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Background: Large language models (LLMs) offer opportunities to enhance

radiological applications, but their performance in handling complex tasks

remains insufficiently investigated

Purpose: To evaluate the performance of LLMs integrated with Contrast-enhanced

Ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS) in diagnosing

small (≤20mm) hepatocellular carcinoma (sHCC) in high-risk patients.

Materials and Methods: From November 2014 to December 2023, high-risk

HCC patients with untreated small (≤20mm) focal liver lesions (sFLLs), were

included in this retrospective study. ChatGPT-4.0, ChatGPT-4o, ChatGPT-4o

mini, and Google Gemini were integrated with imaging features from structured

CEUS LI-RADS reports to assess their diagnostic performance for sHCC. The

diagnostic efficacy of LLMs for small HCC were compared using McNemar test.

Results: The final population consisted of 403 high-risk patients (52 years ± 11, 323

men). ChatGPT-4.0 and ChatGPT-4o demonstrated substantial to almost perfect

intra-agreement for CEUS LI-RADS categorization (k values: 0.76-1.0 and 0.7-0.94,

respectively), outperforming ChatGPT-4o mini (k values: 0.51-0.72) and Google

Gemini (k values: -0.04-0.47). ChatGPT-4.0 had higher sensitivity in detecting sHCC

than ChatGPT-4o (83%-89% vs. 70%-78%, p < 0.02) with comparable specificity

(76%-90% vs. 83%-86%, p > 0.05). Compared to human readers, ChatGPT-4.0

showed superior sensitivity (83%-89% vs. 63%-78%, p < 0.004) and comparable

specificity (76%-90% vs. 90%-95%, p > 0.05) in diagnosing sHCC.

Conclusion: LLM integrated with CEUS LI-RADS offers potential tool in diagnosing

sHCC for high-risk patients. ChatGPT-4.0 demonstrated satisfactory consistency

in CEUS LI-RADS categorization, offering higher sensitivity in diagnosing sHCC

while maintaining comparable specificity to that of human readers.
KEYWORDS

hepatocellular carcinoma (HCC), large language model (LLM), diagnosis, CEUS
(Contrast-enhanced ultrasound), ultrasound
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Introduction

Liver cancer is the sixth most common cancer and the third

leading cause of cancer-related deaths worldwide, with over 830,000

deaths in 2020 and rising mortality rates (1). Among all the

pathological subtypes of liver cancer, hepatocellular carcinoma

(HCC) accounts for the majority of cases. However, due to the

complex dual blood supply to liver and the multistage process of

HCC, radiological diagnosis of HCC remains challenging (2). Notably,

the early diagnosis of HCC, especially for tumors measuring 2 cm or

smaller in diameter (small HCC), due to it offers more treatment

options, reduced risk of complications and better prognosis (3).

The Contrast-enhanced Ultrasound Liver Imaging Reporting and

Data System (CEUS LI-RADS) released by American College of

Radiology (ACR)aims to improve the accuracy and consistency of

HCC diagnosis in patients at high-risk (4, 5). The implementation of

structured reporting in radiology plays a pivotal role in improving

communication, fostering collaboration among medical practitioners,

and standardizing reporting language across institutions (6).

Moreover, the characterization of focal liver lesions (FLLs) using

CEUS LI-RADS, based on imaging features derived from B-mode

and multiphasic CEUS enhancement patterns, establishes a robust

foundation for the application of artificial intelligence (AI) in imaging

diagnosis. Large Language Models (LLM) represent a specialized AI

application that focuses on comprehending and generating text

resembling human-like language. Recently conducted research on

the interaction strategy between humans and LLM has shown

promising results in terms of LLM-agreement and diagnostic

accuracy for predicting benign and malignant thyroid nodules using

the ACR Thyroid Imaging Reporting and Data System (TI-RADS) (7).

Amid significant advancements in LLMs, AI chatbots like

ChatGPT have gained increasing attention across various fields

(8). The Chatbot (primarily ChatGPT 4.0) has showed potential in

transforming unstructured free-text reports into organized formats

(6, 9). However, the impressive capability of LLMs in rapid and

standardized language processing notwithstanding, concerns have

increasingly arisen regarding the assessment of their agreement and

accuracy in generating prompt output. The subjective question-

answering format may inadvertently be influenced by existing

biases and disparities, thereby overlooking crucial aspects of

transparency and accuracy when investigating the applications of

LLMs (7, 10). Notably, LLMs such as ChatGPT 4.0 do not support

concurrent recognition or processing of multiple images. Given that

this approach is more practical for handling natural language, the

medical application of LLMs, particularly in processing radiology

reports, represents a critical and cutting-edge area of research at the

forefront of LLM advancements (6–9, 11). Despite the promising

efficacy of LLMs demonstrated by a rapidly emerging plethora of

studies, their potential in aiding real-world clinical applications

remains controversial.

