lower mortality and recurrence rates (Figures 5E–G).
Delineation of genome alterations among
cholesterol metabolism phenotypes

Given the crucial role of TMB in guiding immunotherapy

strategies for patients with STAD, we aimed to investigate the

intrinsic relationship between TMB and cholesterol score,

considering the clinical significance of TMB. Patients in the high-

score group exhibited significantly elevated occurrences of somatic

mutations in comparison with patients having high scores, particularly

in the genes TTN (53% vs 27%), MUC16 (33% vs 19%), and LRP1B

(28% vs 14%) (Figures 6A, B). Figure 6C illustrates a subset of genes

that exhibit higher mutation rates in the high-score group.

The presence of CNV and SNV is a common and important

hallmark of many cancers. In light of this, we investigated the CNV and

SNV changes of screened cholesterol metabolism-related genes in

further depth. Based on the pie chart of CNV distribution, the main

types of CNV were heterozygous amplification (Hete Amp) or deletion

(Hete Del) (Supplementary Figure S2A). PEG10 had the highest

heterozygous amplification rate at 38.78% and the highest

homozygous amplification rate at 5.9%, while SFRP2 showed the

highest heterozygous deletion rate at 39.68%, and THBS2 had the

highest homozygous deletion rate at 1.59% (Supplementary Figure

S2B). Correlation analysis between CNV and mRNA expression levels

reveals a positive association between the mRNA expression levels of

THBS4, CKB, TF, and C3 genes and their copy number levels, while the

mRNA expression level of OLFML2B demonstrates a negative

correlation with their copy number levels (Supplementary Figure

S2C). The methylation levels of the C3 gene demonstrated a positive

correlation with mRNA expression levels, while the majority of the

remaining genes exhibited a negative correlation between methylation

levels and mRNA expression levels (Supplementary Figure S2D). As

shown in Supplementary Figure S3, we also analyzed the SNV

percentage of screened cholesterol metabolism-related genes,
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demonstrating that C3 gene had the highest SNV, followed by

FNDC1, THBS2, OLFML2B, THBS4, CCDC80, TF, PEG10, ISLR,

SFRP2, GPC3, CLU, APOD, CKB, MGP and BEX1(Supplementary

Figure S2E).

The mRNAsi and the mDNAsi have been applied to assess

cancer stem cell characteristics (14, 16). Our results demonstrate a

positive correlation between cholesterol scores and both mRNAsi

and mDNAsi. Moreover, the high-score group exhibited a higher

stemness indexes (Figures 6D, E).The relationship between

cholesterol scores and microsatellite instability (MSI) as well as

tumor mutational burden (TMB) was also analyzed in this study.

Figures 6F, G illustrate that higher cholesterol scores are associated

with increased MSI and TMB levels. Previous studies have indicated

that patients in the high-risk group exhibit higher TMB and MSI

levels, along with a larger number of mutated genes. Therefore, we

hypothesize that patients in the high-risk group may experience

better therapeutic outcomes when undergoing immunotherapy.

The aforementioned study suggests that cholesterol metabolism

related genes are likely to impact tumor development through

genetic and epigenetic modifications.
Prediction of immunotherapy effectiveness
and antitumor drug sensitivity among high-
and low-scoring groups

The aforementioned research demonstrates that the expression

levels of cholesterol metabolism-related molecules are highly likely

to contribute to the identification of tumor characteristics and offer

novel therapeutic strategies. To thoroughly validate the predictive

accuracy of the cholesterol score in assessing the efficacy of

immunotherapy, we utilized various independent immunotherapy

cohorts from the available literature for comprehensive assessment

of both immunotherapy effectiveness and prognosis. The validation

of the score’s predictive capacity for prognosis and immunotherapy

efficacy was performed using pembrolizumab-treated melanoma,

nivolumab-treated treatment-naive melanoma, and atezolizumab-

treated advanced urothelial cancer (Figures 7A–C).

Compared to the low-scoring group, the high-scoring group

showed significantly improved survival rates and enhanced

responsiveness to immunotherapy.

