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Cancer ’s epigenetic landscape, a labyrinthine tapestry of molecular

modifications, has long captivated researchers with its profound influence on

gene expression and cellular fate. This review discusses the intricate mechanisms

underlying cancer epigenetics, unraveling the complex interplay between DNA

methylation, histone modifications, chromatin remodeling, and non-coding

RNAs. We navigate through the tumultuous seas of epigenetic dysregulation,

exploring how these processes conspire to silence tumor suppressors and

unleash oncogenic potential. The narrative pivots to cutting-edge

technologies, revolutionizing our ability to decode the epigenome. From the

granular insights of single-cell epigenomics to the holistic view offered by multi-

omics approaches, we examine how these tools are reshaping our understanding

of tumor heterogeneity and evolution. The review also highlights emerging

techniques, such as spatial epigenomics and long-read sequencing, which

promise to unveil the hidden dimensions of epigenetic regulation. Finally, we

probed the transformative potential of CRISPR-based epigenome editing and

computational analysis to transmute raw data into biological insights. This study

seeks to synthesize a comprehensive yet nuanced understanding of the

contemporary landscape and future directions of cancer epigenetic research.
KEYWORDS

cancer, chromatin, DNA methylation, epigenetics, epigenetic therapy, histone
modifications, non-coding RNAs, tumorigenesis
1 Introduction

Cancer, a complex and heterogeneous disease characterized by aberrant cellular

proliferation and differentiation, continues to pose significant challenges to global health

(1). Although genetic mutations and metabolic dysregulation play key roles in cancer, the

last 10 years have seen a major shift in our understanding of cancer biology. Cancer

epigenetics has emerged as a pivotal factor in tumor formation and progression (2, 3).

Epigenetics refers to heritable changes in gene expression that do not involve alterations in

the underlying DNA sequence. The core epigenetic mechanisms are DNAmethylation, histone
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modifications, chromatin remodeling, and regulation by non-coding

RNAs. These molecular switches are critical for normal cellular

processes such as development and differentiation (4). However,

when they malfunction, they can sculpt the cancer landscape and

play a substantial role in cancer initiation and progression.

Notably, aberrant DNA methylation was the first epigenetic

abnormality identified in human cancers (5–7). Since this initial

discovery, research has revealed that cancer cells frequently exhibit

a significantly altered epigenetic profile compared to normal cells

(8–10). The epigenome of cancer is characterized by extensive

abnormalities, including global hypomethylation and promoter-

specific hypermethylation. This epigenetic dysregulation can

effectively silence tumor suppressor genes or amplify oncogenes,

facilitating the development of hallmark characteristics of cancer,

which are widely recognized in the field (11).

Recent advancements in cancer epigenetics have been

significantly accelerated by novel technologies that enable analysis

of the epigenome with unprecedented resolution (12). High-

throughput sequencing, paired with sophisticated bioinformatics

tools, currently allows researchers to map epigenetic modifications

across entire genomes and connect these changes to cancer

phenotypes. These technological advancements have enabled

highly innovative research endeavors (13).

This review presents a comprehensive examination of the

current state of cancer epigenetic research by emphasizing recent

discoveries and emerging technologies. The major epigenetic

mechanisms implicated in cancer-DNA methylation patterns,

histone modifications, chromatin remodeling, and the roles of

various non-coding RNAs will be explored. Of particular interest

is the discussion of how cutting-edge technologies such as single-

cell sequencing and multi-omics approaches are transforming our

understanding of tumor heterogeneity and complex interactions

within the tumor microenvironment (14, 15).

As we navigate the intricate landscape of cancer epigenetics, this

review will not only summarize key findings but also identify gaps in

our current knowledge and indicate future research directions. In this

context, we will also explore the clinical applications of epigenetic

research, such as the development of epigenetic biomarkers for the

early detection and prognosis of cancer. Unlike genetic mutations,

epigenetic changes are potentially reversible, rendering epigenetic

therapy a promising approach against cancer (16–18).
2 Methods

This comprehensive review was conducted using a systematic

literature search strategy to identify relevant studies on cancer

epigenetics focusing on recent advances in mechanisms, biomarkers,

and technologies.
2.1 Search strategy

We performed a comprehensive search of electronic databases

including NCBI’s PubMed, Thomson Reuters’ Web of Science,
Frontiers in Oncology 02
Scopus, and Google Scholar. The search covered articles

published from January 2018 to August 2024 using the following

key terms and their combinations:
• “Cancer epigenetics”

• “DNA methylation” AND “cancer”

• “Histone modifications” AND “cancer”

• “Chromatin remodeling” AND “cancer”

• “Non-coding RNA” AND “cancer”

• “Epigenetic biomarkers”

• “Single-cell epigenomics”

• “Multi-omics” AND “cancer”

• “Spatial epigenomics”

• “CRISPR epigenome editing”
We also combined keywords, Boolean operators (AND, OR,

and NOT), and filters to refine our search results.
2.2 Inclusion criteria

Studies were included if they met the following criteria:
1. Published in peer-reviewed journals in English.

2. Focused on cancer epigenetics, including mechanistic

studies, biomarker development, and technological advances,

3. Presented original research, systematic reviews, meta-

analyses, or significant technological developments.

4. Provided insights into the latest advancements in the field

of cancer epigenetics.

5. Published between January 2018 and August 2024.
2.3 Exclusion criteria

Studies were excluded if they met the following criteria:
1. Not directly related to cancer epigenetics.

2. Focused sole ly on genet ic a l terat ions without

epigenetic components.

3. Publications that were conference abstracts, editorials,

letters, or commentaries without substantial data.
2.4 Data extraction and synthesis

Titlezs and abstracts were screened for relevance. Full-text

articles from the potentially eligible studies were assessed. Data

on study characteristics, methodologies, key findings, and strong

implications for cancer research and treatment were extracted.

Discrepancies were resolved through discussions and consensus.

The extracted informationwas synthesized andorganizedbymajor

themes in cancer epigenetics, including mechanisms, biomarkers,

advanced computational methods, and technological advances.
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3 Overview of epigenetic mechanisms
in cancer

Cancer epigenetics is reshaping our understanding of tumor

biology. This rapidly evolving field explores how epigenetic

alterations drive cancer development and progression, thereby

opening new frontiers in precision medicine (12, 19). At its core,

cancer epigenetics focuses on a suite of dysregulated processes now

recognized as hallmarks of several tumors. These include aberrant

DNA methylation, histone modifications, chromatin remodeling,

and altered expression of non-coding RNAs and miRNAs. When

the cell’s instruction manual is rewritten without permission, the

consequences can be profound: tumor suppressor genes can be

silenced, whereas oncogenes are activated, fueling cancer growth.

As researchers, we decoded this epigenetic language to develop

targeted therapies that could outsmart cancer in its own game.

Table 1 provides a snapshot of the main epigenetic mechanisms

implicated in cancer and serves as a foundation for understanding

this complex and fascinating field.
3.1 DNA methylation

DNA methylation is a well-characterized prima donna of

epigenetic modifications that involves the addition of a methyl

group to the 5-carbon position of cytosine residues within CpG

dinucleotides. DNAmethylation is a high-maintenance process that

must be maintained to avoid passive and active demethylation

cycles during DNA replication. This is because, on the one hand, we

have faithful maintenance by methyltransferases, working overtime

to preserve these crucial epigenetic signatures. On the other hand,

the forces of entropy and active demethylation threaten to erase

these hard-won modifications. It is a constant and perpetual battle

enacted within the nucleus of every dividing cell (Figure 1).

These changes are critical in the initiation and progression of

various cancers as they disrupt normal gene regulation. Abnormal

DNA methylation patterns are commonly found in cancer

cases; global hypomethylation can cause instability, whereas

hypermethylation of specific promoters often leads to the

suppression of tumor suppressor genes (20, 21) (Figure 2). It

should also be noted that certain DNA methylations such as

intragenic DNA methylation (IGM) show distinct patterns in

cancer cells, with genome-wide hypomethylation including

clustered hypomethylated CpG sites in gene-poor regions, 5’

regions of frequently expressed genes, all occurring alongside

specific hypermethylation events at chromosome breakpoints

(22). These patterns differ significantly from normal tissue and

contribute to genomic instability.

3.1.1 Recent advances in DNA methylation
and cancer

Advancements in the field of DNA methylation and its

relationship with cancer have recently made headways. Global

hypomethylation is a common feature of cancer cells and is

associated with genomic instability. This decrease in methylation
Frontiers in Oncology 03
typically occurs within regions called partially methylated domains

(PMDs), which can trigger the activation of oncogenes that aid

tumor development (23). These domains are often found in non-

CpG regions, such as solo-WCGW sequences near A or C

nucleotides (23). For example, collagen triple helix repeat
TABLE 1 Summary of main epigenetic modifications and their effects on
gene expression.

