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Gliomas account for nearly 30% of all primary central nervous system (CNS)

tumors in children and adolescents and young adults (AYA), contributing to

significant morbidity and mortality. The updated molecular classification of

gliomas defines molecularly diverse subtypes with a spectrum of tumors

associated with age-distinct incidence. In adults, gliomas are characterized by

the presence or absence of mutations in isocitrate dehydrogenase (IDH), with

mutated IDH (mIDH) gliomas providing favorable outcomes and avenues for

targeted therapy with the emergence of mIDH inhibitors. Despite their rarity, IDH

mutations have been reported in 5-15% of pediatric glioma cases. Those with

primary mismatch-repair deficient mIDH astrocytomas (PMMRDIA) have a

particularly poor prognosis. Here, we describe the biology of mIDH gliomas

and review the literature regarding the emergence of mIDH inhibitors, including

clinical trials in adults. Given the paucity of clinical trial data from pediatric

patients with mIDH glioma, we propose guidelines for the inclusion of pediatric

and AYA patients with gliomas onto prospective trials and expanded access

programs as well as the potential of combined mIDH inhibition and

immunotherapy in the treatment of patients with PMMRDIA at high risk

of progression.
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1 Introduction

Gliomas are a complex and diverse group of central nervous

system (CNS) neoplasms that arise from glial cells, varying in

location, grade, and clinical behavior (1–3). These tumors are

particularly common in pediatric and adolescent and young

adult (AYA) patients, comprising 30% of all CNS tumors and

significantly contributing to morbidity and mortality (2, 4–7).

The evolution of the integrated histo-molecular classification of

gliomas defines tumors according to molecular features that

influence patient prognosis and therapeutic decisions. In

adults, the identification of isocitrate dehydrogenase (IDH)

mutations has resulted in paradigm shift in the classification of

tumors, with the recognition that these features play an

important role in tumorigenesis and prognosis (7); however,

less is understood on the role of mIDH in pediatric and

AYA patients.

IDH enzymes are essential in major cellular metabolic

processes (8, 9), and exist in three isoforms: IDH1, IDH2, and

IDH3 (10, 11) with IDH1 and IDH2 mutations resulting in the

accumulation of the oncometabolite D2-hydroxyglutarate

(D2-HG) that is implicated in tumorigenesis through a variety

of mechanisms. Mutant IDH1 or IHD2 enzyme activity

interferes with normal cellular metabolic processes by

depleting a-ketoglutarate (a-KG) from the Krebs cycle and

disruptions in redox balance (11–14). In addition, D2-HG

results in epigenetic modulation and impaired DNA repair, as

well as angiogenesis through hydroxylation of hypoxia-inducible

factor- a (HIF- a) (11–14).
IDH mutations have been identified in numerous cancers,

including CNS tumors, solid tumors, and myeloid malignancies

(15–18). In gliomas, these were first described in the context of

“secondary glioblastoma (GBM),” before defining lower grade

gliomas highlighting prognostic and treatment implications

(19–23). The historical standard of care for adults with mIDH

glioma involves maximal safe resection followed by radiation and

sequential chemotherapy based on the risk of recurrence, although

some patients may be suitable for active surveillance (3, 24, 25).

Given the toxicity conferred by radiation and chemotherapy,

approaches that can delay this intervention are required. Several

mIDH inhibitors have been tested in the clinic with the pivotal

INDIGO study (26) demonstrating significant improvement in

progression free survival (PFS) and time to next treatment

intervention in a select group of patients who have not received

radiation or chemotherapy. Although patients older than 12 years

were eligible for the study, no pediatric patients were enrolled on

the treatment arm and thus findings in pediatric patients with

mIDH glioma are lacking. Moreover, outstanding questions

regarding the biology and prognostic features of these tumors in

pediatric and AYA cohorts is yet to be fully elucidated with no

consensus for their management (21).
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2 The biology of the IDH enzyme

2.1 IDH enzyme

IDH enzymes are crucial in several cellular metabolic processes,

including the Krebs cycle, glutamine metabolism, lipogenesis, and

regulation of cellular redox status (8, 9). Three IDH isoforms, IDH1,

IDH2 and IDH3, encoded by different genes with distinct cellular

localization, contribute to the regulation of central metabolic

circuits (10–12). IDH1 is located in the cytoplasm and

peroxisomes, whereas IDH2 and IDH3 are localized to the

mitochondria (10, 22).

IDH enzymes are fundamental to the tricarboxylic acid cycle

(TCA, Krebs cycle) (9): a series of metabolic oxidative reactions

necessary for the mitochondrial electron transport chain to produce

ATP (Figure 1) (6). Nicotinamide adenine dinucleotide phosphate

(NADP)-dependent IDH1 and IDH2 catalyze the oxidative

decarboxylation of isocitrate into a-ketoglutarate (a-KG),

NAPDH, and carbon dioxide (CO2) (3, 9). a-Ketoglutarate is a

major modulator of electron transport chain activity and TCA flux

(27) and it is a co-factor of numerous important cellular reactions,

including fatty acid metabolism (3, 10).

IDH is critical to maintaining a sufficient pool of reduced

glutathione (GSH) and supporting the peroxiredoxin system by

generating NADPH (12, 28). The NADPH produced from the

reactions catalyzed by IDH1 and IDH2 is critical to maintain redox

balance and protect cells from reactive oxygen species (ROS) that

cause DNA damage (3, 10, 12, 29, 30). IDH is particularly important

in the brain, producing 65% of the brain’s NADPH, which is essential

for lipid metabolism (31). IDH1 and IDH2 are also involved in

glutamine metabolism (32), which is important in tumorigenesis as

glutamine deprivation suppresses cancer growth (28).

IDH3 is a holoenzyme located in the mitochondria and it

catalyzes the irreversible nicotinamide adenine dinucleotide

(NAD+)-dependent a-KG (6, 10, 11).
2.2 IDH mutations and tumorigenesis

IDH mutations contribute to tumorigenesis in multiple cancer

types by interfering with normal cellular metabolism and through

the production of the oncometabolite D2-hydroxyglutarate (D2-

HG) (Figure 2). Somatic mutations in IDH1 and IDH2 are

heterozygous, and primarily consist of missense variants that

result in single amino acid substitutions at key arginine residues

within the enzyme’s core active sites (10, 11). IDH1 mutations

typically occur at Arginine 132, the R132H and R132C variants are

the most prevalent (11). IDH1 G97 is mutated in some colon

cancers and pediatric astrocytomas (33). IDH2 mutations occur at

Arginine 172 and Arginine 140 (34, 35). There are no reports of

tumor-associated mutations in the IDH3 gene (10, 36).
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Uncontrolled cell proliferation associated with cancer often

leads to metabolic alterations that support rapid cell growth (37).