To our knowledge, the performance of LLMs in classifying FLLs

based on CEUS LI-RADS reports, particularly regarding their

output LLMs-agreement and accuracy, has not been previously
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reported. Thus, the purpose of our study was to evaluate the intra-

and inter-agreement of four publicly available LLMs (Google

Gemini, ChatGPT-4.0, ChatGPT-4o, and ChatGPT-4o mini) in

CEUS LI-RADS categorization using structured CEUS reports from

patients with small FLLs. Moreover, the diagnostic accuracy of

LLMs in diagnosing small HCC was also investigated, using a

composite reference standard as previously described (12).
Materials and methods

This retrospective study was approved by the ethics committee

of West China Hospital of Sichuan University, and written

informed consent was waived. To consecutively collect

participants, 172 samples in this study were drawn from our

previous investigation (12). Ultrasound images of these patients

were used to develop structured reports for LLMs, while in the

earlier research, they were used for evaluating the diagnostic

accuracy of CEUS LI-RADS (version 2017).
Study design

This study investigated four publicly available LLM chatbots,

including three versions of ChatGPT (ChatGPT-4.0, ChatGPT-4o,

ChatGPT-4o mini) and Google Gemini. Ultrasound images of small

focal liver lesions (sFLLs) were assessed by six certified ultrasound

radiologists with 3 to 20 years of liver CEUS experience using CEUS

LI-RADS (Version 2017). Structured reports were then rendered

and entered into LLMs for prompt CEUS LI-RADS categorization.

Three output rounds (with an extra round if completely

inconsistent) were performed to evaluate the intra-agreement of

LLM in sFLLs categorization, with a majority vote deciding the final

CEUS LI-RADS category. To avoid space-time impact, outputs were

spaced three days apart. The diagnostic efficacy of LLMs for sHCC

was compared by analyzing reports from readers with varying

expertise. Furthermore, the best-performing LLM was compared

to human readers and a convolutional neural network (CNN)

model in diagnosing sHCC (Figure 1).
Patient selection and reference standard

Consecutive patients underwent hepatic CEUS examinations

were retrospectively collected from November 2014 to December

2023. The inclusion criteria were: (a) aged 18 or older; (b) HCC risk

factors involving cirrhosis or chronic hepatitis B (HBV); (c)

untreated hepatic nodules ≤20 mm on imaging (ultrasound, CT

or MRI); (d) less than two sFLLs, with the larger tumor selected for

analysis to minimize the impact of multiple injections on contrast

enhancement. Exclusion criteria included: (a) indeterminate

pathology, contrast-enhanced CT/MRI results, or incomplete

follow-up; (b) poor-quality ultrasound images. HCC risk factors
frontiersin.org
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were defined as any cause of cirrhosis and/or HBV, per the

American Association for the Study of Liver Diseases guidelines

(13). Patients with a history of HCC treatment were excluded to

minimize the influence from post-treatment changes.

This study used a composite reference standard as previously

described in our earlier investigation (12). In brief, all lesions were

diagnosed by histopathology, while contrast-enhanced CT/MRI were

used for LR-1 or LR-5 nodules. Diagnosis for LR-2, LR-3, and LR-4

nodules involved imaging follow-up (≥12 months), pathology, or

multidisciplinary recommendations, while LR-M lesions were

diagnosed by histopathology. The processing of the CEUS

examination is detailed in Supplementary Material Appendix S1.
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CEUS LI-RADS category assignment
by LLMs

After independent review of the images by radiologists, a separate

radiologist translated the structured reports, including patients’

clinical and ultrasound characteristics, from Chinese to English.

Then, the reports were input into ChatGPT-4o mini (14),

ChatGPT-4o (15), ChatGPT-4.0 (16) and Google Gemini (17) for

prompt CEUS LI-RADS classification. LLMs were integrated with

CEUS LI-RADS reports to evaluate their agreement and diagnostic

performance in diagnosing sHCC, since LLMs currently cannot

interpret multiple images directly. The CEUS LI-RADS
FIGURE 1

Graphical representation of study design. Overall, LLMs were integrated with structured reports based on the CEUS LI-RADS for diagnosing sHCC (the top
box). First, the LLMs' agreement was evaluated by comparing intra-LLM consistency, with the most frequently voted category used for further inter-LLMs
agreement assessment (the middle box). Second, the diagnostic performance of the LLMs was assessed in comparison to human readers utilizing CEUS LI-
RADS (Ver. 2017) for diagnosing sHCC, as well as compared to a CNN model (the bottom box). LLMs, large language models; CEUS LI-RADS, Contrast-
enhanced Ultrasound Liver Imaging Reporting and Data System; sHCC, small hepatocellular carcinoma; CNN, convolutional neural network.
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classification process for human readers and LLMs is detailed in