Epigenetic
Modification

Description
General Effect on
Gene Expression

DNA Methylation

Addition of a
methyl group to
cytosine residues in
CpG dinucleotides

Typically represses gene expression
when occurring in promoter
regions; global hypomethylation can
lead to genomic instability

Histone
Modifications

Post-translational
modifications of
histone proteins,
including
acetylation,
methylation,
phosphorylation,
and ubiquitination

Varies depending on the specific
modification:
- Acetylation generally activates
transcription
- Methylation can either activate or
repress, depending on the specific
amino acid residue and extent of
methylation
-Phosphorylation plays roles in
chromosome condensation during
cell division, DNA damage repair,
and transcriptional regulation
-Ubiquitination involves DNA
damage response.
Monoubiquitylation of H2A is
associated with gene silencing, while
H2B ubiquitination correlates with
transcription activation

Chromatin
Remodeling

Dynamic
modification of
chromatin
architecture
through
repositioning,
ejection, or
restructuring
of nucleosomes

Can either activate or repress gene
expression by altering DNA
accessibility to transcription factors
and other regulatory proteins

Non-
coding RNAs

Functional RNA
molecules that are
not translated into
proteins, including
microRNAs
(miRNAs) and long
non-coding
RNAs (lncRNAs)

-Non-coding RNAs (ncRNAs) are
generally involved in fine-tuning
gene expression, chromatin
modification, RNA slicing, protein
synthesis, cell differentiation and
development, and can act as either
activators or repressors through
various mechanisms
- MicroRNAs (miRNAs) typically
inhibit translation or lead to mRNA
degradation
- (Long non-coding RNAs
(lncRNAs) can interact with
chromatin-modifying complexes to
regulate gene expression
Besides the well-known ncRNAs
such as Transfer RNAs (tRNAs)
and Ribosomal RNAs (rRNAs),
there are also several other types of
ncRNAs, including:
small interfering (siRNAs), Small
nuclear RNAs (snRNAs), Small
nucleolar RNAs (snoRNAs), Piwi-
interacting RNAs (PiRNAs), and
Circular RNAs (circRNAs)
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FIGURE 1

DNA methylation process. The figure illustrates the processes of de novo DNA methylation, passive demethylation, and active demethylation. The
first section, de novo methylation, shows the addition of methyl groups (CH3) to cytosine residues in DNA, catalyzed by DNMT DNA
methyltransferases (DNMTs), resulting in a newly methylated DNA strand. The second section, passive demethylation, describes the process of DNA
replication without incorporating new methyl groups, leading to a gradual reduction in methylation across successive cell divisions. The third
section, active demethylation, highlights the enzymatic conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven
translocation (TET) enzymes and TDG, followed by further oxidation steps and replacement of modified bases by unmodified cytosine through the
base excision repair pathway. DNA methylation is crucial for the regulation of gene expression, development, and disease. Created using Biorender.
FIGURE 2

Schematic representation of promoter DNA methylation in gene regulation. This figure illustrates the role of DNA methylation in gene regulation,
focusing on promoter regions. On the left, the unmethylated promoter had trimethylation marks on histones, indicating active transcription. On the
right, the promoter is methylated, catalyzed by DNA methyltransferases (DNMT1 and DNMT3), and RNA (tRNA) methyltransferase (DNMT2, not
shown in the figure) using S-adenosylmethionine (SAM) as a methyl donor. This methylation leads to transcriptional repression, as indicated by
blocked transcription, resulting in gene silencing. The chemical structures of cytosine and 5-methylcytosine are shown at the bottom of the
illustration, representing bases before and after methylation. Created using Biorender.
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containing-1 (CTHRC1) plays a significant role in modulating cell

proliferation and invasion in hepatocellular carcinoma (HCC),

potentially through mechanisms related to DNA methylation

(21). Research indicates that CTHRC1 is overexpressed in HCC

tissues and correlates with poor clinical outcomes, including larger

tumor size and increased metastasis (24, 25). The expression of

CTHRC1 is influenced by various signaling pathways, including

TGF-b and PI3K/AKT, which are known to promote tumor

progression and epithelial-mesenchymal transition (EMT)

(25, 26). Additionally, studies have shown that DNA methylation

can regulate the expression of genes involved in HCC, suggesting

that CTHRC1 may also be affected by methylation changes (27, 28).

Thus, CTHRC1 not only contributes to HCC cell invasion and

proliferation but may also be modulated by epigenetic factors,

highlighting its potential as a therapeutic target and prognostic

biomarker in HCC management.

The field of DNA methylation research has made significant

strides by offering new insights into cancer development, progression,

and potential treatments. A notable example of these advancements is

the pioneering study that employed cell-free DNA methylation

analysis. This innovative approach demonstrated exceptional

precision in identifying and pinpointing various types of cancers.

The test exhibited an impressive 99.4% specificity and sensitivity

ranging from 60% to 94% across 16 distinct cancer types (29, 30).

To further advance this field, researchers have developed

MethMarkerDB, a comprehensive database of cancer DNA

methylation biomarkers based on whole-genome bisulfite

sequencing data. This valuable resource identified an astounding

5.4 million differentially methylated regions across 13 common

cancer types, providing researchers with a powerful tool for

discovering novel cancer biomarkers (31). Researchers have also

developed a new liquid biopsy method using methylation-sensitive

restriction enzyme sequencing (MRE-Seq) combined with deep

neural network analysis. This approach, termed methPLIER,

showed high sensitivity and accuracy in detecting cancer-specific

DNA methylation patterns in cell-free DNA, offering potential for

early cancer diagnosis (32). This novel DNA methylation analysis

tool enables cross-dataset comparative analyses and reduces bias

between datasets caused by differences in preprocessing methods

and analysis platforms, facilitating integrated analysis across

multiple studies (32).

In organ-specific studies, including prostate cancer, researchers

have found that hypermethylation of specific genes distinguishes

between tumor and normal tissues. Methylation patterns can

also differentiate between aggressive subtypes, including

neuroendocrine prostate cancer and castration-resistant prostate

adenocarcinoma (29). Furthermore, research on CpG island

hypermethylation phenotype (CIMP) in prostate cancer has

revealed associations with distinct clinical features and outcomes.

This knowledge could lead to targeted treatments for CIMP

subtypes in prostate cancer (29). A study of head and neck cancer

showed that DNA hypermethylation of tumor suppressor genes

such as p16, PTEN, DAPK, MGMT, ECAD, and RASSF1A leads to

decreased expression of these genes, contributing to cancer

development and poor prognosis (31).
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Studies on testicular germ cell tumors have indicated that DNA

methyltransferase inhibitors (DNMTi) and demethylases (DMT)

may serve as potential therapeutic agents. These substances can

undo abnormal DNA methylation patterns linked to cancer

advancement (23). These developments highlight the potential of

DNA methylation analysis to revolutionize early cancer detection

and classification methods, offering new avenues for prognosis and

targeted therapies.

Although DNA methylation studies have provided valuable

insights, the field faces challenges and limitations, including

the following:
• Heterogeneity of methylation patterns across different

cancer types and even within the same tumor.

• Difficulty in distinguishing driver from passenger

methylation changes.

• Complexity in interpreting the functional significance of

methylation changes due to their reversibility.

• Technical challenges in accurately measuring methylation

at single-cell resolution.
3.2 Histone modifications

Histone proteins, around which DNA is wrapped, can undergo

various post-translational modifications such as methylation,

acetylation, phosphorylation, and ubiquitination (Figure 3).

These modifications influence the chromatin structure and gene

expression (33, 34). In cancer, dysregulation of histone

modifications can lead to either the activation of oncogenes or

repression of tumor suppressor genes. For instance, histone

acetylation generally correlates with transcriptional activation,

whereas methylation can either activate or repress transcription

depending on the specific amino acid residues modified

(33, 35) (Figure 4).

3.2.1 Recent advances in histone modification
and cancer

Recent advances in histonemodification researchhave significantly

enhanced our understanding of cancer biology and its therapeutic

strategies. Histone modifications, including methylation, acetylation,

phosphorylation, and ubiquitination, play crucial roles in regulating

gene expression and chromatin structure, with dysregulation linked to

various malignancies, such as acute myeloid leukemia and head and

neck squamous cell carcinoma (HNSCC) (36, 37). The interplay of

thesemodifications, orchestrated by “writers,” “erasers,” and “readers,”

(see Figure 4) has emerged as a critical factor in cancer development,

prompting the exploration of co-targeting histone modulators for

precision therapy (38–40). Furthermore, specific histone

modifications are implicated in telomere dynamics, influencing

genomic stability and oncogenic transformation (41, 42).

The development of small-molecule inhibitors targeting histone

methyltransferases and other epigenetic regulators represents a

promising avenue for cancer treatment, with ongoing clinical
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trials highlighting the potential of these strategies (36, 37). For

instance, researchers have identified a new histone modification,

lysine benzoylation (Kbz), that plays a role in transcriptional

regulation. The SAGA complex acts as a writer for Kbz, which is

associated with active transcription and functions distinctly from

other modifications, such as acetylation. It is regulated by sirtuin 2

(SIRT2), which serves as an eraser and removes the benzoyl group,

thus influencing gene expression dynamics (43). This modification

is elevated in various cancer types, including lung and colorectal

cancers, suggesting its potential as a therapeutic target. The

presence of Kbz, along with other acylation markers, suggests a

complex interplay between metabolism and epigenetic regulation,

highlighting its potential as a biomarker for cancer (44). Other

recent studies have focused on small-molecule inhibitors of histone

H3 lysine 36 (H3K36) methyltransferases, which are implicated in

various cancers (45–47). Another recent research uncovered a

different relationship between histone methylation and cancer

through H3 N-terminal arginine mutations rather than

specifically H3K36 methylation (48). These and other histone

methylation mechanisms in cancer cells provide insights into the

interplay between different epigenetic modificat ions .

Understanding the structure and function of H3K36

methyltransferases is critical for developing cancer treatment

strategies. Crosstalk also exists between histone modifications and

DNA methylation (Figure 5).
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Together, the images in Figures 4, 5 provide a comprehensive

overview of how post-translational epigenetic modifications

influence gene regulation and chromatin organization. Overall,

the integration of histone modification research into cancer

therapy paves the way for innovative therapeutic approaches.

Although histone modification studies have provided valuable

insights, the field faces challenges and limitations, including

the following:
• The dynamic nature of histone modifications makes them

difficult to study in a static context. Histone modifications

are highly dynamic and can change rapidly in response to

cellular signals. This makes it challenging to capture the full

extent of histone modification in each cell or tissue.

• Crosstalk between different histone modifications

complicates the interpretation. Histone proteins can

undergo multiple modifications at different sites, resulting

in complex combinatorial codes that are difficult

to interpret.

• Limited understanding of the combinatorial effects of

multiple histone modifications.

• Technical challenges in studying histone modifications at

specific genomic loci. Furthermore, analyzing histone

modifications requires specialized techniques such as

chromatin immunoprecipitation (ChIP) sequencing.
FIGURE 3

Overview of histone modifications and their roles in chromatin dynamics. This figure represents a simplified octameric structure of the nucleosome
core particle. Panel (A) illustrates the dynamic equilibrium between open (euchromatin) and closed (, heterochromatin) chromatin. Panel (B)
illustrates the nucleosome structure of histone proteins H2A, H2B, H3, and H4, showing various post-translational modifications of the histone tails.
The four main modifications are methylation (Me), acetylation (Ac), ubiquitination (Ub), and phosphorylation (P), each of which is color-coded.
Modifications are indicated on specific amino acid residues (denoted by their single-letter codes) along the histone tails, demonstrating their
potential impact on chromatin structure and gene regulation. The specific locations of these modifications are important for understanding their
roles in transcriptional regulation, with methylation typically associated with gene repression, and acetylation with gene activation. Created
using Biorender.
frontiersin.org
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Fron
These methods can be labor-intensive and require careful

experimental design to minimize artifacts.
3.3 Chromatin remodeling

Chromatin remodeling involves the dynamic modification of

the chromatin architecture and organization to allow access to the

genomic DNA (Figure 6).