Mutant IDH enzyme activity interferes with normal cellular

metabolism by depleting a-ketoglutarate (a-KG) from the Krebs

cycle (2). Mutant IDH enzymes also consume NADPH, reducing its

availability for maintaining redox balance and de novo lipogenesis
Frontiers in Oncology 03
(38). Accumulating oxidative damage is a hallmark of cancer

biology for IDH-mutated malignancies, as a direct consequence of

disruption to redox balance (39). Under hypoxic conditions, IDH1-

mutant cells exhibit increased oxidative TCA metabolism and

decreased reductive glutamine metabolism (32, 40). Metabolically

reduced glutamine serves as the major carbon source for fatty acid

synthesis during hypoxia and impaired cellular respiration, a switch

that is crucial for sustaining rapid cell proliferation (37).

In addition to losing its normal catalytic activity, the mutant

IDH enzyme catalyzes the reduction of a-KG to its (R)-enantiomer,

the oncometabolite D2-HG (9–13, 41–43). Accumulation of D2-

HG causes profound metabolic dysregulation, including inhibition

of normal cellular differentiation, epigenetic modulation, DNA

repair, redox balance as well as alterations to the tumor immune

microenvironment (11–14).

D2-HG is a homolog of a-KG, and functions as a competitive

inhibitor of a-KG-dependent dioxygenases, vital for DNA and

histone demethylation (3, 42, 44). Accumulation of D2-HG has

been shown to inhibit several key histone demethylases, including

KDM7A (demethylates H3K9me2 and H3K27me2), KDM4A/B

(demethylates H3K9 and H3K36), and Jumonji C domain-

containing (JmjC) histone demethylases (2, 11, 41, 44). D2-HG

also inhibits the DNA modifying enzymes in the ten-eleven

translocation (TET) family of 5-methlycytosine (5mC)

hydroxylases (44). Interference with the normal activity of

dioxygenases disrupts histone and DNA methylation patterns,

leading to the signature global DNA hypermethylation phenotype

seen in IDH-mutant gliomas, known as the Glioma CpG Island
FIGURE 1

The Krebs cycle, depicting IDH as the enzyme that catalyzes the
conversion of isocitric acid to a -ketoglutaric acid.
FIGURE 2

A schematic representation of IDH function, and the impact of IDH mutations on cell function, leading to tumorigenesis.
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Methylator Phenotype (G-CIMP) (2). This epigenetic reprograming

results in a block of cellular differentiation, which in turn causes

inappropriate activation of growth-promoting signaling (2).

A high concentration of D2-HG also promotes angiogenesis via

VEGFR2 signaling and increased matrix metalloproteinase (MMP2)

activity (45). Additionally, D2-HG contributes to gliomagenesis by

directly stimulating prolyl 4-hydroxylase activity, thereby decreasing

hypoxia-inducible factor- a (HIF1a) activity, which enhances the

proliferation of human astrocytes in vitro (2, 46). Furthermore, tumor

cell-derived R-2-HG is absorbed by T cells, leading to a disruption of

nuclear factor of activated T cells (NFAT) transcriptional activity and

polyamine biosynthesis, resulting in the suppression of T cell

activity (47). D2-HG drives an immunosuppressive tumor

microenvironment, acting directly on CD8+ cells by altering their

metabolic and cytotoxic signatures (26, 47, 48).

D2-HG has been shown to accumulate in high levels in glioma

cells but is absent in normal brain cells (44). D2-HG also structurally

and functionally mimics glutamate, thereby contributing to the

genesis of seizures in patients with gliomas (36, 49).

Patients with Ollier disease and Maffucci syndrome, non-

hereditary skeletal disorders characterized by multiple enchondromas

and spindle cell hemangiomas, are associated with somatic mosaic

IDH1 and IDH2 mutations (50). These patients are at increased risk of

developing IDH-mutant gliomas (51) and require thorough clinical

examination along with a full bodyMRI every second year, from age 25

years (52).

IDH mutations have been implicated in other cancer

types, including AML, myelodysplastic syndrome (15–18),

cholangiocarcinoma of intrahepatic origin (53), central and periosteal

cartilaginous chondrosarcomas (54), and melanoma (55, 56).
3 Pediatric gliomas

Traditionally, the World Health Organization (WHO)

classification divides gliomas into four grades based on

histology. Low grade gliomas (LGGs) are well-differentiated,

typically slow-growing tumors (grades 1 and 2), whereas high

grade gliomas (HGGs) are poorly differentiated or anaplastic, and

diffusely infiltrating tumors (grade 3 and 4) (10). Recent advances

in the understanding of molecular biology of CNS tumors were

incorporated into the fifth edition of the WHO CNS tumor

classification (CNS5), incorporating molecular characteristics

into the diagnostic criteria in addition to the routine histologic

features (57, 58).

Pediatric and AYA LGGs constitute most gliomas in this

population, and tend to be more indolent, slow growing lesions.

Treatment of LGG is multifaceted and is contingent upon several

factors including tumor location, patient age and comorbidities.

Whenever feasible, surgical resection is the preferred initial

treatment. However, surgical resection is not always possible due

to tumor location and surgical morbidity. When surgery is not an

option, medical therapy choices include carboplatin as a single

agent (59) or in combination with vincristine (60), or single agent

vinblastine (61). Despite the intent to cure, treatment interventions

can negatively impact neurological, neurocognitive and endocrine
Frontiers in Oncology 04
function, with long term effects on education, employment and

social outcomes (4).

HGGs account for approximately 10% of brain tumors in

children and adolescents and are more aggressive, conferring a

poor prognosis (62). Standard treatment for HGGs include

maximal safe resection, focal radiotherapy, and chemotherapy

(62). Temozolomide forms an important part of treatment for

adult HGGs concurrent to radiotherapy and as adjuvant therapy.