Supplementary Material Appendix S2 and Supplementary Figure S1.
End-to-end CNN model of small FLLs

End-to-end CNNmodels involving baseline and multiphase CEUS

images were developed for sHCC diagnosis. Patients were randomly

divided into training (59.8%, 241 of 403) and validation sets (40.2%,

162 of 403). The diagnostic efficacy of the CNN for sHCC was

evaluated using the validation cohort. Algorithm and network

structures were established as described in previous investigations (7,

18). Due to the characterization of FLLs according to CEUS LI-RADS,

which incorporates imaging features from both baseline and

multiphasic CEUS images, results were derived by integrating

outputs from each modality using a weighted averaging method. The

CNN was developed using ultrasound images of sFLLs, with tumor

segmentation performed by a radiologist with three years of liver CEUS

experience, utilizing MITK Workbench (https://docs.mitk.org/nightly/

index.html). The model was built and executed in Python (version

3.10.3; Python Software Foundation, Wilmington, Delaware, USA).

Detailed information regarding network structures and parameters

is provided in Supplementary Material Appendix S3,

Supplementary Figure S2 and Supplementary Table S1.
Statistical analysis

Fleiss’ Kappa and Cohen’s Kappa tests were used to assess intra-

and inter-LLM agreements, respectively. A best-of-three strategy

was used to identify the preferred LLM category for sFLLs.

Agreement strength was classified using the Landis and Koch

scale: 0-0.20 as poor; 0.21-0.40 as fair; 0.41-0.60 as moderate;

0.61-0.80 as substantial; and 0.81-1.00 as almost perfect.

LR-5 category is designated for predicting HCC according to

CEUS LI-RADS, whereas LR-4, LR-5, and LR-M are categorized as

indicative of malignancy (19). The diagnostic performance of LLMs,

human readers, and CNN strategy for sHCC was assessed by

calculating sensitivity, specificity, accuracy and area under the

receiver operating characteristic curve (AUC) based on standard

procedures (12). Sensitivity, specificity, and accuracy were compared

among LLMs, between LLMs and human readers, and between LLMs

and CNNs using the McNemar test. AUCs for sHCC were compared

among LLMs, human readers, and CNN using DeLong test.

Statistical analyses were conducted using R packages (R 4.1.2

[Puppy Cup], The R Foundation, Vienna, Austria) and MedCalc

software (MedCalc22.030, Ostend, Belgium). A P-value less than.05

indicated statistical significance.
Results

Patients and liver nodule characteristics

A total of 1612 representative ultrasound images, including B-

mode, arterial phase, portal phase, and late phase images (one
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representative image per phase), were obtained from 403 patients at

risks of HCC with sFLLs (Figure 2). Of the 403 patients (mean age,

52.3 years ± 10.8; age range, 21–81 years), 323 (80.1%) were men.

The mean size of sFLLs was 16.1 mm ± 3.4. Clinical features of

patients involving age, gender, liver disease etiology, nodule size,

and pathological results are exhibited in Table 1. Based on the

composite reference standard, 263 liver nodules were proved by

pathology, 65 by follow-up, and 75 by contrast enhanced CT or

MRI (including 42 HCC and 33 hemangioma). The median follow-

up period was 15.2 months (range 12–41 months). The constitution

of 403 sFLLs and the distribution of CEUS LI-RADS categories, as

determined by human readers and LMMs, are depicted in Figure 3.
Intra- and inter-LLM Agreement on CEUS
LI-RADS categorization for small FLLs

The distributions of intra-LLM agreement and inter-LLM

agreement are presented in Table 2. ChatGPT-4.0 and ChatGPT-

4o demonstrated substantial to almost perfect intra-agreement in

the CEUS LI-RADS classification assignment among radiologists

with varying levels of liver CEUS experience (k value = 0.76-1[95%

CI: 0.69, 1], and 0.7-0.94 [95% CI: 0.55, 0.99] for ChatGPT-4.0, and

ChatGPT 4o, respectively). There was moderate to substantial intra-

agreement for ChatGPT-4o mini, with k values ranging from 0.51

to 0.72 (95% CI: 0.33 to 0.79). However, apart from moderate

agreement for a junior radiologist, Google Gemini demonstrated

poor to fair intra-LLM agreement for the other radiologists (k value

= -0.04 to 0.47 [95% CI: -0.32, 0.6]).