This process is mediated by chromatin remodeling complexes

that reposition, eject, or restructure nucleosomes (34). In cancer,

mutations in chromatin remodeling genes can lead to altered

chromatin states, affecting gene expression patterns crucial for cell

growth and differentiation (49). Chromatin remodeling is crucial

for regulating gene expression, particularly in cancer, where

mutations in chromatin remodeling genes can lead to altered

chromatin states and disrupted cellular functions. Research

indicates that chromatin remodeling complexes, which reposition

or restructure nucleosomes, are essential for the transition of

chromatin from a repressed to an active state, thereby influencing

gene activation and cellular differentiation. For example, chromatin

remodeling complexes, such as SWI/SNF, are essential for

transitioning chromatin from a repressed to an active state,
tiers in Oncology 07
thereby influencing gene activation and cellular differentiation

(50, 51). In head and neck squamous cell carcinoma (HNSCC),

chromatin remodeling is linked to the differentiation of cancer cells,

suggesting that targeted differentiation strategies can mitigate

malignancy (52). Similarly, in thyroid cancer, SETMAR facilitates

chromatin remodeling, enhances the expression of differentiation-

related genes, and affects treatment responses (53). Furthermore,

dysregulation of chromatin dynamics, including mutations in

remodeling complex genes, has been associated with various

cancers, highlighting the importance of these processes in disease

progression and potential therapeutic interventions (52, 54). Thus,

understanding chromatin remodeling mechanisms is vital for

developing effective cancer therapies.

3.3.1 Recent advances in chromatin modification
and cancer

Chromatin sequencing (Chrom-seq) is an antibody-free

method that combines specific chromatin mark readers with

APEX2 enzyme to identify RNAs associated with various

chromatin modifications. This technique utilizes proximity

biotinylation to label and isolate RNAs near specific histone

modifications, enabling the systematic mapping of chromatin-

associated RNAs that play regulatory roles in epigenetic events.

This process, which has proven more efficient than previous
FIGURE 4

Epigenetic histone modifications. The figure illustrates histone modifications, specifically acetylation (Ac) and methylation (Me), and their effects on
the chromatin structure and gene expression. The diagram shows two states of chromatin: open chromatin (euchromatin) and closed chromatin
(heterochromatin). In the open chromatin state, histone acetyltransferases (HATs) add acetyl groups to histone tails, facilitating gene expression by
allowing RNA polymerase II (RNAPII) access to DNA, whereas histone deacetylases (HDACs) remove them. The inset also details the acetylation
process, showing the transfer of acetyl groups (Ac) from acetyl-CoA to histones, resulting in transcriptional activation. In the closed chromatin state,
histone methyltransferases (HMTs), such as PR-Set7 and Polycomb Repressive Complex 2 (PRC2), add methyl groups, (while demethylases (DMs)
remove them), resulting in transcriptional repression. The inset shows the methylation process, where S-adenosyl methionine (SAM) acts as the
methyl donor, causing gene silencing by preventing RNAPII binding. The figure also depicts the nucleosome structure, showing the DNA wrapped
around histone proteins. Key epigenetic players are highlighted: Writers (such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs),
HMTs, and protein kinases (PKs) add modifications, readers (including MBDs (Methyl-CpG Binding Domain proteins) bromodomains,
chromodomains, plant homeodomain (PhD) fingers, and Malignant Brain Tumor (MBT) domains recognize these modifications, and Erasers TETs
(Ten-Eleven Translocation enzymes), HDACs, histone lysine demethylases (KDMs), DMs, and protein phosphatases (PPs)) remove them. The interplay
between these factors determines chromatin accessibility and gene expression. Created using Biorender.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1513654
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sherif et al. 10.3389/fonc.2024.1513654
FIGURE 6

Chromatin organization. The figure illustrates chromatin architecture and organization within a eukaryotic cell, showing the hierarchical structure of
the genetic material. The image progresses from the cellular level to the molecular structure of the DNA. At the top, a eukaryotic cell is depicted
with its nucleus containing both condensed and relaxed chromatin. Condensed chromatin appears as a tightly coiled structure, representing
transcriptionally inactive regions, while relaxed chromatin appears as a looser, more open structure associated with active gene expression. The
figure then displays a string of nucleosomes, the basic units of chromatin, consisting of histone proteins around which the DNA is wrapped. The
DNA double helix is illustrated at the bottom, representing the most fundamental level of DNA organization. This comprehensive visualization
demonstrated how genetic material is packaged and organized within the cell, from the highly condensed chromatin visible at the cellular level to
the molecular structure of the DNA double helix, highlighting the importance of this organization in gene regulation and expression. Created
using Biorender.
FIGURE 5

Key epigenetic mechanisms and their effects on chromatin structure and gene expression. This figure illustrates the contrasts with promoter
hypermethylation and genome-wide hypomethylation. Promoter hypermethylation, characterized by increased DNMT and decreased TET protein
activity, leads to condensed chromatin and gene silencing. Conversely, genome-wide hypomethylation results in a de-condensed state and gene
expression. This figure also illustrates abnormal methylation, reader mutations, and reduced acetylation along with their impact on chromatin
structure. Additionally, it shows how SWI/SNF loss-of-function mutations affect nucleosome positioning, contributing to abnormal chromatin
structures. Created using Biorender.
Frontiers in Oncology frontiersin.org08
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methods in terms of sensitivity and cost, requires fewer cells and less

processing time (55).

Role of Epigenetic Readers: Epigenetic readers are proteins that

recognize specific chromatin modifications and facilitate gene

expression and regulation. For example, Stadler et al., highlighted

how chromatin modifications can recruit various reader proteins,

indicating a complex interplay between these modifications and

gene activity (56). The methyl-CpG-binding domain (MBD) has

shown versatility in recognizing non-canonical epigenetic marks, as

demonstrated by Kosel et al., suggesting that readers can adapt to

different epigenetic contexts (57).

Advances in Chromatin Profiling: Techniques such as SAM-seq

allow for the simultaneous profiling of chromatin accessibility and

DNA methylation, revealing how these features interact within

nucleosomes (58). This integration enhances our understanding

of how RNAs and epigenetic markers influence chromatin

structure. Another methodology is CUT&RUN (Cleavage Under

Targets and Release Using Nuclease) [https://www.epicypher.com/

resources/cut-and-run-overview/] (59). This is used for profiling

histone modifications and other chromatin-bound proteins, which

are key components of epigenetic regulation. CUT&RUN is also

used for high-resolution epigenomic mapping of histone

modifications and identifying binding patterns for chromatin-

associated proteins and transcription factors genome-wide (59).

Some of its advantages over ChiP-seq for epigenomic studies

include lower input requirements (can be used with as few as

100,000 cells), higher signal-to-noise ratio, and better resolution of

binding sites.

In contrast, while the focus on readers provides insights into

chromatin regulation, the dynamic nature of chromatin

modifications and their interactions with various cellular factors

remains a complex area that requires further exploration.

Although chromatin remodeling studies have provided valuable

insights, the field faces challenges and limitations, including

the following:
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• Complexity of chromatin remodeling complexes and their

context-dependent functions.

• Difficulty in studying dynamic chromatin changes in real

time. Chromatin remodeling complexes are highly dynamic

and can be regulated by various factors, making it difficult

to understand their precise roles in gene expression.

• Limited understanding of how chromatin remodeling

interacts with other epigenetic mechanisms. Chromatin

remodeling involves the interplay of multiple proteins and

factors, making it difficult to dissect the specific

contributions of each component.

• Technical challenges in capturing transient chromatin

states. Studying chromatin remodeling complexes requires

specialized techniques, such as ChIP-seq and biochemical

purification. However, these methods are challenging and

time consuming.
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3.4 Non-coding RNAs

Non-coding RNAs (ncRNAs), including microRNAs (miRNAs)

and long non-coding RNAs (lncRNAs) (see more ncRNAs in

Table 1 and Figure 7), play significant roles in the regulation of

gene expression at the post-transcriptional level, thereby

influencing processes such as cell proliferation, apoptosis, and

metastasis in cancer. In fact, the 2024 Nobel Prize in Physiology

and Medicine was awarded jointly to Victor Ambros and Gary

Ruvkun “for the discovery of microRNA and its role in post-

transcriptional gene regulation” [https://www.nobelprize.org/

prizes/medicine/2024/press-release/]. In the early 1990s, Ambros

and Ruvkun uncovered a novel, evolutionarily conserved

mechanism of gene regulation by microRNAs, which revealed an

unexpected layer of genetic control, revolutionizing our

understanding of molecular biology. MicroRNAs are now being

explored for potential diagnostic and therapeutic uses, particularly

in cancer and other diseases.

miRNAs canbind tomessengerRNAs (mRNAs) and inhibit their

translation, leading to degradation or translational inhibition (60).