However, in pediatric and AYA patients, the role of temozolomide

is less clear given the tumor biology is different to that of

adult HGGs.
3.1 IDH mutations in gliomas

IDH1 and IDH2 mutations are important, class-defining

mutations in gliomas that carry significant therapeutic and

prognostic implications (3, 63). IDH mutations are very early

events in gliomagenesis, affecting a common glial precursor cell

population in most cases except in patients with replication repair

deficiency (RRD) (10, 64, 65), and show almost ubiquitous

expression throughout the life-cycle of the disease. Among the

three isoforms of IDH, mutations in IDH1 are the most

common (66).

The latest WHO Classification of CNS Tumors divides mIDH

adult-type diffuse gliomas into astrocytoma grades 2-4 and

oligodendroglioma 1p/19q-codeleted. Mutations in IDH1 or IDH2

define WHO grade 2 and 3 diffuse gliomas in adults (5, 34, 66, 67).

Patients with IDH-mutant gliomas tend to be younger than

their wild-type counterparts with a median age of 37 years (68).

IDH1 gliomas arise from a neural precursor population that is

spatially and temporally restricted in the brain (69). Therefore,

mIDH tumors tend to be in the frontal lobes compared with other

lobes and compared with IDH wild-type tumors (70).

The presence of co-existing mutations also helps subdivide

mIDH gliomas and provides prognostic information.

Astrocytomas typically harbor ATRX and TP53 mutations (3, 24),

whilst oligodendrogliomas are defined by co-deletions in 1p and

19q and may carry CIC and TERT mutations (3). Overall survival

(OS) is significantly shorter for astrocytomas harboring CDKN2A/B

deletions in both pediatric and adult patients (21, 71), and therefore

the CNS5 classification now upgrades astrocytomas with CDKN2A/

B homozygous deletion to WHO grade 4 irrespective of high grade

histology features with microvascular proliferation or necrosis (58).

The role of CDKN2A deletion in patients with oligodendroglioma

remains under investigation. The presence of mutations in the

PIK3CA, PIK3R1 and amplification of PDGFRA and MYCN also

confer a trend toward poorer survival (72). Genetic alterations

involving members of the RB1 pathway, including CDK4

amplification and RB1 mutation or homozygous deletion, have

also been reported (71).

IDH mutation status is an independent predictor of favorable

outcomes among adults with glioma (34, 73). In part, this may be

due to increased sensitivity to chemotherapy and radiotherapy, as

IDH mutation does not have the same impact on survival in

untreated tumors (74).
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3.2 Prevalence of IDH-mutant gliomas in
pediatric and AYA patients

Given the rarity of IDH mutations in pediatric and AYA

tumors, there is less detail on their prevalence and clinical impact

(75), with most information found in small cohort studies. The

prevalence of IDH mutations in the pediatric and AYA cohort

ranges from 1% to over 50%, with IDH1 mutations being more

common than IDH2mutations (Table 1). In a cohort of 43 pediatric

patients with newly diagnosed WHO grade 3 or 4 gliomas treated

on the Children’s Oncology Group ACNS0423 study, IDH1

mutations were detected in 7 of 43 (16.3%) of children with

primary malignant gliomas, and no IDH2 mutations were

identified. Older children and AYA are more likely to have

mIDH gliomas. In a large AYA case series including patients aged

15-39.9 by Bennet et al. IDH mutations were noted in 57% patients

(7) whereas Pollack et al. report IDH mutations in 7 of 20 gliomas

(35%) from children ≥14 years and 0 of 23 (0%) in younger children

(19). The PRecISion Medicine for Children with Cancer (PRISM),

trial has reported two patients with mIDH astrocytoma of the 146

patients enrolled with high-risk pediatric brain tumors who had at

least 18 months of follow-up (77).
3.3 Primary mismatch repair-deficient IDH-
mutant astrocytomas

Recently, a distinct cohort of patients with IDH-mutant

astrocytomas has been recognized with hereditary mismatch

repair deficiency (MMR) (78, 79). These patients are unique to

those with acquired MMR due to alkylating agents. Instead, primary

mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA)

are histologically high grade, often displaying a hypermutant

genotype and microsatellite instability (78, 80). These tumors

primarily present in younger patients and have worse clinical

outcomes compared to other IDH-mutant gliomas (78).
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Dodgshun et al. first described six patients with RRD HGG with

secondary IDH1 mutations that clustered with other IDH1 mutant

gliomas on methylation profiling (79). However, while other mIDH

gliomas demonstrated a CpG Island Methylator Phenotype

(CIMP), these six tumors with secondary IDH1 mutations

displayed the inverse pattern of methylation disturbance; a CpG

Island Demethylator Phenotype (CIDP) in keeping with other RRD

HGG. These findings suggest that the CIDP phenotype generated

by RRD glioma is unable to be overcome by secondary

IDH mutations.

In a study by Suwala et al., samples from 32 patients with IDH-

mutant gliomas and proven or suspected primary MMR deficiency

were sequenced. Patients were clinically diagnosed with Lynch

syndrome or Constitutional Mismatch Repair Deficiency

Syndrome and/or had germline mutations in DNA mismatch

repair genes (MLH1, MSH6, MSH2) in all but one case. Results

demonstrated a distinct DNA methylation profile which clustered

separately from other IDH-mutant glioma subtypes including those

with acquired MMR deficiency on t-distributed stochastic neighbor

embedded (t-SNE) plots. Tumors displayed a higher proportion

(60%) of unmethylated MGMT promoter compared to other IDH-

mutant gliomas. Frequent inactivation of TP53, RB1, ATRX and

activation of the RTK/PI3K/AKT pathway was also present. The OS

of this cohort of patients was significantly worse, with a mean OS of

only 15 months despite treatment with surgery, radiation and

chemotherapy. Pediatric and AYA patients diagnosed with a

mIDH glioma warrant screening for MMRD.
4 The current standard of care

Recommended management algorithms for mIDH glioma have

been defined by several groups including the American Society of

Clinical Oncology (ASCO) (24), the Society for Neuro-Oncology

(SNO) (2), and the European Association of Neuro-Oncology

(EANO) (25). These algorithms incorporate surgery and
TABLE 1 Frequency of IDH mutations in pediatric and AYA gliomas.