As for the inter-LLM agreement evaluation, GPT-4.0 and GPT-

4o achieved substantial to almost perfect agreement for both the

junior and senior radiologists (k value = 0.7-0.86 [95% CI: 0.58,

0.97]), and substantial agreement for the expert radiologists (k value
= 0.63-0.69 [95% CI: 0.4, 0.79]), respectively. ChatGPT-4o mini

showed fair to moderate agreement with ChatGPT-4.0 (k value =

0.27-0.55 [95% CI: 0.05, 0.69]) involving all readers, whereas poor

to substantial agreement with ChatGPT-4o (k value = 0.16-0.66

[95% CI: -0.15, 0.92]). There was poor to fair agreement between

Google Gemini and ChatGPT, including version 4o mini, 4.0 and

4o, with k values ranging from -0.3 to 0.55 (95% CI: -0.47 to 0.67),

regardless of the radiologist’s expertise.
FIGURE 2

Study population flowchart. US, ultrasound; HCC, hepatocellular
carcinoma; FLL, focal liver lesion.
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Diagnostic efficacy of ChatGPT-4.0 and
ChatGPT-4o in predicting small HCC

The diagnostic performance of LLMs in diagnosing sHCC is

shown in Table 3 and Supplementary Table S2. Since ChatGPT-4.0

showed comparable intra-LLM and superior inter-LLM agreement

to other LLMs, its diagnostic performance was evaluated in greater

detail. In a human-LLM interaction context, ChatGPT-4.0

demonstrated superior sensitivity compared to ChatGPT-4o

across all readers levels, achieving 83% [95% CI: 73%, 90%]

versus 70% [95% CI: 59%, 79%] for junior radiologists (p =

0.007), 86% [95% CI: 78%, 92%] versus 77% [95% CI: 68%, 84%]

for senior radiologists (p = 0.02), and 90% [95% CI: 81%, 95%]

versus 78% [95% CI: 67%, 87%] for expert radiologists (p = 0.004),

respectively. However, ChatGPT-4.0 and ChatGPT-4o exhibited

comparable specificity in differentiating sHCC from non-HCC.

Regarding diagnostic accuracy, ChatGPT-4.0 demonstrated

superior performance compared to ChatGPT 4o for senior (87%

[95% CI: 81%, 92%] vs 79% [95% CI: 72%, 85%], p = 0.009) and

expert radiologists (90% [95% CI: 83%, 94%] vs 80% [95% CI: 72%,

87%], p = 0.001). However, they showed comparable performance

for junior radiologists (81% [95% CI: 73%, 88%] vs 74% [95% CI:

65%, 82%], p = 0.12). Similarly, the AUC for ChatGPT-4.0 was

higher for senior and expert radiologists (p = 0.01 and p = .001,

respectively), but comparable for junior radiologists, when

compared with ChatGPT-4o.
Performance of human-LLM interaction,
CEUS LI-RADS and CNN strategy in
diagnosing small HCC

Table 4 shows the diagnostic effectiveness for sHCC by

ChatGPT-4.0, human readers using CEUS LI-RADS, and a CNN

strategy. ChatGPT-4.0 achieved significantly higher sensitivities of

83% (95% CI: 73%, 90%), 86% (95% CI: 78%, 92%), and 89% (95%

CI: 81%, 95%) for junior, senior, and expert radiologists,

respectively, compared to human readers with corresponding liver

CEUS expertise, who demonstrated sensitivities of 63% (95% CI:

52%, 73%) (p <.001), 69% (95% CI: 60%, 78%) (p < 0.001), and 78%

(95% CI: 67%, 86%) (p = 0.004). Besides, ChatGPT-4.0 had similar

specificity (76%-90% [95% CI: 56%, 97%] vs 90%-95% [95% CI:

73%, 99%]) to that of human readers, with all P-values above.05. As

for accuracy, ChatGPT-4.0 achieved 81% (95% CI: 73%, 88%) for

the junior radiologist and 87% (95% CI: 81%, 91%) for the senior

radiologist, outperforming human readers who showed accuracies

of 70% (95% CI: 61%, 78%) for the junior radiologist (p = 0.007) and

79% (95% CI: 72%, 85%) for the senior radiologist (p = 0.004),

respectively. Notably, ChatGPT-4.0 showed comparable accuracy to

that of the expert radiologist (90% [95% CI: 83%, 94%] vs 84% [95%

CI: 76%, 90%], p =0.07) and AUC (0.89 [95% CI: 0.83, 0.95] vs 0.86

[95% CI: 0.79, 0.92], p = 0.20). Examples of LLMs for the CEUS LI-

RADS category for sHCC are presented in Figures 4 and 5.
TABLE 1 Clinicopathological characteristics of patients.