Dysregulation of miRNAs and lncRNAs is commonly observed in

cancer, where they can function as oncogenes or tumor suppressors,

affecting processes such as cell proliferation, apoptosis, andmetastasis

(60, 61). These epigenetic mechanisms are not isolated; they often

interact to regulate gene expression in a coordinated manner. For

example, the lncRNA HOTAIR has been found to promote cervical

cancer progression by regulating BCL2 by targetingmiR-143-3p (62).

miR-34a promotes DNA methylation and histone deacetylation,

leading to gene silencing and tumor suppression. Research indicates

that miR-34a is often downregulated in various cancers, including

non-small cell lung cancer (NSCLC), and its low expression correlates

with tumor progression (63, 64). The loss ofmiR-34a has been shown

to promote tumorigenesis, whereas its overexpression can inhibit

cancer cell proliferation and invasion (65, 66). Furthermore, miR-

34a’s role in regulating immune responses within the tumor

microenvironment underscores its multifaceted anti-tumor effects

(65). In contrast, lncRNAs can interact with chromatin-modifying

complexes to regulate gene expression. For example, lncRNA

MALAT1 (metastasis-associated lung adenocarcinoma transcript 1)

has been shown to promote chromatin compaction and gene

silencing, contributing to cancer progression in several ways, and

MALAT1 has been found to interact with chromatin remodeling

subunits such as BRG1, a component of the SWI/SNF complex. This

interaction promotes inflammation-related hepatocellular carcinoma

progression by epigenetically regulating the expression of

inflammatory genes, such as IL-6 and CXCL8 (67). MALAT1 can

also recruit PRC2 components such as EZH2 to specific genomic loci,

leading to H3K27 trimethylation and subsequent gene silencing. This

mechanism has been observed in colorectal cancer and other

malignancies (68, 69).

Overall, ncRNAs have emerged as promising biomarkers for

cancer detection, as they can be easily detected in the blood, urine,
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and other bodily fluids. They are often more sensitive and specific

than traditional cancer markers (70, 71). Understanding these

biomarkers is crucial to unravel the complexities of cancer

biology and develop effective therapeutic strategies. Future

research may increasingly delve into the mechanisms of action of

messenger RNA and circular RNA, aiming to develop targeted

treatment strategies utilizing non-coding RNA drugs.

3.4.1 Recent advances in non-coding RNAs
and cancer

Recent advances in non-coding RNAs (ncRNAs) have

significantly enhanced our understanding of cancer biology,

particularly tumor progression, drug resistance, and therapeutic

potential. These findings underscore the dual role of ncRNAs as

both oncogenes and tumor suppressors, paving the way for novel

cancer diagnostics and treatments.

Role of Long Non-coding RNAs (lncRNAs): lncRNAs are

crucial in cancer pathophysiology, influencing tumorigenesis and

metastasis through various mechanisms, including transcriptional

regulation and histone modification (72). They are involved in the

regulation of key metabolic pathways such as glucose metabolism

by modulating the expression of glucose transporters such as

GLUT1, which is often overexpressed in cancer cells (72). This

entails that they can act as biomarkers for cancer therapeutics, with
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many still awaiting identification (73, 74). They also regulate drug

resistance mechanisms, such as ATP transporter overexpression

and epithelial-mesenchymal transition, highlighting their potential

to overcome treatment challenges (75).

ncRNAs in Tumor Microenvironment: Advances in RNA

sequencing have revealed the significant role of ncRNAs in the

tumor microenvironment, suggesting their potential as therapeutic

targets (76). Specific ncRNAs have been implicated in gynecologic

cancers, acting as either oncogenic or tumor-suppressive

agents, with ongoing clinical trials exploring their utility as

biomarkers (77).

Emerging Insights on Circular RNAs: Circular RNAs

(circRNAs) are gaining attention for their regulatory roles in

cancer, although they remain less characterized than lncRNAs

and microRNAs (78).

Although advancements in ncRNA research offer promising

avenues for cancer treatment, challenges and limitations remain in

fully understanding their complex roles and mechanisms in

various cancers.
• Vast number of non-coding RNAs with unknown

functions. In addition, ncRNAs can function as both

oncogenes and tumor suppressors, and their roles can

vary depending on the cellular context. Understanding the
FIGURE 7

Types of coding and non-coding RNAs. This figure illustrates the diverse types of coding and non-coding RNA molecules in eukaryotic cells. The
image depicts the flow from DNA to various RNA species centered around the ribosome. The left side shows the pathway of coding RNA, starting
with pre-mRNA in the nucleus, which is processed into mature mRNA and exported to the cytoplasm, where it is translated into protein. The figure
also highlights circular RNA (circRNAs) as a unique form of coding RNA. The diagram on the right shows several types of non-coding RNAs
(ncRNAs), including transfer RNA (tRNA) and various small RNAs, such as microRNAs (miRNAs), piwi-interacting RNA (piRNAs), and small interfering
RNA (siRNAs), collectively labeled as repressive smRNAs. Additionally, it depicts other non-coding RNAs like small nuclear RNA (snRNA), small
nucleolar RNA (snoRNA), and long non-coding RNA (lncRNA). The figure also includes pseudogenes, which are nonfunctional gene sequences. By
presenting both coding and non-coding RNAs, this illustration effectively demonstrates the complexity and diversity of RNA molecules involved in
gene expression and regulation in eukaryotic cells. Created using Biorender.
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complex regulatory networks involving ncRNAs is an

ongoing challenge.

• Difficulty in predicting and validating ncRNA targets.

• Biological complexity in understanding tissue-specific roles

of non-coding RNAs. The expression and function of

ncRNAs can vary significantly between different tissues

and cancer types, making it difficult to identify universally

applicable biomarkers.

• Technical challenges in detecting and quantifying low-

abundance ncRNAs. Identifying and characterizing ncRNAs

can be challenging because of their diverse sizes and

functions. High-throughput sequencing technologies have

improved our ability to study ncRNAs; however, challenges

remain in terms of data analysis and interpretation.
4 Advanced technologies for
epigenetic profiling

This review highlights the cutting-edge techniques and

advances in epigenetic profiling technologies that have emerged

in recent years.
4.1 Single-cell epigenomics

Decoding the biological complexity from individual cells to

integrated tissues requires comprehensive single-cell profiling

techniques. DNA methylation is crucial for regulating gene

expression and cellular functions at the individual cell level.

Scientists can uncover intricate details regarding cellular

heterogeneity, developmental processes, and disease mechanisms

by examining DNA methylation patterns in single cells. Recent

advancements in single-cell sequencing technologies have

revolutionized the study of epigenetic heterogeneity within

tumors. Single-cell epigenomics allows the profiling of DNA

methylation, chromatin accessibility, and histone modifications at

the single-cell level, providing insights into the diverse epigenetic

landscapes of cancer cells and their microenvironment. Epigenetic

sequencing is the use of high-throughput sequencing technology to

quantify and analyze DNA modifications involved in gene

expression and regulation of cell differentiation and development.

The stepwise process, from tissue dissection to single-cell

sequencing, is shown in Figure 8.

Single-Cell ATAC-seq (scATAC-seq): Single-cell ATAC-seq

(scATAC-seq) has significantly advanced our understanding of

chromatin accessibility at the individual cell level, revealing cell type-

specific regulatory landscapes in tumors (79). This technique allows for

the mapping of open chromatin regions in individual cells, revealing

cell type-specific regulatory landscapes in tumors. Recent

improvements and innovations such as scifi-ATAC-seq and txci-

ATAC-seq have notably increased throughput, allowing for the

indexing of up to 200,000 nuclei in a single reaction, which is

approximately a 20-fold increase compared to traditional methods,
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andhas increased throughput and reduced input requirements (80, 81).

These advancements not only enhance the efficiency of data collection

but also reduce the input requirements, making the technique more

accessible for diverse applications. Furthermore, methods such as

SANGO improve cell annotation by integrating genomic sequences

with scATAC-seq data, thereby addressing challenges related to high

dimensionality and sparsity (82). Collectively, these improvements

facilitate a more comprehensive exploration of the regulatory

landscapes in tumors, enabling the identification of both known and

unknown cell types, which is crucial for understanding tumor

heterogeneity and identifying potential therapeutic targets.

Single-cell DNA Methylation Sequencing: Methods such as

scBS-seq and snmC-seq2 provide high-resolution DNA

methylation profiles of individual cells, uncovering epigenetic

heterogeneity within tumors (83). These techniques are pivotal in

elucidating epigenetic heterogeneity within tumors. These methods

also allow for high-resolution profiling of DNA methylation at the

individual cell level, revealing cell-specific epigenetic changes that

are crucial for understanding tumor biology and heterogeneity. For

instance, the scBS-seq method has been shown to effectively identify

rare cell populations and improve differential methylation analysis

despite the challenges posed by sparse data and zeros in sequencing

results (84). Additionally, advancements in single-cell sequencing

technologies have enhanced our understanding of epigenetic

mechanisms that contribute to tumor heterogeneity, capture

diverse omics layers, and provide insights into intratumoral

variations (85). Furthermore, novel techniques such as Cabernet

enable high-throughput methylome profiling, facilitating the

analysis of complex tissues, including tumors, at a single-cell

resolution (86). Collectively, these methodologies underscore the

importance of single-cell sequencing in uncovering the intricate

epigenetic landscape of tumors.

Single-cell multi-omics approaches such as scNMT-seq (single

cell nucleosome, methylation, and transcription sequencing)

simultaneously profile DNA methylation, chromatin accessibility,

and gene expression in single cells, offering a comprehensive view of

the epigenetic state by simultaneously profiling DNA methylation,

chromatin accessibility, and gene expression within individual cells.

This approach has provided unprecedented insights into epigenetic

heterogeneity and its impact on gene regulation in cancer (87).

Moreover, techniques such as ISSAAC-seq, which can be

implemented in both plate-based and droplet formats, allow for

the interrogation of chromatin accessibility and gene expression in

the same nucleus, achieving high data quality with approximately

10,000 ATAC reads and 2,000-5,000 detected genes per cell (88–90).

The integration of multimodal omics data enhances our

understanding of cellular processes, revealing complex

interactions and regulatory networks that are often obscured in

bulk analyses (88). Furthermore, recent advancements in

integrating single-cell multimodal epigenomic data using

convolutional have demonstrated the potential for improved

analysis of diverse epigenomic modalities, facilitating a unified

representation of cellular states (91). Collectively, these techniques

underscore the transformative impact of single-cell multi-omics in

elucidating the intricate molecular landscape of cells.
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Although single-cell epigenomic studies have provided valuable

insights, the field faces challenges and limitations, including

the following:
Fron
• High cost and technical complexity of single-cell sequencing

technologies. approaches can be expensive and require

specialized equipment and expertise. This limits their

widespread adoption and application in clinical settings.

• Data sparsity and noise in single-cell epigenomic data. The

analysis of large-scale single-cell datasets requires advanced

computational tools and bioinformatics expertise. This can

be a bottleneck for researchers, particularly those with

limited computational resources.