Tumor type Age range of
included patients

Frequency of
IDH mutations

Comments Reference

Historic WHO grade 3/
4 glioma

3-21 years 7/43 (16%) IDH1m
No IDH2m

(19)

Non-pilocytic gliomas Age of “children”
not defined

4/73 (5%) IDH1m
No IDH2m

Children with IDH-mutated gliomas were older than
children with IDH-wildtype gliomas

(20)

Glioma
Retrospective review

0-21 years 78/851 (9.2%) IDH1m
or IDH2m

Patients aged 0-9: 2/378 (0.5%)
Patients aged 10-21: 25/277 (9%)

(21)

Grade II and III gliomas <18 years 4/32 (12.5%) IDH1m (23)

Historic histologic diagnosis
pediatric glioblastoma

1-18 years 10/162 (6%) IDH1m (75)

Low grade glioma <19 years 10/976 (1%) IDH1
p.R132H mutation

Median age of diagnosis of 15.7 years (76)

Glioma 15-39.9 years 464/876 (53%) (7)

High risk pediatric
brain tumors

<18 years 2/146 Not exclusively glioma cohort (77)
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outcomes from randomized clinical trials on the use of radiotherapy

and/or chemotherapy. It is important to consider that most data

and recommendations pertain to adult patients with potential for

underrepresentation of the AYA group and limited trials conducted

in the pediatric setting.
4.1 Role of surgery

The benefits of safe maximal resection in adults with glioma

were well-established prior to the era of molecular characterization.

These results have been recapitulated in the modern diagnostics era

by Wijenga et al. (81) with a retrospective re-analysis of adult tumor

subtypes applying new molecular classification. This study

demonstrated that for mIDH astrocytomas, each 1cm3 increase in

postoperative volume of disease results in poorer OS, hazard ratio

(HR) of 1.01 (p<0.0001). However, the impact of extent of upfront

resection is less clear in pediatric patients. In a multi-institutional

retrospective analysis of 78 pediatric patients with IDH1/2 mutated

gliomas including 45 patients with low grade astrocytoma, the 5Y

PFS of patients with gross total resection (GTR) was 45.7% with

median PFS of 4.4 years compared to 5Y PFS of patients with

subtotal resection (STR) of biopsy of 41% with median PFS of 4.7

years (21). There was no statistically significant difference in OS in

this cohort. With only 13 patients in the cohort of low-grade

oligodendrogliomas in this study, there was no statistically

significant differences in PFS or OS for upfront GTR versus STR

or biopsy. The discrepancies in outcomes compared to adults may

be reflective of small sample size.

In adults, repeat craniotomy and safe resection is feasible for

patients with recurrent LGG (82). Re-operation in eloquent or near

eloquent brain areas are not associated with higher risk of

neurological sequelae compared to initial surgery (83). Up to 50%

of patients can achieve a gross total resection at time of recurrence

(84). Mounting evidence demonstrates that there is survival benefit

to near total or gross resection at time of recurrence (83–85). Thus,

standard of care is moving towards aggressive safe early resection

at recurrence.
4.2 Adjuvant therapy

In adult IDH-mutant grade 2 gliomas a “watch and wait”

approach may be taken for “low-risk” patients, historically defined

as younger patients under 40 years with GTR (2, 86). For “high-

risk” patients, postoperative combination radiotherapy and

sequential chemotherapy is standard of care (2, 24, 25). The

most common chemotherapy regimens are procarbazine,

lomustine and vincristine (PCV) or temozolomide (TMZ). All

cooperative groups recommend radiotherapy and sequential

chemotherapy for patients with Grade 2 IDH-mutant gliomas

aged over 40 years and with STR (2, 24, 25). Patients with Grade 3

oligodendrogliomas with 1p/19q co-deletion should receive

radiotherapy with PCV (2, 24, 25). Those with Grade 3

astrocytomas and no 1p/19q co-deletion receive radiotherapy

with adjuvant TMZ (2, 24, 25).
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TMZ is an oral alkylating agent that results in the methylation

of DNA at the O6-guanine, as well as N7-guanine and N3-adenine

residues (87). Methylation of O6-guanine results in the O6-

methylgaunine (O6-meg) lesion. O6-meg lesions are repaired by

O6-methylguanine DNA methyltransferase (MGMT), a process

that is dependent on the number of MGMT molecules per cell

and rate of MGMT regeneration (88). Unrepaired O6-meg lesions

incorrectly pairs with thymine during DNA replication instead of

cytosine, triggering the DNA mismatch repair (MMR) system and

repeated cycles of double-stranded breakages in a process called

futile cycling (87). The accumulation of these DNA strand breaks

eventually results in cell cycle arrest and activation of apoptosis.

Thus, cytotoxicity of TMZ is dependent on an intact MMR pathway

and low levels of MGMT.

The CATNON trial (89), a phase 3 randomized controlled trial,

established the use of adjuvant rather than concurrent TMZ with

radiotherapy on 1p/19q non-co-deleted anaplastic gliomas,

particularly those with IDH mutations. The CATNON trial used

a 2 x 2 factorial design, enrolling 751 patients to receive either

radiotherapy alone, or radiotherapy with concurrent and/or

adjuvant TMZ. Adjuvant TMZ showed significant improvement

in OS (median OS 82.3 months, 5Y OS 56% vs median OS 46.9

months, 5Y OS 44% in control arm). The second interim analysis

did not demonstrate a statistically significant benefit of concurrent

TMZ compared to radiotherapy alone. TMZ was generally well

tolerated with the most common Grade 3 and 4 TRAE being related

to hematological side effects, particularly thrombocytopenia

and neutropenia.

Importantly, this study holds significant relevance for IDH-

mutant gliomas. Mutation status was analyzed in 671 of the 751

patients, with 436 harboring IDH1 or IDH2 mutations, evenly

distributed across the four arms of the study. Overall, IDH1/IDH2

mutation status had a significant impact on survival with median

OS 19.9 months in the wild-type group vs 98.4 months in the IDH-

mutant group (HR 0.14, p<0.0001). Significantly, in patients with

IDH1 and IDH2 wild-type tumors, neither concurrent nor adjuvant

TMZ improved OS compared with radiotherapy alone, whereas

IDH-mutated tumors had significantly improved OS with the

addition of adjuvant TMZ. Median PFS in IDH-mutant patients

treated with any TMZ was 77.0 months compared to 34.2 months in

patients treated with radiotherapy alone (p<0.0001).