Characteristic Value

Sex

Men 323 (80.1)

Woman 80 (19.9)

Mean age (y)* 52.3 ± 10.8 (21–81)

Mean nodule size (mm)* 16.2 ± 3.4 (0.7–2)

Liver disease etiologic cause

HBV 374 (92.8)

HCV 11 (2.7)

HBV and HCV 6 (1.5)

PBC 1 (0.2)

Alcohol 4 (1)

Unknown etiology 7 (1.7)

Cirrhosis 162 (40.2)

Pathologic Analysis

HCC 223 (55.3)

Well differentiated 5 (1.2)

Moderately differentiated 161 (40)

Poorly differentiated 57 (14.1)

DN/RN 21 (5.2)

FNH 2 (0.5)

Hemangioma 3 (0.7)

ICC 8 (2)

cHCC-CCA 2 (0.5)

Metastasis 1 (0.2)

Reactive lymphoid hyperplasia 1 (0.2)

Biliary adenoma 1 (0.2)

NEN 1 (0.2)

No pathologic analysis

Contrast-enhanced CT or MRI

HCC 42 (10.4)

Hemangioma 33 (8.2)

Follow-up

< 50% size increase in 12 months 62 (15.4)

≥50% size increase in 12 months 3 (0.7)
Unless otherwise indicated, data are liver nodules or patients (n=403) and data in parentheses
are percentages. Mean data are ± standard deviation. HBV, hepatitis B virus; HCV, hepatitis C
virus; PBC, primary biliary cirrhosis; HCC, hepatocellular carcinoma; DN, dysplastic nodule;
RN, regenerative nodule; FNH, focal nodular hyperplasia; ICC, intrahepatic
cholangiocarcinoma; cHCC-CCA, combined hepatocellular-cholangiocarcinoma; NEN,
neuroendocrine neoplasm.
*Data in parentheses are range.
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The CNN model showed higher sensitivity at 96% (95% CI:

91%, 97%) compared to 86% (95% CI: 77%, 91%) for ChatGPT-4.0

with CEUS LI-RADS (p = 0.004), but lower specificity at 29% [95%

CI: 82%, 87%] versus 87% [95% CI: 74%, 94%] (p = < 0.001).

Moreover, ChatGPT-4.0 exhibited superior accuracy and AUC

compared to the CNN model, with an accuracy of 86% (95% CI:

79%, 91%) versus 75% (95% CI: 67%, 81%, p = 0.01), and an AUC of

0.86 (95% CI: 0.80, 0.91) versus 0.63 (95% CI: 0.55, 0.70, p < 0.001).

Additionally, the diagnostic performance of ChatGPT-4.0,

human readers using CEUS LI-RADS, and a CNN model for

malignant sFLLs was investigated, as shown in Supplementary
Frontiers in Oncology 06
Table S3. Supplementary Table S4 presents the performance of

ChatGPT-4o, ChatGPT-4o mini and Genimi in differentiating

malignant from benign sFLLs.
Discussion

In this study, we investigated the intra- and inter-agreement, as

well as the diagnostic accuracy of four popular large language

models (LLMs) in diagnosing small hepatocellular carcinoma

(sHCC) in high-risk patients. ChatGPT-4.0 and ChatGPT-4o
FIGURE 3

Pathological composition and CEUS LI-RADS categories of liver nodules classified by human reader and LLMs. (A) Pie chart depicts the pathological
composition of 403 small FLLs according to the reference standard. (B) Horizontal stacked bar chart illustrates the distribution of CEUS LI-RADS
categories for small FLLs as assigned by both LLMs and human readers using CEUS LI-RADS category. CEUS LI-RADS, Contrast-enhanced
Ultrasound Liver Imaging Reporting and Data System; FLL, focal liver lesions; LLMs, large language models; HCC, hepatocellular carcinoma; FNH,
focal nodular hyperplasia; ICC, intrahepatic cholangiocarcinoma; DN, dysplastic Nodule; RN, regenerative Nodule; cHCC-ICC, combined
hepatocellular-cholangiocarcinoma.
TABLE 2 Intra-LLMs and Inter-LLMs agreements for CEUS LI-RADS category assignments.