• Computational challenges in integrating and analyzing

multimodal single-cell data.

• Biological interpretation of the results of single-cell and

multi-omics studies can be challenging because these data

can reveal complex patterns and relationships that are

difficult to understand.

• Limited throughput compared to bulk sequencing approaches.
4.2 Multi-omics approaches

A holistic approach to cancer research drives transformative

progress by providing a comprehensive understanding of the
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disease. A popular application of next-generation sequencing

(NGS) is epigenomic profiling, which provides a mechanistic

context for genome regulation in cancer. By integrating multi-

omics data, including genomics, transcriptomics, proteomics, and

epigenomics, researchers have uncovered intricate regulatory

networks within cancer cells. This deeper understanding

facilitates the discovery of novel epigenetic biomarkers and

therapeutic targets, ultimately leading to improved cancer

prevention, diagnosis, and treatment (92–94). For instance,

studies have demonstrated that integrative machine learning

techniques can manage the heterogeneity of multi-omics datasets,

leading to significant insights into cancer mechanisms and

discovery of potential biomarkers (93, 95). Additionally, analyses

of datasets such as TCGA-BRCA have uncovered key hub genes and

enriched pathways relevant to breast cancer, further illustrating the

potential of multi-omics for identifying therapeutic targets (96).

Moreover, comprehensive multi-omics frameworks allow the

exploration of shared biological processes in tumorigenesis,

thereby prioritizing drug development (95, 97). Overall, the

integration of diverse omics data is essential for advancing

precision medicine in oncology (98–101) (Figure 9).

Integrated Multi-omics Platforms: Advanced integrated

platforms have been developed to simultaneously analyze multiple

omics data types. For instance, the MOFA+ (Multi-omics Factor

Analysis Plus) framework, an advanced statistical tool designed for

the integration of multimodal single-cell data, allows for the

integration of epigenomic data with other omics layers, revealing
FIGURE 8

Single-cell sequencing. This illustration outlines the process of single-cell epigenomic analysis focusing on liver tissue. The workflow begins with
tissue dissection where a liver sample is obtained. The cellular composition of the dissected tissue was examined, revealing diverse cell types
represented by circles of different colors. Next, single-cell sorting was performed using Fluorescence-Activated Cell Sorting (FACS) to separate
individual cells into distinct tubes. Sorted cells were subjected to single-cell sequencing using specialized equipment. From these sequencing data,
single-cell expression profiles were generated and visualized as colored bars indicating the gene expression levels for each cell. Finally, the
expression data were used for clustering and cell type identification, resulting in a t-SNE plot, where different colors represent distinct cell
populations. This comprehensive workflow demonstrates how individual cells from a tissue sample can be isolated, analyzed at the single-cell level,
and characterized to identify various cell types within the original tissue. Created using Biorender.
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hidden biological factors driving tumor heterogeneity (102–104).

Integrated multi-omics platforms, such as the MOFA framework,

are pivotal for elucidating the complexities of tumor heterogeneity

by combining various omics data types, including epigenomic,

transcriptomic, and proteomic information. For instance, the

Flexynesis tool enhances usability in precision oncology by

integrating diverse molecular datasets through deep learning,

allowing for unsupervised feature selection and model evaluation,
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which can reveal hidden biological factors influencing tumor

behavior (105). Additionally, the integration of multimodal data,

as emphasized in the MINDS framework, is crucial for the

development of personalized treatment strategies in oncology

(106). The application of deep learning in analyzing complex

cancer biology further supports the identification of predictive

biomarkers and therapeutic responses, thereby enhancing clinical

decision-making (107–109). Overall, Flexynesis represents a pivotal
FIGURE 9

Application of multi-omics for cancer research. This figure illustrates the application of multi-omics approaches in cancer research. The flowchart
begins with the generation and storage of omics data in public databases, showing the process from sample collection (blood or biopsied tumor) to
data acquisition and storage. It then branches into five main omics technologies: the Genome, Epigenome, Transcriptome, Proteome, and
Metabolome. Each branch lists specific techniques and data types associated with that field, such as DNA sequencing for genomics, and metabolite
profiling for metabolomics. The next step shows data integration and analysis, leading to outcomes like biomarker discovery, drug target
identification, personalized treatment strategies, and epigenetic mechanism elucidation. The flowchart concludes with the construction of a
secondary database of multi-omics data encompassing databases for genome, epigenome, transcriptome, proteome, and metabolome information.
This comprehensive diagram effectively illustrates the workflow and potential application of integrative omics in cancer research. Created
using Biorender.
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advancement in making deep learning-based multi-omics

integration more accessible, thereby fostering improved outcomes

in precision oncology (105, 109).

Similarly, the Directional Pathway Mapping (DPM) method is

pivotal for integrating omics data as it emphasizes the directional

relationships among genes and pathways, thereby enhancing the

understanding of tumor dynamics. The DPM facilitates the

identification of consistent gene and pathway regulation across

various datasets by prioritizing those that exhibit stable changes

while penalizing inconsistent data, which is crucial for accurate

biological interpretation (110). This method has been effectively

applied to analyze multi-omics datasets, such as transcriptomic,

proteomic, and DNA methylation data, revealing candidate

biomarkers with prognostic significance in cancer (110).

Furthermore, the integration of diverse data types, as

demonstrated in other studies, underscores the importance of

holistic approaches in cancer research, allowing for a

comprehensive understanding of the complex interactions that

drive tumor progression (111, 112). Overall, the DPM represents

a robust framework for elucidating the intricate dynamics of cancer

biology through the directional integration of multi-omics data.

Finally, the Multi-omics Analysis Sandbox Toolkit is a

significant advancement in the field of multi-omics research that

facilitates the exploration, integration, and visualization of diverse

multi-omics data, promoting collaborative research efforts and

aiding in the identification of potential biomarkers. This online

platform allows researchers to connect clinical data with omics

information, enhances collaborative efforts, and enables the

identification of potential biomarkers through versatile analysis

options and visualization outputs (113). Additionally, tools like

playOmics, which offers a robust framework for data management

andbiomarker identification, emphasizing interpretability andmodel-

driven predictions, thus facilitating user engagement and scientific

collaboration, and MultiOmicsAgent (MOAgent), an open-source

tool that significantly enhances biomarker discovery through its

user-friendly interfaces and advanced data analysis capabilities,

particularly utilizing machine learning techniques, further support

biomarker discovery by providing user-friendly interfaces and

advanced data analysis capabilities, including machine learning

techniques for handling complex datasets (114, 115). The

integration of various omics data types, such as genomics,

transcriptomics, and proteomics, enables a more comprehensive

understanding of diseases, such as cancer, which is crucial for

identifying reliable biomarkers and improving diagnostic accuracy.

Overall, these tools collectively promote transparency, reproducibility,

and collaboration in multi-omics research, ultimately aiding the

advancement of precision medicine.

Collectively, these platforms underscore the importance of

integrated analyses in uncovering the intricate biological

mechanisms underlying tumor heterogeneity, ultimately

contributing to improved clinical outcomes.

Single-Cell Multi-omics: Single-cell multi-omics techniques,

such as scNMT-seq, are powerful multi-omics methods that

enable simultaneous profiling of three molecular layers in single

cells: Use GpC methyltransferase to label open chromatin; combine

bisulfite sequencing for DNA methylation analysis; and integrate
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RNA sequencing for transcriptome profiling (87, 92). For instance,

the scCancerExplorer database integrates over 110 datasets from

various cancer types, allowing researchers to explore gene

expression, DNA methylation, and chromatin accessibility,

thereby providing insights into cancer biology and patient

outcomes (116). Furthermore, combining single-cell gene

expression analysis (RNA-Seq) with single-cell open chromatin

mapping (ATAC-Seq) provides genome-wide mapping of both

the transcriptome and epigenetic landscapes at the single-cell

level, allowing the identification of how epigenetic changes affect

gene expression in distinct cell populations. Additionally, single-cell

multi-omics studies have demonstrated the essential roles of

transcription factors in regulating gene expression through

chromatin interactions, highlighting the complexity of gene

regulatory networks in cancer (117). However, challenges remain

in effectively integrating multimodal data, which can hinder the

discovery of regulatory associations (117). Overall, these techniques

provide unprecedented insights into the epigenetic landscape of

cancer and underscore their potential for therapeutic advancement.

Proteogenomics in Cancer Epigenetics: Proteogenomic

approaches combine genomic, transcriptomic, and proteomic data

to provide a more complete picture of how epigenetic changes affect

protein expression and function in cancer. Recent studies have used

this approach to identify novel epigenetically regulated protein

targets in breast cancer (118, 119). For instance, proteomic

approaches have significantly advanced our understanding of

epigenetic regulation in breast cancer by integrating genomic,

transcriptomic, and proteomic data (120). Recent studies have

highlighted the utility of these methods in identifying novel

epigenetically regulated protein targets that may play critical roles

in cancer progression and treatment. Moreover, the development of

accessible proteogenomic informatics resources has facilitated the

identification of variant protein sequences linked to cancer, thereby

enhancing the ability to discover potential therapeutic targets (121).

Additionally, the interdisciplinary nature of proteogenomics allows

for comprehensive tumor analysis, aiding the discovery of new

cancer antigens for immunotherapy. Recent studies have

characterized the immune landscape of various tumors, revealing

distinct immune subtypes and potential therapeutic targets that are

crucial for developing effective immunotherapy strategies (118).

The integration of mass spectrometry with proteogenomics further

enhances the identification of HLA-bound peptides, which are

essential for T-cell recognition in immunotherapy (122).

However, the computational complexity of these approaches

poses challenges for their widespread adoption among non-expert

researchers, which may limit their application in clinical settings

(121). Overall, proteogenomics represents a promising frontier in

cancer research, particularly for elucidating the functional

implications of epigenetic changes in breast cancer.

Metabolo-Epigenomics: Recent advances in integrating

metabolomics and epigenomics have revealed crucial insights into

cancer biology. Studies show that metabolic programming, a

hallmark of cancer, significantly influences epigenetic

modifications like DNA methylation and histone alterations,

which in turn affect tumor growth and progression (123–126).