The results of the CATNON trial suggest that there is a crucial

role for adjuvant TMZ in adult IDH-mutant LGG and this is

currently recommended as standard of care in the settings

outlined above. However, in the pediatric and AYA population

TMZ-induced hypermutation and acquired resistance need to be

considered given the potential for prolonged survival and ongoing

exposure to alkylating agents. TMZ-resistance may occur through

the mutagenic action of TMZ on DNA repair genes resulting in

acquired deficiencies in MMR (90). Loss of MMR function leads to

ongoing mispairing of guanine with thymine; however, unrepaired

DNA damage is no longer detected and cells are unable to activate

apoptosis (91). In the absence of MGMT-mediated repair and intact

MMR, cells incur a large number of G:C>A:T transitions

throughout the genome upon DNA replication, including

thousands in coding regions (87). This mutational signature is
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known as single base substitution (SBS) signature 11 and is

commonly seen in hypermutated gliomas after exposure to

alkylating agents (92). The acquisition of mutations that

inactivate the MMR pathway and continued TMZ exposure

results in hypermutation. Despite these considerations, TMZ

remains widely used in pediatric HGG.

Another recent trial, the CODEL trial, was initially designed to

compare the efficacy of radiotherapy alone, radiotherapy + TMZ, or

TMZ monotherapy in patients with 1p/19q codeleted grade 3

oligodendroglioma (93). Initial analysis demonstrated a

significantly shorter PFS in patients receiving TMZ monotherapy

compared to RT (HR 3.12, p=0.014). Of the patients included that

were evaluable for IDH mutation status, 30 (86%) were IDH

mutated. Given the results, the trial has been redesigned to

compare adjuvant radiotherapy + TMZ and radiotherapy + PCV

among patients with grade 2 and 3 oligodendroglioma. The trial is

ongoing with results awaited. However, recent results from the

French POLA network demonstrate that in a cohort of 306 patients

with grade 3 oligodendroglioma, radiotherapy + PCV was

associated with significantly improved 5-year and 10-year OS

compared to radiotherapy + TMZ (5Y OS 89% PCV vs 75%

TMZ, p=0.0014; 10Y OS 73% PCV vs 60% TMZ, p=0.0003) (94).
5 Mutant IDH inhibitors

Surgical resection, chemotherapy and radiation therapy are

associated with treatment-related toxicities including long term

neurocognitive disorders (1). Targeted therapies are clearly of

emerging interest to avoid long-term toxicities particularly in the

pediatric and AYA cohort.

IDH inhibitors reduce D2-HG concentrations in tumor

xenograft models (95) and in clinical pharmacology studies

(26, 96, 97). Inhibition of mutant IDH in tumor cells, and the

associated reduction in D2-HG production, can restore normal

cellular differentiation and provide therapeutic benefit in cancers

harboring IDH mutations (42). There are several IDH inhibitors

currently under clinical investigation with biologic activity, good

tolerance, and evidence of clinical activity. Studies have

demonstrated the safety and feasibility of these agents in patients

with glioma, summarized in Table 2.

The United States Food and Drug Administration (FDA) and

the Australian Therapeutic Goods Administration (TGA) recently

approved one such agent, vorasidenib, for adult and pediatric

patients 12 years and older with grade 2 astrocytoma or

oligodendroglioma with a susceptible IDH1 or IDH2

mutation (103).
5.1 IDH1 specific

5.1.1 Ivosidenib (AG120)
Ivosidenib is an oral, potent, highly specific targeted small-

molecule inhibitor of mutant IDH1 (1, 13). Preclinical data shows
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that ivosidenib inhibits invasion and migration of IDH1 mutated

chondrosarcoma cell lines (104). Pharmacokinetic analysis showed

that ivosidenib was detectable in the brain-tumor tissue, suggesting

the molecule is able to cross the blood-brain barrier (105). Mouse

xenograft models of human mIDH1-R132H glioma show strong

inhibition of D2-HG production in brain tumor samples (105).

Furthermore, plasma D2-HG levels decreased in adults treated with

ivosidenib (106).

Clinical studies using ivosidenib have been conducted in adults

with CNS tumors (98), cholangiocarcinoma (107–109),

chondrosarcoma (106), and myeloid malignancies (96, 110–112),

either as a single agent or in combination with chemotherapy

(Supplementary Table 1). The most common grade ≥ 3 treatment

related adverse events (TRAE) include myelosuppression, ascites,

and QT prolongation.

5.1.2 Olutasidenib (FT-2102)
Olutasidenib (FT-2102) is a potent, selective, oral, small-

molecule inhibitor of mutant IDH1 that entered clinical

development in 2016 (17, 42, 113). Olutasidenib is a blood brain

barrier penetrant (95, 114) quinolinone-based non-competitive

inhibitor of mutant IDH1 that binds to an allosteric site, a

hydrophobic pocket near the IDH1 homodimer interface (17, 115).

In adult clinical trials in myeloid malignancies (17, 42, 116) and

relapsed/refractory solid tumors (including gliomas) (99), the drug

has been well tolerated with most common serious (Grade 3 and

above) TRAE include hepatic transaminitis and myelosuppression

(Supplementary Table 2). Other common TRAE included nausea,

fatigue, diarrhea, constipation, and headache (99). Olutasidenib was

granted FDA approval to treat patients with relapsed/refractory

IDH1 mutant AML on 1 December 2022 (42, 113).

In a phase 1b/2 trial enrolling 26 adult patients with relapsed/

refractory WHO Grade 3 and 4 IDH1 R132X-mutant glioma,

olutasidenib resulted in a disease control rate (objective response

plus stable disease) of 48% (99). Best response was partial response,

achieved in two (8%) patients and eight patients (32%) had stable

disease for at least four months as per Response Assessment in

Neuro-Oncology (RANO) response criteria. These results suggest

olutasidenib demonstrates preliminary evidence of clinical activity

in a heavily pretreated population.

5.1.3 BAY1436032
BAY1436032 is an oral small-molecule inhibitor of R132-

mutant IDH1 that is active in preclinical models of mIDH1

cancer (117). BAY 1436032 strongly reduces D2-HG levels in

cells carrying IDH1-R132H, -R132C, -R132G, -R132S and -R132L

mutations, with a median maximal reduction of plasma R-2-

hydroxyglutarate levels of 76% (100, 118). BAY 1436032 partially

crosses the blood brain barrier; maximal intraparenchymal BAY

1436032 concentration in mouse brain amounted to 38% of that in

plasma levels (118).

BAY1436032 has been studied in adults with solid tumors (100)

and AML (119) (Supplementary Table 3). The most common

serious TRAE include raised lipase levels and myelosuppression.
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TABLE 2 Trials of IDH inhibitors in patients with glioma.