Agreement evaluation

Human-LLM Interaction

Junior Radiologist Senior Radiologist Expert Radiologist

1 2 1 2 1 2

Intra-LLM agreement*

Gemini -0.04 (-0.32-0.5) 0.47 (0.36-0.6) 0.3 (0.15-0.46) -0.03 (-0.1-0.1) 0.26 (0.12-0.41) 0.07 (-0.1-0.28)

GPT-4o mini 0.71 (0.35, 0.93) 0.72 (0.65, 0.79) 0.68 (0.56, 0.77) 0.59 (0.49, 0.69) 0.62 (0.5, 0.72) 0.51 (0.33, 0.67)

GPT-4.0 1 (1-1) 0.84 (0.8-0.88) 0.88 (0.83-0.9) 0.76 (0.69-0.83) 0.9 (0.86-0.93) 0.95 (0.92-0.97)

GPT-4o 0.94 (0.82-0.99) 0.78 (0.7-0.84) 0.73 (0.63-0.8) 0.8 (0.74-0.85) 0.85 (0.79-0.9) 0.7 (0.55-0.81)

Inter-LLM agreement†

Gemini vs GPT-4o mini -0.14 (-0.7, 0.6) 0.55 (0.41, 0.67) 0.13 (-0.1, 0.36) -0.3 (-0.47, -0.1) -0.05 (-0.3, 0.2) -0.14 (-0.4, 0.2)

Gemini vs GPT-4.0 0.01 (-0.63-0.67) 0.27 (0.09-0.4) 0.06 (-0.18-0.3) -0.2 (-0.4-0.02) 0.14 (-0.1-0.35) 0.15 (-0.16-0.44)

Gemini vs GPT-4o 0.04 (-0.61-0.68) 0.18 (-0.01-0.4) 0.23 (-0.01-0.4) -0.05 (-0.2-0.2) 0.04 (-0.2-0.27) 0.16 (-0.15-0.44)

GPT-4o mini vs GPT-4.0 0.41 (-0.3, 0.84) 0.35 (0.18, 0.5) 0.55 (0.36, 0.69) 0.48 (0.32, 0.62) 0.27 (0.05, 0.47) 0.34 (0.04, 0.58)

GPT-4o mini vs GPT-4o 0.66 (0.04, 0.92) 0.19 (-0.01-0.4) 0.47 (0.26, 0.63) 0.34 (0.16, 0.5) 0.25 (0.02, 0.45) 0.16 (-0.15, 0.4)

GPT-4.0 vs GPT-4o 0.86 (0.50-0.97) 0.7 (0.58-0.78) 0.83 (0.7-0.89) 0.71 (0.6-0.8) 0.69 (0.55-0.79) 0.63 (0.4-0.78)
Three levels of radiologists individually generated 403 CEUS LI-RSDS reports, along with a prompt output of a CEUS LI-RADS category. Data are k values, and data in parentheses are 95% CIs.
LLM, large language model; CEUS LI-RADS, contrast-enhanced US Liver Imaging Reporting and Data System.
*Kappa values calculated as described by Fleiss’ k for the Intra-LLM agreement and their 95% CIs.
†Kappa values calculated as described by Cohen’ k for the Inter-LLM agreement and their 95% CIs.
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showed substantial to almost perfect intra-agreement (k = 0.76-1

and 0.7-0.94, respectively) and higher inter-agreement than other

LLMs (k = 0.63-0.86). In human-LLM interactions using CEUS LI-

RADS, ChatGPT-4.0 demonstrated comparable specificity (76%-

90%) across radiologists with varying levels of liver CEUS expertise,

similar to ChatGPT-4o (83%-86%). However, ChatGPT-4.0

outperformed ChatGPT-4o with a sensitivity of 83%-89% versus

70%-78%, p ≤ 0.02. Notably, ChatGPT-4.0 demonstrated superior

sensitivity, ranging from 83% to 89% compared to 63% to 78% for

human readers (p ≤ 0.004), in diagnosing sHCC. Moreover,

ChatGPT-4.0 with CEUS LI-RADS outperformed CNN models in

predicting sHCC with AUC of 0.86 versus 0.63 (p < 0.001). Overall,

ChatGPT-4o mini and Google Gemini showed poor intra- and

inter-LLM agreement and lower diagnostic efficacy in diagnosing

sHCC compared to ChatGPT-4.0 and ChatGPT-4o.