For example, a recent study identified specific metabolites that drive
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epigenetic reprogramming in glioblastoma, opening new avenues

for therapeutic intervention (127). Other recent studies have

highlighted that metabolic reprogramming provides insights into

the biochemical pathways involved in cancer, facilitating the

identification of novel biomarkers and therapeutic strategies

(128–133). The integration of these ‘omics’ approaches allows for

a comprehensive understanding of the interplay between

metabolism and epigenetics, paving the way for innovative cancer

treatments that target these metabolic and epigenetic changes

(112, 134–136). This multi-omics strategy enhances the

classification of cancer subtypes and elucidates the mechanisms

underlying therapeutic resistance and disease progression, as

highlighted in recent studies of breast cancer and myelodysplastic

syndrome (MDS) (137). Thus, the convergence of metabolomics

and epigenomics offers promising avenues for therapeutic

interventions in cancer.

Temporal Multi-omics: Time-series multi-omics experiments

have been employed to study the dynamic interplay between

epigenetic changes and other molecular events during cancer

progression and treatment response. A landmark study used this

approach to map the temporal order of epigenetic and transcriptomic

changes during the development of drug resistance in lung cancer

(112, 138). This study highlights the dynamic interplay between

various molecular events, revealing that specific mutations and

epigenetic modifications could serve as biomarkers for predicting

treatment outcomes (139). Moreover, the integration of multi-omics

data, including genomics, transcriptomics, and epigenomics, allows

for a comprehensive analysis of tumor heterogeneity and the

identification of context-specific biomarkers, which are crucial for

precision medicine (140). The findings of these studies underscore

the importance of temporal multi-omics in mapping the evolution of

cancer and tailoring therapeutic strategies, ultimately enhancing

patient outcomes (94, 141).

Microbiome-Epigenome Interactions: Emerging research is

exploring the interplay between the microbiome and cancer

epigenome. Multi-omics approaches integrating microbiome data

with host epigenomics have revealed how microbial metabolites

can influence epigenetic states in colorectal cancer (CRC) (142,

143). Microbial metabolites, such as short-chain fatty acids

(SCFAs) like sodium butyrate, have been shown to induce

epigenetic modifications, including histone modifications and DNA

methylation, which can influence gene expression and cellular

behavior in CRC (144). Additionally, studies indicate that the gut

microbiota can program host DNA methylation by affecting methyl

donor metabolism, revealing substantial alterations in the DNA

methylome of CRC tissues compared to adjacent normal tissues

(20). Multi-omics approaches integrating microbiome and

metabolome data have further elucidated distinct host-microbiome

associations, suggesting that microbial-derived metabolites may serve

as potential therapeutic targets. These metabolite-mediated

interactions require deeper mechanistic studies to develop targeted

CRC interventions (145). Overall, these findings underscore the
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potential of microbiome-epigenome interactions in shaping CRC

pathogenesis and therapeutic strategies.

AI and Machine Learning in Multi-omics Integration:

Advanced machine learning algorithms, particularly deep learning

models, have been developed to integrate and interpret complex

multi-omics datasets. These tools have been successful in predicting

cancer outcomes and identifying novel epigenetic biomarkers by

leveraging the complementary information from different omics

layers (146, 147). For instance, a review highlighted the successful

application of machine learning in managing the complexity of

multi-omics data, which has led to the identification of critical

molecular interactions and potential biomarkers for various cancers

(148). In addition, AI-driven frameworks have been proposed to

predict causal relationships in biological systems, further

emphasizing the potential of these technologies in personalized

medicine (149). However, challenges remain, including the need for

improved algorithm interpretability and integration of diverse data

types, which are essential for clinical applications (150, 151).

Overall, the integration of AI and machine learning in multi-

omics paves the way for groundbreaking advancements in

precision medicine.

Spatial Multi-omics: The development of spatial multi-omics

technologies has allowed researchers to study the epigenetic

landscape in the context of tissue architecture. These multi-omics

approaches have provided unprecedented insights into the complex

interplay between epigenetic mechanisms and other molecular

processes in cancer. They not only advance our understanding of

cancer biology, but also pave the way for more precise and

personalized epigenetic therapies.

The limitations and challenges of multi-omics approaches

include the following.
• Complexity in integrating diverse data types with different

scales and distributions. Heterogeneous omics data types

(e.g., genomics, transcriptomics, and epigenomics) have

varying levels of noise, biases, and measurement scales.

The integration of these diverse data streams requires

sophisticated statistical and computational methods.

• High computational requirements and costs for analyzing

large multi-omics datasets.

• Difficulty in interpreting the biological variability and

significance of the multi-omics integration results.

Ensuring consistency across different omics platforms and

experimental conditions is crucial for accurate integration

of data. This often involves normalization and

standardization procedures, which can be complex and

time consuming.

• Obtaining sufficient biological samples with high-quality

data is often challenging, particularly for rare diseases or

specific cell types.

• Limited availability of matched multi-omics datasets for

many cancers.
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4.3 Spatial epigenomics

Spatial epigenomics refers to the study of how epigenetic

modifications are spatially organized within the genome, and how

this organization influences gene expression and cellular function. It

plays a crucial role in understanding cancer biology because

epigenetic alterations can lead to tumor progression and

metastasis. For instance, chromatin remodeling factors such as

lymphoid-specific helicase (LSH) are implicated in regulating

DNA methylation patterns, which are essential for maintaining

cellular identity and function (72). Spatial epigenomic techniques

preserve the spatial context of epigenetic marks within tissue

samples , which i s cruc ia l for unders tanding tumor

microenvironments. Some of the latest methods related to

spatially resolved epigenome mapping include Slide-seq, which

has been adapted for epigenetic profiling.

Slide-seqV2: This method improves upon the original Slide-seq

by enhancing RNA capture efficiency, allowing for near-cellular-

resolution spatial transcriptomics. While primarily focused on

transcriptomics, the advancements in Slide-seqV2 have set the

stage for its adaptation to other omics, including epigenomics.

This method combines advancements in library generation, bead

synthesis, and array indexing, resulting in an RNA capture

efficiency of approximately 50% of that seen in single-cell RNA

sequencing (scRNA-seq), which is approximately ten times greater

than that of the original Slide-seq (152). Slide-seqV2 is particularly

useful for identifying dendritically localized mRNAs in neurons and

characterizing the spatiotemporal development of tissues, such as

the mouse neocortex, by integrating spatial information with single-

cell trajectory analysis tools (152). Its high transcript detection

efficiency and near-cellular resolution make it applicable across

various experimental contexts, potentially paving the way for its

adaptation to other omics fields, including epigenomics.

Spatial Epigenome Sequencing: This study on Spatial

Epigenome Sequencing presents a novel method for spatial

epigenome profiling by integrating in-tissue CUT&Tag chemistry

with microfluidic deterministic barcoding. This approach allows for

spatially resolved genome-wide profiling of histone modifications

within tissue sections, specifically targeting modifications, such as

H3K27me3, H3K4me3, and H3K27ac. This method provides

insights into tissue-specific epigenetic regulation by revealing

spatial chromatin states in mouse embryos or olfactory bulbs. It

offers the ability to extract single-cell epigenomes in situ, thereby

enabling the study of epigenetic regulation, cell function, and fate

decisions in both normal physiology and pathogenesis (153).

Spatially Resolved Epigenomic Profiling: This approach uses in

situ tagmentation and transcription, followed by multiplexed

imaging to profile histone modifications at single-cell resolution.

It provides a high-resolution spatial atlas of epigenetic

modifications in tissues, advancing our understanding of the

spatial regulation of gene expression. The process begins with in

situ tagmentation and transcription, which involves direct tagging

and transcription of DNA within intact tissue samples (154). This

method preserves the spatial context and cellular architecture of the

tissues. Following this, multiplexed imaging techniques are used to
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visualize and quantify histone modifications across individual cells

within a tissue section (155). As a result, this technique provides

detailed information at the single-cell level, enabling the study of

cell-specific epigenetic landscapes and their influence on gene

expression. The generation of a comprehensive map of histone

modifications helps elucidate the spatial organization of epigenetic

marks in complex tissues. By linking spatial epigenetic information

with gene expression data, researchers can gain insights into how

epigenetic modifications influence cellular functions and tissue

development. Furthermore, this method can be applied to

investigate spatial epigenetic changes associated with diseases,

potentially leading to the identification of novel therapeutic

targets. Overall, Spatially Resolved Epigenomic Profiling

represents a significant advancement in the field of epigenomics,

providing a powerful tool for exploring the intricate relationship

between epigenetic modifications and gene expression in a spatially

resolved manner.

Spatial Epigenome–Transcriptome Co-profiling: This cutting-

edge technology enables the simultaneous profiling of chromatin

accessibility and gene expression, histone modifications, and gene

expression at a near-single-cell resolution. This method provides

valuable insights into how epigenetic mechanisms control the

transcriptional phenotypes and cell dynamics within tissues. By

linking the epigenome to the transcriptome pixel-by-pixel,

researchers can uncover new insights into spatial epigenetic

priming, differentiation, and gene regulation within the tissue

architecture. This technology has been applied to various tissues,

including embryonic and juvenile mouse brains, and adult human

brains, revealing both concordant and distinct patterns of tissue

features, suggesting differential roles in defining cell states (153).

Spatial Omics Sequencing: This method refers to the

development and application of spatial omics techniques,

including Slide-seq and Spatial-CUT and Tag, for high-resolution

mapping of chromatin accessibility and histone modifications,

highlighting their significance in understanding tissue

development and disease mechanisms.
4.4 Long-read sequencing for
epigenetic analysis

Long-read sequencing technologies offer new possibilities for

the study of complex epigenetic patterns and structural variations.

Nanopore Sequencing for the Direct Detection of DNA

Modifications: Nanopore sequencing has emerged as a powerful

tool for the direct detection of DNA modifications, circumventing

the need for bisulfite conversion, which is traditionally required for

methylation analysis. This sequencing technique also allows for the

simultaneous analysis of genetic and epigenetic information,

thereby enhancing our understanding of gene regulation

(156, 157). Recent studies have demonstrated that nanopore

sequencing can effectively identify various DNA modifications,

including methylation patterns, associated with developmental

disorders, thereby providing insights into the underlying

pathogenic mechanisms (158). Additionally, advancements in
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nanopore technology have improved its throughput and accuracy,

facilitating the detection of multiple RNA modifications in a single

sample, and underscoring its versatility in epi-transcriptomic

research (159, 160). Overall, nanopore sequencing represents a

significant advancement in genomic technologies, enabling

comprehensive analyses of both genetic and epigenetic landscapes

in a single workflow.