Reference No.
of
patients

Age
range

Disease type Phase
of trial

Single
agent/
combined

Grade ≥ 3 treat-
ment related
adverse
events (TRAE)

Efficacy
data

Enhancing
vs
non-
enhancing

Ivosidenib

Mellinghoff,
Ellingson et al.
(2020)
(98)

66 21-71y Relapsed/refractory
mIDH1
Glioblastoma n = 12
LGG n = 54

Phase I,
multicenter,
open-
label study

Single agent Neutropenia, weight loss,
hyponatremia, arthralgia (n
= 1, 1.5% each)

PR n = 1
(1.5%)
SD = 44
(66.7%)
PD n =
21 (31.8%)

Median PFS
13.6 months
enhancing, 1.4
months
non-enhancing

Puri, Shi
et al., 2022)

12 26-62y WHO grade 2/3
IDH-mutated
astrocytoma
and
oligodendrogliomas

Retrospective
review

Off-
label
ivosidenib

No comment PFS 12
months
88% (n=8)

No difference

Olutasidenib

de la Fuente,
Colman et al.
(2023)
(99)

26 IQR
40-49y

R/R solid tumor
or glioma

Phase 1b/2 Combined Nausea 14/26 (54%),
fatigue 13/26 (50%), ALT
increased 8/26 (31%),
diarrhea 8/26 (31%),
headache 8/26 (31%),
constipation 7/26 (27%)

ORR + SD:
12/25 (48%)
of 25

Both responders
enhancing
tumors
at baseline

BAY1436032

Wick, Bahr
et al. (2021)
(100)

81 (39 in
low grade
glioma
cohort)

19-81y mIDH1 solid
tumors:
LGG n = 39
Glioblastoma n = 16
Intrahepatic
Cholangiocarcinoma
n= 16
Other tumor types
n= 10

Phase I Single agent 12% (6/52) TRAE grade ≥3
(incl. grade 4
lipase increase)

In LGG
cohort: CR
3% (1/35),
PR 9% (3/
35),
ORR 11%
(4/35)

33/35 patients
had
enhancing
lesion

Safusidenib

Natsume,
Arakawa et al.
(2023)
(97)

47 28-77y Recurrent/
progressive IDH1-
mutant
(R132) glioma

Multicenter,
open-label,
dose-
escalation,
phase I study

125-1400 mg
twice daily

Neutropenia (n = 6 12.8%),
diarrhea (n = 2, 4.3%),
arthralgia (n = 1, 2.1%),
headache (n = 1, 2.1%),
raised liver function tests
(n = 5 10.7%) and
hypophosphatemia (n=
2 4.3%).

ORR = 17.1%
(enhancing
tumors),
33.3% (non-
enhancing
tumors)

ORR greater for
non-enhancing
tumors (33.3%
ORR vs 17.1%)

IDH305

DiNardo,
Schimmer
et al. (2016)
(101)

81 in total,
32
glioma
patient

29-85y Glioma Phase I Single agent
dose
escalation

Elevated bilirubin 4/81
(49%),
Elevated lipase 1/81 (1.2%),
rash 1/81 (1.2%)

Not reported N/A

Vorasidenib

Mellinghoff,
Penas-Prado
et al. (2021)
(102)

93 16-89y mIDH1/2 solid
tumors, including 52
patients with glioma
that had recurred or
progressed following
standard therapy

Open label
Phase 1

Vorasidenib
orally,
once daily

Dose-limiting toxicities of
elevated transaminases
occurred at doses ≥100 mg
and were reversible

Non-
enhancing
gliomas: ORR
= 18%,
median PFS
36.8 months.
Enhancing
gliomas: No
radiographic
response;

Outcomes for
non-enhancing
gliomas
superior to
enhancing
gliomas

(Continued)
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5.1.4 Safusidenib (DS-1001B/AB-218)
Safusidenib (DS-1001b/AB-218) is an orally available, brain-

penetrant, selective inhibitor of R132-mutant IDH1 that has shown

efficacy in preclinical models of glioma (49, 120). It has been studied

in adults with recurrent or progressive mIDH glioma (Supplementary

Table 4) (97). Grade ≥ 3 TRAE related to DS-1001 included

neutropenia and hepatotoxicity. Studies of Safusidenib in patients

with IDH1-mutated WHO glioma are ongoing (NCT04458272,

NCT05303519 and NCT05577416).

5.1.5 IDH305
IDH305 is a potent and selective mutant IDH1 inhibitor that

has demonstrated brain exposure in rodents, D2-HG reduction, and

efficacy in a patient-derived IDH1 mutant xenograft tumor model

(121). It has been studied in adults with CNS tumors and myeloid

malignancy, identifying hepatotoxicity, tumor lysis syndrome and

differentiation syndrome as the most common serious TRAE

(Supplementary Table 5) (101, 122).
5.2 IDH2 specific

5.2.1 Enasidenib (AG221)
Enasidenib is a small molecule inhibitor of the IDH2 enzyme. In

preclinical studies, enasidenib decreased total serum D2-HG by more

than 90%, reduced abnormal histone hypermethylation, and restored

myeloid differentiation (96, 123, 124). In patients with IDH2-mutated

AML, enasidenib reduced serum D2-HG levels resulting in increased

percentages of mature myeloid cells in the bone marrow (112).

Enasidenib has been studied in adults with AML (Supplementary

Table 6) (96, 125, 126). The most common serious adverse reaction

was QT prolongation, hepatotoxicity, and myelosuppression.

There is no evidence that enasidenib crosses the blood brain

barrier. IDH2 mutations are less prevalent in gliomas, rendering an

IDH2 inhibitor less likely to be beneficial in this cohort.
5.3 Combined IDH1 and IDH2 inhibitors

5.3.1 Vorasidenib (AG-881)
Vorasidenib is an oral drug pan inhibitor of both mutant IDH1

and IDH2, shown to penetrate the mouse brain and reduce D2-HG
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production by over 97% in an orthotopically engrafted patient-

derived xenograft (PDX) (127, 128). A recent study revealed that

isoform switching from mIDH1 to mIDH2 or vice versa may

represent a mechanism of acquired resistance, sparking interest in

the use of pan-inhibitors (129, 130).

Vorasedinib has been studied in adults with solid tumors (26)

and hematologic malignancy (130) (Supplementary Table 7).

Vorasidenib is well tolerated with grade 3 or higher TRAE

occurring in less than half of patients (26). The most common

adverse Grade 3 or higher TRAE include hepatic transaminitis,

diarrhea, and gastrointestinal hemorrhage. A small number of

patients require dose reduction or cessation due to adverse

effects (26).