We further investigated whether cholesterol scoring could

accurately assess the chemotherapy sensitivity of gastric cancer

patients. Ridge regression was employed to estimate the IC50 values

in both the low-cholesterol and high-cholesterol groups for prediction

purposes. Results showed that higher cholesterol score had lower IC50

of several drugs such as A.443654,ABT.888, AICAR,AKT inhibitor,

AZD6244 and BI.2536. In contrast, patients with a low cholesterol

score might respond more sensitively to A.770041,ABT.263,

AG.014699,AMG.706,AP.24534 and AS6601245 (Figure 7D).

In summary, this study establishes a robust and significant

association between the cholesterol modification pattern and the

response to immune therapy in gastric cancer. Moreover, the

developed cholesterol profile shows potential in predicting the

responsiveness of gastric cancer patients to both immune therapy

and other anti-cancer medications.
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FIGURE 6

The somatic mutation analysis. (A) Waterfall plot depicts the top 20 genes with mutation frequency in the high-score group. (B) Waterfall plot shows
the top 20 genes with mutation frequency in the low-score group. Each column in the plot represents an individual patient, with the upper
histogram representing the total tumor mutation burden (TMB), and the numbers on the right indicating the mutation frequencies of each gene. The
bar graph on the right represents the proportion of each mutation type. (C) The top 12 genes with significant differences in mutation rates between
the high and low-score groups, arranged in ascending order of p-values (*p<0.05, ****p<0.0001). (D) The relationship between mDNAsi and
CholScores, highlighting the differences in mDNAsi between the high and low groups. It also depicts the distribution of mDNAsi based on high vs
low groups and patient survival status. (E) The relationship between mRNAsi and CholScores, displaying the differences in mRNAsi between the high
and low groups. It further presents the distribution of mRNAsi based on high vs low groups and patient survival status. (F) The relationship between
MSI and CholScores, highlighting the differences in mDNAsi between the high and low groups and the distribution of MSI based on high vs low
groups and patient survival status. (G) The relationship between MSI and CholScores, highlighting the differences in mDNAsi between the high and
low groups and the distribution of TMB based on high vs low groups and patient survival status.
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FIGURE 7

Prediction of immune therapy prognosis based on high and low groups. The Kaplan–Meier curve analysis of high- and low-score group in Anti-PD-1
cohorts and the proportions of PD/SD and PR/CR in the high and low groups (A), the proportions of patients with responders and non-responders in
each group (B), and the proportions of patients with CR/PR and SD/PD (C). (D) IC50 of several antitumor drugs in the high- and low score
groups.IC50, half-maximal inhibitory concentration.
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FIGURE 8

The expression and biological function of GPC3. (A) GPC3 level of 30 pairs high and low cholesterol GC tissues quantified by qRT-PCR. (B) IHC
staining for GPC3 in high and low cholesterol GC tissues, scale bar = 100 mm. (C) Protein level of GPC3 was detected by western blot using 4 high-
cholesterol GC tissues and 4 low-cholesterol GC tissues. (D) In the cell culture media of AGS and HGC-27, exogenous cholesterol was added at
concentrations of 0, 2, 4, 8, and 10mM, respectively. After 24 hours of incubation, cell proteins were extracted, and the expression levels of GPC3
protein were assessed using Western blot analysis. (E) Cells were treated with 2.5 mM MbCD, 10 µM cholesterol or 2.5 mM MbCD +10 µM
cholesterol for 24h, then GPC3 protein level in indicated cells was determined Western blot assay. (F) Colony formation assay was performed to
evaluate proliferation ability of cells after upregulating or downregulating GPC3 in AGS cells. (G) Transwell assay was performed utilizing indicated
engineered AGS cells. Scale bar: 100 mm. (H) Wound-healing assay was performed utilizing indicated engineered AGS cells. Scale bar: 200 mm.
(I) Flow cytometric analysis revealed that overexpression of GPC3 inhibited apoptosis in AGS cells, while silencing of GPC3 had the opposite effect.
(J) EdU assay was performed utilizing indicated engineered AGS cells. Error bars represent the mean (n = 3) ± S.D (p>0.05, *p<0.05, **p<0.01,
***p<0.001, **** p<0.0001).
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The expression of GPC3 was significantly
upregulated in high-cholesterol
gastric cancer