PacBio Sequencing for Long-Range Epigenetic Patterns:

PacBio’s HiFi sequencing has been used to study long-range

epigenetic patterns and their association with chromatin structure

in cancer genomes (161, 162). PacBio’s HiFi sequencing technology

has proven to be instrumental in elucidating long-range epigenetic

patterns and their relationship with chromatin structure,

particularly in cancer genomes. For instance, recent studies have

used PacBio long-read sequencing to generate detailed chromatin

maps, revealing nucleosome footprints and nucleosome-depleted

regions, which are critical for understanding chromatin dynamics at

the single-molecule level (163, 164). This approach allows for the

identification of chromatin heterogeneity, which is essential in

cancer research as it can reflect the variability in chromatin

structure associated with tumorigenesis. Moreover, the ability of

PacBio sequencing to capture long fragments of circulating cell-free

DNA (cfDNA) has been linked to altered fragmentation patterns in

various cancers, suggesting a connection between the chromatin

structure and cfDNA characteristics (165). These findings highlight

the potential of PacBio HiFi sequencing not only to map epigenetic

modifications but also to provide insights into the chromatin

landscape in cancer, thereby enhancing our understanding of its

role in disease progression.

Spatial epigenomics, a relatively new approach, has provided

researchers with another tool to decipher and understand the core

of cancer epigenetics. Spatial epigenomics offers significant

potential for unraveling the spatial organization of epigenetic

modifications and their roles in tissue development, disease, and

other biological processes. However, there are limitations and

challenges to its utility, including the following.
Fron
• Technical challenges in preserving spatial information

while obtaining high-resolution epigenomic data. Current

spatial transcriptomic technologies have limitations in

spatial resolution, making it difficult to precisely localize

epigenetic modifications within individual cells or

subcellular compartments.

• Complex tissues with high cellular density and

heterogeneity can pose challenges for accurate spatial

localization. Additionally, the interpretation of spatial

epigenetic patterns can be influenced by the surrounding

cellular environment and tissue context.

• Limited throughput and high cost of current

spatial technologies.

• Computational challenges in analyzing and visualizing

spatial epigenomic data.

• Difficulty in integrating spatial epigenomics with other

spa t i a l omic s da ta types . In t eg ra t ing spa t i a l

transcriptomics data with epigenetic profiling data

requires sophisticated computational tools and methods
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to handle the high-dimensional and complex nature of

the data.
There are also limitations and challenges associated with Long-

read Sequencing. These include:
• Higher error rates compared to short-read sequencing.

• Higher cost per base compared to short-read sequencing.

• Computational challenges in analyzing long-read data,

especially for complex genomic regions.

• Limited throughput compared to short-read sequencing.
4.5 CRISPR-based epigenome editing
and screening

CRISPR technology has been adapted for precise epigenome

editing, manipulation, and high-throughput screening of epigenetic

regulators, allowing researchers to modify specific epigenetic

markers at targeted genomic loci. This approach provides a tool

for functional studies of epigenetic modifications and holds

potential for therapeutic applications by reactivating silenced

tumor suppressor genes.

CRISPR-Cas9 Epigenome Editing Tools: Engineered CRISPR

systems, such as dCas9 fused with epigenetic modifiers, allow

targeted manipulation of epigenetic marks at specific genomic loci

(166, 167). Engineered CRISPR systems, particularly dCas9 fused

with epigenetic modifiers, have emerged as powerful tools for the

targeted manipulation of epigenetic marks at specific genomic loci.

For instance, the dCas9-PPAD system enables site-specific histone

citrullination, allowing precise regulation of gene expression by

modifying histone marks at targeted loci and demonstrating

sustained and specific epigenetic effects (168). Similarly, the

dCas9-Tet1 system facilitates targeted demethylation of DNA,

providing a method to manipulate DNA methylation at specific

sites, thereby influencing gene expression without altering the DNA

sequence (169) (169). These systems highlight the potential of

CRISPR technology in epigenome editing, as they can fine-tune

gene regulation in various cellular contexts, which is crucial for

understanding gene expression mechanisms and developing

therapeutic strategies (170–172). However, the efficiency of these

tools can be influenced by chromatin state, indicating that their

effectiveness may vary depending on the local epigenetic landscape

(173). Overall, these advancements underscore the versatility and

precision of the CRISPR-based epigenome editing tools.

High-Throughput CRISPR Screens for Epigenetic Regulators:

Pooled CRISPR screens targeting epigenetic modifiers have

identified novel epigenetic vulnerabilities in various cancer types

(174). For instance, a study utilizing CRISPR interference

(CRISPRi) screens on epigenetic-related genes revealed that

inhibiting specific genes significantly affects the differentiation of

embryonic stem cells into primordial germ cell-like cells,

highlighting the role of epigenetic modifiers in developmental

processes (175). Additionally, the integration of CRISPR-ChIP

technology has allowed researchers to explore the dynamics of
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histone modifications, uncovering key regulators involved in

oncogenic processes such as the interaction between DOT1L and

MLL-AF9 (176). Furthermore, extensive CRISPR knockout screens

have identified shared vulnerabilities in chemoresistance across

different cancer types, suggesting that targeting epigenetic

modifiers could be a strategic approach to overcome therapeutic

resistance (176, 177). Collectively, these findings underscore the

potential of CRISPR-based methodologies to elucidate epigenetic

vulnerabilities in cancer.

However, CRISPR-based epigenome editing and screening tools

present several key challenges and limitations.
Fron
• Off-target effects: Although Cas9 has been engineered for

improved specificity, off-target effects can still occur,

leading to unintended epigenetic modifications. CRISPR-

based epigenome editing tools can have accidental effects on

non-target genomic regions, which may complicate the

interpretation of the results and potentially lead to

unwanted cellular changes.

• Efficiency and specificity: The efficiency of these tools can

be influenced by chromatin state, indicating that their

effectiveness may vary depending on the local epigenetic

landscape. This variability makes it challenging to achieve

consistent results across different genomic regions or

cell types.

• Delivery methods: Efficient delivery of CRISPR

components to target cells, particularly in vivo, remains a

significant challenge. This limitation can affect the

applicability of these tools in certain experimental and

therapeutic contexts.

• Temporal control: Achieving precise temporal control over

epigenetic modifications can be difficult, which may limit

the study of dynamic epigenetic processes.

• Multiplexing limitations: CRISPR systems allow for some

degree of multiplexing; simultaneously targeting multiple

epigenetic marks or genomic loci can be challenging and

may lead to decreased efficiency or increased off-

target effects.

• Context-dependent effects: The effect of epigenetic

modifications can be highly context-dependent, making it

difficult to predict the functional outcomes of epigenome

editing across different cell types or physiological conditions.

• Long-term stability: Ensuring the long-term stability of

induced epigenetic changes, particularly in dividing cells,

can be challenging and may require repeated treatments or

additional strategies to maintain the desired epigenetic state.

• Complexity of epigenetic regulation: The intricate interplay

between different epigenetic markers and regulatory

elements makes it challenging to fully understand and

control the consequences of targeted epigenetic

modifications. Furthermore, epigenetic modifications are

often interconnected and influenced by multiple factors.

Manipulating one epigenetic modification can have

unintended consequences on others.
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• Limited understanding of epigenetic writers and erasers:

Although CRISPR-based tools can target specific genomic

loci, our understanding of how to precisely manipulate the

activity of epigenetic writers and erasers is still evolving.

• CRISPR-based epigenome editing tools can have

unintended effects on non-target genomic regions, which

may complicate the interpretation of the results and

potentially lead to unwanted cellular changes. The design

of guide RNAs can influence their specificity and off-target

effects. Careful design and validation of guide RNAs are

crucial for minimizing unintended consequences.

• Screening large libraries of guide RNAs or epigenetic

e ffec tor domains can be t ime-consuming and

resource-intensive.

• Ethical considerations: The potential for heritable

epigenetic changes raises ethical questions, particularly

regarding therapeutic applications.
4.6 Advanced computational methods

The increasing complexity of epigenomic data has driven the

development of sophisticated computational methods. This rapidly

evolving area is crucial for interpreting vast amounts of complex

data generated by modern epigenomic studies. These methods are

essential for extracting meaningful insights from large-scale

multidimensional epigenomic datasets in cancer research.

Machine Learning and AI for Epigenetic Data Analysis: Deep

learning models have been developed to predict epigenetic states

and their impact on gene regulation in cancer (178). Convolutional

neural networks (CNNs) and recurrent neural networks (RNNs)

have been used to predict epigenetic states using DNA sequence

data. For example, DeepCpG uses a CNN-RNN architecture to

predict single-cell DNA methylation states, revealing cell type-

specific epigenetic signatures in cancer (179). Similarly, pre-

trained models on large epigenomic datasets were fine-tuned for

specific cancer types, improving the prediction accuracy for smaller

datasets. This approach has been successful in predicting enhancer-

promoter interactions in rare cancer types (180). Moreover, new

techniques such as attention mechanisms and layer-wise relevance

propagation are being employed to make AI models more

interpretable, helping researchers to understand the features

driving epigenetic predictions in cancer (181).

Integrative Multi-Omics Data Analysis Platforms: New

computational frameworks enable the integration of epigenomic

data with other omics data types, providing a holistic view of cancer

biology (148). Novel graph-based approaches have also been

developed to integrate diverse epigenomic data types (94, 182).