Mellinghoff et al. (131) report the use of vorasidenib or

ivosidenib for IDH-R132H mutant LGG in a perioperative phase

1 trial. In this study, patients received pre-operative vorasidenib or

ivosidenib and continued treatment post-surgery until disease

progression or unacceptable toxicity. Tissue analysis was

performed from 40/49 patients, demonstrating a reduction in

concentration of D-2-hydroxyglutarate (D2-HG), the metabolic

product of mIDH enzymes, by 92.6% following vorasidenib and

91.1% following ivosidenib compared to patients receiving placebo.

Both drugs were well tolerated without any surgical delays. In the

vorasidenib group, 7/24 (29.2%) experienced grade 3 or higher

TRAE including brain abscess, tooth infection, aphasia, brain

edema, hydrocephalus, alanine aminotransferase (ALT) increase,

anemia, hyperglycemia, and hypophosphatemia. Rate of grade 3

TRAE was similar in the ivosidenib group with 6/25 (24%)

experiencing hyponatremia, leukopenia, subdural hematoma,

invasive ductal breast carcinoma, brain edema, brain injury,

hemiparesis, syncope, mental status change and pneumothorax.

Anti-tumor effect was assessed with objective response rate

(ORR) in the group treated with 10mg daily vorasidenib 10% (1/10),

and 50mg daily vorasidenib 42.9% (6/14). For ivosidenib, those

treated with 250mg twice daily had ORR 12.5% (1/8) compared

with 35.7% (5/14) treated with 500mg daily. Based on these

preliminary antitumor activity and enzyme inhibition findings,

vorasidenib 50mg daily was initially carried forward to the

global phase 3 INDIGO study in grade 2 mIDH non-enhancing

glioma (26). A coated-tablet formulation equivalent to 40mg daily

has since been introduced.
TABLE 2 Continued

Reference No.
of
patients

Age
range

Disease type Phase
of trial

Single
agent/
combined

Grade ≥ 3 treat-
ment related
adverse
events (TRAE)

Efficacy
data

Enhancing
vs
non-
enhancing

Vorasidenib

median PFS
3.6 months

Mellinghoff,
van den Bent
et al. (2023)
(26)

331 (168
vorasidenib,
163 placebo)

16-71y Residual or recurrent
grade 2 IDH-mutant
glioma who had
undergone no
previous treatment
other than surgery

Double-blind,
phase 3 trial

Oral
vorasidenib
(40 mg once
daily) or
matched
placebo

Grade ≥3 AE 22.8%
vorasidenib, 13.5% placebo.
Grade ≥3 AE increased
ALT in 9.6%

Median PFS
27.7 months
(vorasidenib)
vs. 11.1
months
(placebo)

Excluded
enhancing
lesions
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The pivotal double-blinded, phase 3 INDIGO study (26)

evaluated vorasidenib in adult patients with residual or recurrent

grade 2 non-enhancing IDH-mutant gliomas. Of 331 patients, 168

patients were randomized to receive vorasidenib 40mg once daily.

Vorasidenib significantly improved imaging-based PFS compared

to placebo (median PFS 27.7 months vs 11.1 months, HR 0.39,

p<0.001). Additionally, vorasidenib delayed the need for further

interventions (HR 0.26, p<0.001). At a median follow-up of 14.0

months, 131 were continuing to receive vorasidenib within the

intervention group. The impact on OS will take years to elucidate

but will be likely confounded by the crossover design (132).

Furthermore, although the eligibility criteria included patients

aged 12 years and over, the youngest patient enrolled was 16

years of age and no patients under 18 years of age were

randomized to the intervention arm. AYA patients were also

underrepresented in this cohort with a mean age of 40.5 years.
5.4 Introducing IDH inhibitors into
standard of care treatment

Understanding of the biological impact of IDH inhibitors in glioma

is evolving. Preclinical modelling in mIDH glioma is complicated by

the indolent nature of the tumors which makes generation of patient-

derived cell lines and xenograft models difficult (49, 133). However,

using a combination of RNA single-cell analysis, bulk RNA-sequencing

analysis and in vitro modelling, Spitzer et al. were able to demonstrate

differentiation of oligodendrogliomas to an “astrocytoma-like”

phenotype with decreased cell cycle expression, thus resulting in less

proliferation, in patients treated with vorasidenib (134).

The specific role of IDH mutations in driving tumor growth and

aggressiveness at the time of recurrence is also unclear. Recurrent

tumors are more likely to display a hypermutation phenotype and

genome-wide loss of DNA methylation (135, 136). Several recent

studies also confirm the present of copy number alterations,

particularly CDKN2A/B loss and CDK4 amplification, clinically

conferring poorer prognosis in IDH-mutant astrocytomas (137–141).

However, the effect of CDKN2A/B deletion in oligodendroglioma is

less clear (142). These findings may explain the clinical data

demonstrating poorer survival outcomes of high-grade mIDH

glioma patients treated at recurrence with mIDH inhibitors (143).

The role of IDH inhibitors in standard of care for IDH-mutant

gliomas is yet to be determined. Overall, studies suggest superior activity

in patients with non-enhancing tumors compared with enhancing

tumors (97, 98, 100, 102), with enhancement typically indicating

transformation of LGG to higher grades (98). The suggestion based

on the above trials would be that these inhibitors may be useful in the

early, indolent course of disease (133). However, many questions remain

including the efficacy of IDH inhibitors compared to current standard of

care radiotherapy and chemotherapy regimens.
5.5 Emerging mechanisms of resistance

There is a lack of current understanding of how prolonged use of

IDH inhibitors alters the biology of mIDH gliomas, leading to
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resistance (133). IDH inhibitor resistance has been reported in

adults with AML through trans or cis dimer-interface mutations

(144), receptor tyrosine kinase (RTK) pathway mutations (145) or

second site mutations (146, 147). In adults with cholangiocarcinoma

resistance mechanisms include a second IDH mutation (129, 148).

Understanding the mechanism of resistance is important to guide

salvage treatment options and to identify other potential targets.
5.6 Combination studies

Several reports and a recently published clinical trial by the

International Replication Repair Deficiency Consortium (IRRDC)

demonstrating durable responses and prolonged survival in patients

with glioma and high mutational burden (149, 150). In contrast, in

Suwala’s study of patients with PMMRDIA, limited effect was seen

in three patients treated with immune checkpoint inhibitors

(ICI) (78). A subsequent IRRDC study of mIDH RRD HGG

confirmed lower PFS in mIDH RRD HGG compared to sporadic

mIDH HGG treated with ICI monotherapy (151).