Currently, the primary focus of LLMs in the diagnostic imaging

field is on processing text data, though research is now extending

these models to multimodal tasks (such as combining image and

text processing) (20, 21). The CEUS LI-RADS released by ACR

provides a diagnostic framework for assessing the risk of HCC in

patients at risk. However, imaging early-stage HCC, particularly

lesions under 2 cm is challenging (22). We previously determined

that CEUS LI-RADS effectively characterizes sFLLs (12), while the

interaction between LLMs and CEUS LI-RADS in diagnosing liver

nodules, especially sFLLs, remains unexplored. By removing

spatiotemporal interference factors, we found that ChatGPT-4.0

and ChatGPT-4o achieved superior repeatability in CEUS LI-RADS

categorization among the four LLMs. GPT-4o mini is characterized

by faster processing and superior intelligence compared to

ChatGPT-3.5. However, similar to Google Gemini, i t

demonstrates poor reproducibi l ity in CEUS LI-RADS
TABLE 3 Comparison of ChatGPT 4.0 and ChatGPT 4o in predicting
small HCC versus Non-HCC.

Diagnostic
Performance

Human-LLM Interaction

Junior
Radiologist

Senior
Radiologist

Expert
Radiologist

Sensitivity (%)

GPT-4.0 83 (72/87) 86 (93/108) 89 (69/77)

GPT-4o 70 (61/87) 77 (83/108) 78 (60/77)

p Value 0.007 0.02 0.004

Specificity (%)

GPT-4.0 76 (22/29) 89 (56/63) 90 (35/39)

GPT-4o 86 (25/29) 83 (52/63) 85 (33/39)

p Value 0.38 0.34 0.50

Accuracy (%)

GPT-4.0 81(94/116) 87 (149/171) 90 (104/116)

GPT-4o 74 (86/116) 79 (135/171) 80 (93/116)

p Value 0.12 0.009 0.001

AUC

GPT-4.0 0.79 (0.71, 0.86) 0.88 (0.82, 0.92) 0.89 (0.83, 0.95)

GPT-4o 0.78 (0.70, 0.85) 0.79 (0.73, 0.86) 0.81 (0.73, 0.88)

p Value 0.79 0.01 0.001
Data in parentheses for the sensitivity, specificity and accuracy are numerator/denominator;
data in parentheses for the AUC are 95% confidence intervals. p values present the
comparison of performance between ChatGPT 4.0 and ChatGPT 4o in predicting small
HCC using the same input generated by the same radiologist. LLM, large language model;
HCC, hepatocellular carcinoma, AUC = area under a receiver operating characteristic curve.
TABLE 4 Diagnostic performance of ChatGPT-4.0, human reader, and US Images-based CNN model in predicting small HCC versus Non-HCC.

Diagnostic
Performance

SEN (%) p Value SPE (%) p Value ACC (%) p Value AUC‡ p Value

ChatGPT-4.0 vs Human Reader

ChatGPT-4.0

Junior Radiologist 83 (72/87) <0.001* 76 (22/29) 0.13* 81 (94/116) 0.007* 0.79 (0.71, 0.86) 0.46*

Senior Radiologist 86 (93/108) <0.001* 89 (56/63) 0.13* 87 (149/171) 0.004* 0.88 (0.82, 0.92) 0.03*

Expert Radiologist 89 (69/77) 0.004* 90 (35/39) 0.50* 90 (104/116) 0.07* 0.89 (0.83, 0.95) 0.20*

Human Reader with CEUS LI-RADS

Junior Radiologist 63 (55/87) 90 (26/29) 70 (81/116) 0.76 (0.68, 0.84)

Senior Radiologist 69 (75/108) 95 (60/63) 79 (135/171) 0.82 (0.76, 0.88)

Expert Radiologist 78 (60/77) 95 (60/77) 84 (97/116) 0.86 (0.79, 0.92)

ChatGPT-4.0 vs CNN

ChatGPT-4.0 86 (94/110) 0.004† 87 (45/52) <0.001† 86 (139/162) 0.01† 0.86 (0.8, 0.91) <0.001†

CNN 96 (106/110) 29 (15/52) 75 (121/162) 0.63 (0.55, 0.7)
fro
Unless otherwise indicated, data in parentheses are numerators/denominators. CNN, convolutional neural network; HCC, hepatocellular carcinoma; SEN, sensitivity; SPE, specificity; ACC,
accuracy; AUC, area under a receiver operating characteristic curve.
*p values present the comparison of performance between ChatGPT-4.0 and the human reader who generated the original structured CEUS LI-RADS reports.
†pvalues are for comparing the diagnostic performance between ChatGPT-4.0 and CNN model.
‡Data in parentheses are 95% confidence intervals.
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classification. This is of considerable significance because the stable

and reliable grasp of the CEUS LI-RADS system by LLMs could

potent ia l ly es tab l i sh a foundat ion for the ir c l in ica l

diagnostic applications.