These methods can reveal complex relationships between different

epigenetic markers and their impact on gene regulation in cancer

(182). Furthermore, multidimensional data integration techniques,

such as tensor factorization, are being used to analyze complex

epigenomic datasets across multiple cancer types and identify pan-
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cancer epigenetic signatures (183). Recent advancements in

integrative multi-omics data analysis platforms have significantly

enhanced our understanding of cancer biology by enabling the

integration of diverse omics data types, including epigenomic,

genomic, and transcriptomic information. Novel computational

frameworks, such as the Multi-omics Imaging Integration Toolset

(MIIT), facilitate the spatial integration of these datasets, allowing

for a more comprehensive analysis of tumor heterogeneity and gene

regulation mechanisms in cancer (184). However, challenges

remain, including the need for standardized analytical pipelines

and interdisciplinary collaboration to fully leverage these innovative

methods in clinical settings (185). Overall, these integrative

approaches are promising for refining cancer diagnostic and

therapeutic strategies.

Advanced Statistical Methods: Sophisticated Bayesian models were

employed to infer causal relationships between epigenetic

modifications and gene expression in cancer, accounting for the

inherent uncertainty in biological data. Additionally, time-series

analysis and new statistical methods for analyzing longitudinal

epigenomic data have provided insights into epigenetic dynamics

during cancer progression and treatment response. For instance,

Bayesian regression frameworks have been developed to analyze the

impact of DNA methylation on gene expression, revealing significant

epigenetic subnetworks that correlate with cancer progression and

patient survival outcomes (186). Additionally, innovative approaches

such as trans-dimensional Markov chain Monte Carlo methods

enhance the identification of differentially methylated cytosines,

thereby addressing the challenges inherent in high-throughput

sequencing data (187). Time-series analysis and longitudinal data

methods further contribute to the understanding of epigenetic

dynamics during cancer treatment, allowing researchers to track

changes over time (188). These sophisticated statistical techniques

not only improve the accuracy of cancer research, but also facilitate

the integration of multi-omics data, paving the way for personalized

medicine (189). Overall, the application of these advanced methods is

crucial for advancing our understanding of cancer biology and for

improving therapeutic strategies.

Network-Based Approaches: Advanced algorithms are being

developed to construct and analyze epigenetic regulatory networks

in cancer, thereby revealing key hub regulators and potential

therapeutic targets (190). Computational approaches that integrate

molecular-level epigenetic data with tissue-level information are

emerging, providing a more comprehensive understanding of how

epigenetic changes influence tumor behavior (191). For instance,

regarding Gene Regulatory Network Inference, researchers have

developed algorithms like SPIDER the Signaling Protein Interaction

Dynamic Extractor and Regulator (SPIDER) to construct gene

regulatory networks that incorporate epigenetic data (192). SPIDER

uses DNase-seq data to identify open chromatin regions and

integrates this information with transcription factor-binding motifs

to infer regulatory relationships. This approach has been successful in

identifying cell-line-specific regulatory interactions and novel

transcription factor-binding events that lack sequence motifs.

Another network-based approach involves multiscale network
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Modeling. A study performed a systematic analysis of co-

expression networks across 32 cancer types (193). They identified

4,749 prognostic modules regulated by interactions between gene

expression and DNA methylation. The study revealed that co-

regulated genes within network modules were enriched in specific

chromosome cytobands and preferentially localized in open

chromatin regions. This multiscale approach provides insights into

epigenetic regulation of cancer prognosis across different cancer

types. There is also a network-based approach to epigenetic

biomarker identification. Researchers have developed network-

based methods to identify epigenetic biomarkers associated with

cancer progression (194). For example, a study on esophageal

squamous cell carcinoma (ESCC) used a disease-specific gene

regulatory network to prioritize CpG sites where methylation

changes were most associated with disease progression and patient

survival. This approach led to the identification of eight CpG sites

located in the promoters of genes such as JAK3, PAX6, E2F5, and

CD81 that were significantly correlated with patient survival. In

addition, emerging computational methods are attempting to

bridge the gap between molecular-level epigenetic data and tissue-

level information. For example, researchers are developing

approaches to integrate single-cell epigenomic data with spatial

transcriptomics, allowing for a more detailed understanding of how

epigenetic changes influence tumor heterogeneity and behavior

within the tissue context (85).

Cloud-based Platforms and Big Data Analytics: Scalable

computing solutions involving cloud-based platforms such as

Google Cloud and Amazon Web Services are leveraged to address

the massive computational requirements of epigenomic data

analysis in cancer research. The integration of distributed

computing frameworks like Apache Spark is crucial for efficiently

processing large-scale epigenomic and genomic datasets across

computer clusters, enhancing both accuracy and computational

efficiency in applications such as cancer classification (195, 196).

For instance, the ISB Cancer Genomics Cloud (ISB-CGC) facilitates

access to large datasets, such as The Cancer Genome Atlas, allowing

researchers to employ various programming languages and

workflows to efficiently analyze terabytes of genomic data (197).

The Seven Bridges Cancer Genomics Cloud further exemplifies this

trend by providing secure, on-demand access to data and over 200

bioinformatics tools, enabling scalable and reproducible analyses

across global research communities (198). Collectively, these

platforms represent a transformative shift in handling complex

cancer genomic data, underscoring the importance of cloud

computing in modern biomedical research.

Artificial Intelligence for Epigenetic Drug Discovery: Artificial

Intelligence (AI) significantly enhances epigenetic drug discovery

through advanced target identification and compound screening

techniques. Machine learning models are utilized to predict

potential epigenetic drug targets by integrating epigenomic data

with drug sensitivity information, which allows for more precise

identification of therapeutic candidates (199). Additionally, in silico

screening methods employing deep learning algorithms are being

developed to conduct virtual screening of compound libraries,
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effectively identifying potential epigenetic modulators (151, 200–

202). These AI-driven approaches not only expedite the drug

discovery process but also improve the accuracy of predictions of

drug interactions and efficacy (203, 204). However, challenges such

as data quality and ethical considerations remain, necessitating

robust validation frameworks and interdisciplinary collaboration

to fully harness AI’s potential in transforming pharmaceutical

research (203, 205, 206). Overall, the integration of AI into

epigenetic drug discovery represents a promising frontier in the

development of novel therapeutics. AI-driven target identification:

Machine learning models are employed to predict potential

epigenetic drug targets by integrating epigenomic data with drug

sensitivity information (207). In silico screening utilizing deep

learning models trained on epigenomic data has been used for

virtual screening of compound libraries to identify potential

epigenetic modulators (208).

Single-cell Computational Methods: Advanced algorithms for

inferring cellular trajectories from single-cell epigenomic data reveal

the dynamics of epigenetic changes during cancer evolution (209).

These algorithms and new computational methods for deconvoluting

bulk epigenomic data using single-cell reference datasets have

improved our understanding of tumor heterogeneity (210).

These advanced computational methods not only enable

researchers to extract more meaningful insights from complex

epigenomic datasets, but also drive discoveries in cancer

epigenetics. These are essential for translating the wealth of

epigenomic data into clinically actionable knowledge. For example,

chromatin velocity is a method developed to infer dynamic regulatory

landscapes and cellular trajectories from single-cell ATAC-seq data. It

models the rate of change in chromatin accessibility to predict future

cell states (211). Other currently available monoomic methods for

epigenetic single-cell sequencing and spatial epigenomics include

ScRRBS for chronic lymphocytic leukemia (212), ScBS-seq for

circulating tumor cells (213), and acChip-seq for breast cancer

(214). For a complete coverage of available monoomic

methodologies, see an excellent review by Casado-Pelaez et al. (215).

Despite these advances, challenges remain regarding the

selectivity and efficacy of epigenetic therapies, especially for solid

tumors. Combination therapies that integrate epigenetic drugs with

immunotherapy or chemotherapy have been investigated to improve

outcomes. Continued research is needed to better understand the

specific epigenetic alterations across different cancers and to develop

more effective and targeted therapies (19, 216).

Although advanced computational methods have greatly

contributed to our understanding of the intricate network of

epigenetic changes in cancer development, these analytical tools

have limitations and challenges.
Fron
1. Need for large, high-quality datasets for training machine

learning models.

2. The complexity of advanced AI models in biology,

particularly deep learning approaches, often results in

“black box” systems that are difficult to interpret,

challenging researchers’ ability to extract meaningful
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biological insights and understand the underlying

mechanisms of predictions.

3. Computational resource requirements for analyzing large-

scale epigenomic datasets.

4. Challenges in integrating heterogeneous data types and

handling missing data as well as epigenetic data can be

contaminated with noise and artifacts, which can affect the

accuracy of computational analyses.

5. Batch Effects: Differences in experimental conditions or

sequencing platforms can introduce batch effects that can

confound data analysis.

6. Benchmarking computational methods against real-world

datasets is essential for assessing their performance and

identifying areas of improvement. Another challenge is the

lack of ground truth data for benchmarking.
5 Conclusions

Cancer epigenetics has emerged as a crucial field for

understanding tumor development, progression, and potential

therapeutic interventions. The reversible nature of epigenetic

modifications makes them a promising target for cancer

treatment. The key conclusions and future directions are as follows:
1. Epigenetic alterations, including DNAmethylation, histone

modifications, chromatin remodeling and noncoding

RNAs, play fundamental roles in cancer initiation

and progression.

2. Advanced technologies such as single-cell epigenomics and

CRISPR-based epigenetic editing have revolutionized our

understanding of tumor epigenetic landscapes and offer

new avenues for research and therapy.

3. Epigenetic drugs (epi-drugs) have shown potential in

clinical trials, particularly for hematological cancers;

however, their efficacy in solid tumors remains a challenge.

4. Combination therapies involving epigenetic drugs with

other treatment modalities (e.g., immunotherapy and

chemotherapy) show promise in overcoming drug

resistance and enhancing antitumor effects.

5. The development of more specific and potent epigenetic

inhibitors with fewer side effects is a key area for

future research.

6. Personalized epigenetic therapies based on individual

patient epigenomic profiles represent a promising

direction for precision medicine in cancer treatment.

7. Further research is needed to understand the complex

interplay between genetic and epigenetic alterations in

cancer, as well as the role of the tumor microenvironment

in epigenetic regulation.

8. Ethical considerations surrounding epigenetic therapies,

particularly regarding their potential heritable effects,

need to be carefully addressed.
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As the field of cancer epigenetics continues to evolve,

interdisciplinary collaboration and technological innovations will

be crucial for translating epigenetic insights into effective clinical

strategies for cancer diagnosis, prognosis, and treatment.
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