We measured the cholesterol expression levels in the gastric

cancer tissues of 60 patients and divided them into high and low

cholesterol groups based on the median cholesterol expression

levels in the tissues. Tissue proteins were extracted, and the

mRNA expression levels of 17 genes between the high and low

cholesterol groups were preliminarily validated through PCR

(Figure 8A, Supplementary Figure S3A). The results showed

significant statistical differences in the expression of six genes,

namely GPC3, APOD, BEX1, CLU, GREM1, and PED10, between

the high and low cholesterol groups, with GPC3 exhibiting the most

significant difference. Recent studies have reported GPC3 as a

crucial biomarker and therapeutic target for PD-1 blockade

sensitivity in gastric cancer, sparking our interest (17).

Consequently, we selected GPC3 for further investigation to

explore its role in the development of high cholesterol gastric

cancer. We randomly selected gastric cancer tissues from 5

patients in each group and performed consecutive sections. H&E

and immunohistochemistry experiments were conducted on the

tissue sections of these five pairs of patients to verify the differential

expression of GPC3 between the two groups (Figure 8B).

Additionally, we randomly selected gastric cancer tissues from 4

patients in each group and performed Western blotting to validate

the protein-level expression of GPC3 (Figure 8C). The results

indicated that GPC3 was highly expressed in gastric cancer tissues

with high cholesterol.

To investigate whether the expression level of GPC3 in the

tumor environment is correlated with cholesterol concentration, we

selected two gastric cancer cell lines, HGC-27 and AGS. We

simulated different cholesterol expressions in gastric cancer TME

by adding exogenous cholesterol to the cell culture medium. The

results showed that with increasing cholesterol concentration, the

expression of GPC3 in AGS cell line exhibited an ascending trend,

reaching its peak at 8mM, followed by stabilization. In the HGC-27

cell line, GPC3 expression showed an ascending trend, reaching its

peak at 10mM (Figure 8D). Several studies have reported the

application of MbCD for cholesterol removal (18, 19). Therefore,

we chose MbCD to counteract the effect of cholesterol. The results

showed that by adding MbCD, the expression of GPC3 was

significantly down-regulated (2.5mM MbCD + 10mM
cholesterol) (Figure 8E).
GPC3 promotes malignant biological
functions in gastric cancer

To explore whether GPC3 alters the biological functions of GC, we

initially constructed two small interfering RNA (siRNA) molecules

targeting GPC3. The effectiveness of siRNAs and the overexpression

plasmid of GPC3 were validated through real-time quantitative PCR

and Western blotting (Supplementary Figures S3B, C). Subsequently,
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functional gain or loss experiments were conducted. The results

indicated that when GPC3 was overexpressed, the proliferation and

migration of gastric cancer cells were significantly enhanced, while

downregulation of GPC3 expression reduced the proliferation and

migration capabilities of gastric cancer cells (Figures 8F–H,

Supplementary Figures S4A–C). EdU experiments further

demonstrated a significant reduction in cell proliferation ability in

the si-GPC3-1 and si-GPC3-2 groups (Figure 8J, Supplementary

Figure S4E). Additionally, flow cytometry analysis revealed that

GPC3 overexpression markedly decreased the rate of cell apoptosis,

enhancing the anti-apoptotic capabilities of GC cells (Figure 8I,

Supplementary Figure S4G).
Discussion

Gastric cancer (GC) is a leading cause of cancer-related

mortality globally, ranking fifth in incidence (5.6%) and third in

mortality (7.7%) among malignant tumors (1, 20). Due to its high

incidence and rapid progression, fewer than 30% of GC cases are

diagnosed at an early stage, often resulting in metastasis by the time

of diagnosis (21). With the increasing use of immunotherapy in

advanced GC, it is crucial to develop tools for predicting prognosis

and assessing treatment efficacy. Cholesterol is a key component of

cell membranes, and its synthesis and accumulation are essential for

cell proliferation. Dysregulation of cholesterol metabolism,

involving metabolites like mevalonate, isoprenoids, ubiquinone,

and sterols, has been linked to cancer pathogenesis (22). Recent

studies show that activation of the IRE1a/XBP1 pathway in tumor

cells promotes tumor growth by enhancing cholesterol synthesis

and secretion, while suppressing anti-tumor immunity (23).