The lack of efficacy in this cohort is thought to be attributed to the

immune suppressive effects of the IDH mutation on the tumor

microenvironment (80). IDH mutations result in down-regulation

of genes involved in immune activation of cancer cells likely

occurring either by a direct metabolic inhibitory effect of D2-HG

or through epigenetic reprogramming by hypermethylation of

promotors of immune-related genes (47). Hence, D2-HG strongly

represses T-cell activity, acting as a protective mechanism for tumor

cells by evading the immune system. Furthermore, hypermethylation

has been implicated in the downregulation of immune checkpoints

such as PD-L1 and CTLA4 (78, 152).

The combination of IDH inhibitors with ICI is therefore

promising, specifically for PMMRDIA where novel therapeutic

strategies are required. In this combination, IDH mutation driven

immunosuppression could be reversed with IDH inhibitor

treatment, enhancing immune checkpoint blockade. In the clinic,

Das et al. have reported favorable responses for mIDH-RRD-HGG

receiving combination ICI and IDH inhibitor therapy with

prolonged survival at 12 months compared to those without IDH

mutations (151). To test this further, a number of clinical trials are

ongoing including a phase 2 trial combining nivolumab with

ivosidenib in patients with advanced IDH-mutant solid tumors

(NCT04056910) as well as a phase 1 trial of pembrolizumab and

vorasidenib in patients with relapsed/refractory Grade 2 and 3

mIDH glioma (NCT0584622).
6 Need for trials for IDH-mutant LGG
in children, adolescents and
young adults

As outlined above, pediatric IDH-mutant LGG are rare, although

with increased access to advanced genomic testing, these tumors are

being identified more readily (21). There remains a paucity of data to

describe their natural history, treatment strategies and outcomes.
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Specifically, the biological characteristics and behavior compared to

adult IDH-mutant LGG remains unclear (21). Malignant

transformation in the adult cohort is well documented (153) and

an aggressive upfront approach is warranted. In comparison to other

pediatric/AYA LGG patients, mIDH tumors appear to have a higher

risk for malignant transformation (21, 76); however is it unclear

whether IDHmutations confer the same prognostic significance as in

the adult cohort.

These considerations have critical treatment implications as

approaches vary significantly amongst institutions with no

established standard of care. Radiotherapy may be delayed or

avoided; in the retrospective study by Yeo et al. only 22/76

(28.9%) of patients received upfront radiotherapy (21). In the

adult setting, radiotherapy is a cornerstone to the treatment of

gliomas and attempts to de-intensify treatment post resection to

chemotherapy alone have so far proved unsatisfactory (93, 132).

Significant concerns regarding toxicities in children are potential

reasons to consider deferral of radiotherapy (132, 154). In

particular, CNS directed radiotherapy has neurocognitive

sequelae, including decline in cognition, processing speed, fine

motor skills, verbal fluency, and delayed attention (154).

Endocrinopathies can results in issues with growth and puberty

(154). There is an increased risk of late neurovascular events such as

stroke (155). However, radiotherapy, particularly in the setting of

STR or recurrent/progressive disease, plays an important role in

achieving local control and prolonging PFS (154). Therefore, the

optimal timing and modality is important to clarify.

The use of novel targeted therapies is an attractive option to

prevent long-term toxicities in pediatrics. However, access to IDH

inhibitors for pediatric patients with IDH-mutant tumors is

difficult. Currently, ivosidenib has available pediatric dosing based

on a COG Phase II MATCH trial for IDH1 mutant tumors.

However, this trial was closed early prior to meeting study

endpoints due to slow accrual (NCT04195555). Although

vorasidenib has been approved by the FDA, there is no published

dosing for children under 12 years. An upcoming CONNECT trial

(NCT06161974) will assess the combination of olutasidenib (FT-

2102) and temozolomide for pediatric IDH-mutant HGG. The

sparsity of clinical trials leaves many questions left to be answered

such as optimal timing and duration of therapy.

Furthermore, the long-term impact of these novel targeted

therapies is unknown. Pleasingly, health related quality of life

(HrQOL) and neurocognitive outcomes assessed for adult

patients enrolled in the INDIGO trial did not demonstrate any

clinically meaningful deterioration from baseline at any timepoint

compared to placebo (156). While these preliminary data suggest

that the neurocognitive effects of these agents are acceptable in the

adult population, this needs to be weighed against the impact of

potential tumor progression, a key driver of cognitive decline (132).

Given the skewed burden of IDH-mutant gliomas to older children

and adolescents, fertility is also an important consideration given

the unknown impact on fertility, pregnancies, and the fetus (132).

The role of IDH inhibitors in standard of care for IDH-mutant

gliomas is yet to be determined. Overall, studies suggest superior
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activity in patients with non-enhancing tumors compared with

enhancing tumors (97, 98, 100, 102), with enhancement typically

indicating transformation of LGG to higher grades (98). The

suggestion based on the above trials would be that these inhibitors

may be useful in the early, indolent course of disease (133).

However, many questions remain including the efficacy of IDH

inhibitors compared to current standard of care radiotherapy and

chemotherapy regimens.

We suggest that by early treatment with these inhibitors we may

change the natural history of eventual progression to higher risk

disease and eventual death of these patients. By intercepting the

physiologic changes to the tumor and its microenvironment, we

propose we completely alter the disease course and prevent the

eventual development of high grade glioma.
7 Conclusion

While several advances have been made in the field of adult

IDH-mutant LGG, much is still left to be elucidated in the pediatric

and AYA setting. Increased access to next-generation sequencing

has resulted in the increased recognition of these tumors affecting

older children and adolescents. Tumor biology in this group is

unclear and the impact of available therapies commonly used in the

adult setting need to be carefully considered. Temozolomide, used

frequently in the adult setting for its favorable toxicity profile, has a

clear risk of hypermutation whilst IDH inhibitors have not been

tested in the pediatric CNS tumor population and need further

study to determine impact on tumor biology and efficacy at

recurrence. A small but significant proportion of pediatric

patients with mIDH glioma will have PMMRDIA, with poorer

survival outcomes and therefore this must be considered at

diagnosis in this age group. Current practice remains variable

with no standard of care defined, demonstrating an urgent need

for pediatric-specific clinical trials.
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