Notably, human-LLM interaction with ChatGPT-4.0

outperformed the radiologists who generated the original

structured CEUS LI-RADS reports in sensitivity and accuracy in

diagnosis sHCC. Interestingly, we observed that, 15.8% (43 of 272)
Frontiers in Oncology 08
of sHCC were classified as LR-M by human readers, and of these,

88.4% (38 of 43) were assigned to LR-5 by ChatGPT-4.0. Previous

studies have shown that early washout within 60 seconds—an

essential LR-M feature—is the main factor causing many HCC

cases to be classified as LR-M (23–25). In the study by Zheng et al,

the investigators found that of 354 LR-M nodules, 224 (63%) were

HCC (23). By recategorizing nodules displaying early washout and

without punched-out before 5 minutes into LR-5, the sensitivity
FIGURE 4

Responses for a CEUS LI-RADS LR-M category small liver lesion classified by LLMs. This lesion was classified as CEUS LI-RADS LR-5 category by
ChatGPT-4o (A), ChatGPT-4.0 (B), Google Gemini (D), however, it was assigned to LR-4 by ChatGPT-4o mini (C). The lesion was confirmed as a
moderately-differentiated HCC by histopathology. CEUS LI-RADS, Contrast-enhanced Ultrasound Liver Imaging Reporting and Data System; LLMs,
large language models; HCC, hepatocellular carcinoma.
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could elevate from 75% (1141 of 1513) to 85% (1283 of 1513) (P

<.001), and accuracy from 81% to 87% (P <.001). Although we have

demonstrated that ChatGPT-4.0 understands the CEUS LI-RADS

system and recognizes early washout as a typical feature of LR-M, it

continues to classify nodules showing hyper-enhancement in

arterial phase followed by early washout as LR-5. ChatGPT-4.0
Frontiers in Oncology 09
seems to incorporate recent research and does not strictly classify a

case as LR-M if washout occurs within 60 seconds. This could be the

core reason why ChatGPT-4.0 demonstrated higher sensitivity

compared to human readers using CEUS LI-RADS criteria.

Considering the “black box” nature of LLMs, ongoing efforts are

essential to address issues such as clearly explaining how decisions
FIGURE 5

Responses for a CEUS LI-RADS LR-4 category small liver lesion classified by LLMs. The lesion was classified as CEUS LI-RADS LR-5 category by
ChatGPT-4o (A) and Google Gemini (D). However, it was categorized as LR-4 and LR-3 by ChatGPT-4.0 (B) and ChatGPT-4o mini, respectively. The
lesion was confirmed as a poorly-differentiated HCC by histopathology. CEUS LI-RADS, Contrast-enhanced Ultrasound Liver Imaging Reporting and
Data System; LLMs, large language models; HCC, hepatocellular carcinoma.
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are derived. The aforementioned finding highlights the valuable role

of LLMs in enhancing the accuracy of diagnoses made by

radiologists, not only for senior ultrasound practitioners but also

for senior practitioners to make more comprehensive judgements.

Despite the innovative application of LLM in diagnosing sHCC

with CEUS LI-RADS, our study has some limitations. First, the

LLM task relied only on structured CEUS LI-RADS reports,

limiting access to full imaging and clinical information about the

patients. Second, the sample sizes for certain CEUS LI-RADS

categories, especially LR-2, were small, likely due to the

infrequent use of CEUS for liver nodules under 1 cm in routine

practice. Third, our study focused on ≤2 cm sFLLs in high-risk

patients, which limited the number of participants, and the lack of

sufficient follow-up led to additional exclusions. The COVID-19

pandemic and related control measures further reduced patient

enrollment, with only 5, 11, and 15 patients being included in 2020,

2021, and 2022, respectively.

In conclusion, large language models (LLMs) showed significant

potential in diagnosing small hepatocellular carcinoma (sHCC) in

high-risk patients when integrated with the CEUS LI-RADS.

ChatGPT-4.0 and ChatGPT-4o demonstrated satisfactory

reproducibility with ChatGPT-4.0 outperforming ChatGPT-4o,

ChatGPT-4o Mini, and Google Gemini in diagnostic efficacy. It is

worth noting that ChatGPT-4.0 identified the ‘early washout’ feature

would not rule out LR-5, which may be the core reason for its

superior sensitivity and accuracy in detecting sHCC compared to

human readers using CEUS LI-RADS. This highlights the need for

continuous data review, model refinement, and improved

transparency and explainability of LLM decision-making.
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