Therefore, this study aims to explore the role of cholesterol

metabolism in the tumor microenvironment, prognosis, and the

efficacy of chemotherapy and immunotherapy in GC.

In this study, based on 49 cholesterol metabolism-related genes, we

classified all gastric cancer patients into three clusters with significant

differences in prognosis, enriched pathways, and distinct tumor

microenvironments. Cluster B exhibited the highest survival rate,

followed by Cluster A and Cluster C. Differential expression analysis

of the 49 cholesterol metabolism genes showed that the majority of

them had higher expression levels in Cluster C. GSVA analysis

indicated increased activity in cholesterol metabolism pathways, bile

acid metabolism pathways, fatty acid metabolism pathways, and

metabolism of steroids pathways in Cluster C, suggesting a more

active cholesterol metabolism in this cluster. The ssGSEA analysis

revealed that the infiltration levels of numerous immune cells were

relatively low in Cluster C. This is consistent with the findings of many

previous studies, which suggest that cholesterol and its metabolites act

as signaling molecules that promote tumor progression, and that

cholesterol plays a significant role in dampening anti-tumor immune

responses (12). It is worth noting that some tumor-related signaling

pathways are relatively active in Cluster C, such as the MAPK pathway.

Previous studies have indicated a close association between the MAPK

signaling pathway and the proliferation and occurrence of gastric
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cancer (24–26). In addition, Chan, L. K. et al. found that activation of

the MAPK signaling pathway enhances the expression of cholesterol

biosynthesis-related genes in HCC (hepatocellular carcinoma) cells

(27). Therefore, we can speculate that cholesterol metabolism may be

closely associated with the MAPK pathway in the development and

progression of gastric cancer. This provides a new avenue for further

research into the pathophysiology of gastric cancer and the exploration

of novel treatment approaches.

To evaluate the clinical relevance of this subtyping, we identified

17 DEGs associated with gastric cancer prognosis and performed

unsupervised clustering, categorizing patients into two subtypes. A

cholesterol score was then developed based on gene expression

levels to guide immunotherapy and address individual

heterogeneity. We analyzed the correlation between the

cholesterol score and immune-related cytokines, including

chemokines, interleukins, interferons, and their receptors. The

high-score group showed elevated CXCL10 expression, while the

low-score group exhibited higher levels of CXCL12, CXCR4, IL33,

and TGF-b. Studies have indicated that CXCL10 may promote the

expression of IFN signature genes and TAA, potentially facilitating

T cell infiltration into the tumor, ultimately enhancing PD-L1 and

PD-1 blockade therapy (28). The CXCL12-CXCR4 axis hinders T

cell infiltration into the tumor, thereby enhancing resistance to

immune checkpoint inhibitors (ICIs) (12). In the context of the

B16F10 melanoma model, a specific IL-33-blocking antibody has

shown promise in restoring the effectiveness of anti-PD1 therapy,

especially in subclones exhibiting resistance to ICIs (24).

Additionally, elevated levels of TGF-b are frequently linked to

diminished responsiveness to PD-1/PD-L1 therapy (25). As a

result, we speculate that patients in the high-score group may

potentially benefit more from immunotherapy. Subsequently, we

conducted an analysis of somatic cell mutations, tumor mutation

burden, and microsatellite instability (MSI) between the high and

low-score groups. The results indicated that the high-score group

exhibited higher somatic cell mutation rates, tumor mutation

burden, and MSI. Ke, L., S. Li, et al. (29) found in gastric cancer

that the level of tumor mutation burden is positively correlated with

the effectiveness of immune checkpoint inhibitors (ICIs).

Furthermore, MSI is also considered a predictive biomarker for

immunotherapy response, which aligns with our previous

speculation (30–33). We also incorporated data from three

datasets, including patients receiving immunotherapy and those

not receiving immunotherapy, to validate the specific significance of

the cholesterol score in immunotherapy prediction. Clearly,

pat ients in the high-score group benefi t more from

immunotherapy. Statins have been shown to improve survival

and reduce mortality in metastatic cancer patients (34). Given the

impact of cholesterol metabolism on immune cells, drugs targeting

cholesterol pathways may influence immunotherapy outcomes. By

inhibiting cholesterol synthesis and lowering blood cholesterol

levels, statins could potentially enhance the efficacy of

immunotherapy (35). Our study utilized a cholesterol scoring

system to predict the effectiveness of anti-tumor drugs in high-
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and low-score groups. Further clinical studies incorporating statin

co-treatment may help refine and optimize this system. Due to the

influence of cholesterol metabolism on immune cells, drugs that act

on cholesterol metabolism may also affect the efficacy

of immunotherapy.

We measured cholesterol levels in gastric cancer tissues from 60

patients, dividing them into high- and low-cholesterol groups based

on the median expression. PCR analysis of 17 genes revealed GPC3

as the most significantly differentially expressed gene.GPC3 is a

membrane-associated proteoglycan that is specifically up-regulated

in hepatocellular carcinoma (HCC) (36). As a biomarker for HCC,

GPC3 has been extensively studied as a novel therapeutic target.

However, research on GPC3 in GC remains limited. LI D et al.

found GPC3 is a critical biomarker and therapeutic target for

sensitizing the PD-1 blockage therapy in GC (37). In this study,

we confirmed through in vitro cell experiments that cholesterol

promotes the expression of GPC3 in gastric cancer cells.

Additionally, we verified that the expression of GPC3 is to some

extent dependent on the concentration of cholesterol and identified

its function in gastric cancer cells. Previous studies have indicated

that GPC3 functions as an oncofetal antigen, contributing to Wnt-

dependent cell proliferation (38). Moreover, cholesterol has been

shown to enhance tumor growth through the Fzd5-mediated Wnt/

b-catenin signaling pathway (19). Therefore, we hypothesize that

cholesterol may influence the expression and function of GPC3

through the Wnt pathway. The specific molecular mechanisms

await further investigation.

In this study, the cholesterol score in GC was strongly

associated with tumor mutational load, genomic instability,

immune cell infiltration, immune evasion, and response to ICI

treatment. These findings offer new perspectives for GC diagnosis

and therapy, highlighting CMRGs as potential biomarkers or

therapeutic targets. However, this study has limitations. First, the

metabolic classifications were derived from public datasets, and

their clinical relevance requires further validation. Second, while we

uncovered a novel association between GPC3 expression and

cholesterol levels and confirmed GPC3’s role in GC biology, the

underlying immune modulatory mechanisms remain unclear and

warrant further investigation, such as sequencing analysis. Lastly,

the effects of CMRGs on immune cell infiltration and genomic

instability in GC need deeper exploration.

In conclusion, the cholesterol score we developed can improve

chemotherapy selection for GC patients and serve as a valuable tool

for predicting immunotherapy efficacy.
Conclusion

Our research findings indicate a significant improvement in

survival rates in the high-score subgroup compared to the low-

score subgroup. The high-score subgroup exhibits higher levels of

TMB and MSI, as well as a greater number of mutated genes. This

high-score subgroup demonstrates enhanced sensitivity to
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immunotherapy. The significance of this prognostic score was

validated through real-world cohorts of patients undergoing

immunotherapy. Finally, we confirmed the correlation between

GPC3 expression levels and cholesterol concentration, validating

the biological functionality of GPC3. These research findings

underscore the critical role of CMRGs, deepen our understanding

of the tumor immune microenvironment, and provide guidance for

personalized immunotherapy for gastric cancer patients.
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