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Multiomic analysis of lactylation
and mitochondria-related genes
in hepatocellular carcinoma
identified MRPL3 as a new
prognostic biomarker
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Gaoyuan Wang1, Rongwei Shi3, Jinlong Huang2, Xindong Yin1*,
Taiyang Zhu1* and Shibing Cao1*

1Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine,
Jiangsu Province Hospital of Chinese Medicine, Nanjing, China, 2Nanjing University of Chinese
Medicine, Nanjing, China, 3Department of General Internal Medicine, Affiliated Hospital of Nanjing
University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
Background: Recent research has highlighted lactate’s crucial role in epigenetic

regulation, particularly by influencing histone modifications that drive the

initiation and progression of hepatocellular carcinoma (HCC). While

mitochondria are known to regulate tumor behavior, the interaction between

lactate metabolism and mitochondrial function in cancer tissues remains

underexplored. Understanding this relationship may provide deeper insights

into tumor metabolic reprogramming and reveal novel therapeutic targets for

HCC and other malignancies.

Methods: We conducted a comprehensive screening of lactylation- and

mitochondria-associated genes (LMRGs) in HCC patients, followed by

clustering based on these genes. Prognostic outcomes and pathway

enrichment were analyzed across the identified clusters. Additionally, we

developed a prognostic model based on LMRGs, examining its implications for

survival, immune response, and drug sensitivity. In vitro experiments were

performed to validate the expression patterns and functional role of MRPL3

in HCC.

Results: We developed a prognostic model, named the LMRG model,

incorporating three key genes: ACACA, MRPL3, and MRPS23. This model

revealed significant differences in survival outcomes, immune responses, and

drug sensitivity between patients with high and low LMRG scores. MRPL3 was

found to be overexpressed in HCC, playing a critical role in tumor growth and

metastasis. These results were further validated through in vitro experiments,

confirming MRPL3’s role in HCC cell proliferation and invasion.
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Conclusion: We created a predictive model, LMRG, and identified MRPL3 as a

key biomarker. Our findings suggest that MRPL3 has significant potential as a

reliable predictive biomarker for clinical applications in HCC diagnosis

and treatment.
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1 Introduction

As of 2022, primary liver cancer ranks as the sixth most

prevalent cancer and the third leading cause of cancer-related

deaths globally (1). The predominant subtype of primary liver

cancer is hepatocellular carcinoma (HCC), followed by

cholangiocarcinoma (CC) (2, 3). The primary risk factors for

HCC include chronic infections with hepatitis B virus (HBV) and

hepatitis C virus (HCV), as well as alcoholic and non-alcoholic

fatty liver diseases (4). Although surgery remains the main

treatment for HCC, recurrence and metastasis are common

challenges (5). Ablation therapies, such as microwave ablation

(MWA), are effective for early-stage HCC (6). Other treatment

modalities, including intra-arterial therapy, radiotherapy, and

systemic therapies (standard cytotoxic chemotherapy, targeted

therapy), offer additional options but are often hindered by drug

resistance, hepatic impairment, and tumor resilience mechanisms

(7, 8).

The limitations of current therapeutic approaches underscore a

critical need to delve deeper into the gene regulatory mechanisms

underlying HCC. For instance, resistance to chemotherapy and

radiotherapy is frequently linked to dysregulated signaling pathways

and epigenetic modifications that enable tumor progression and

survival under treatment pressures (9). Moreover, understanding

how HCC evolves in the context of its complex etiology and

microenvironment could provide novel insights into therapeutic

vulnerabilities. Thus, exploring gene regulatory networks is not only

vital for uncovering the molecular underpinnings of HCC but also

for identifying biomarkers for early diagnosis and developing

targeted therapies that circumvent resistance.

In recent years, lactate and mitochondrial function have

emerged as critical factors influencing cancer biology, including

HCC. While lactate accumulation is a hallmark of altered tumor

metabolism under the Warburg effect (10), mitochondria, despite

reduced reliance on oxidative phosphorylation in many tumors,

remain pivotal in producing reactive oxygen species (ROS) and

supporting biosynthetic pathways essential for rapid tumor growth

(11). These two elements are intricately linked through metabolic

signaling networks, highlighting their potential role in HCC

progression and therapeutic resistance.
02
Lactate, traditionally seen as a glycolysis byproduct, plays a

critical role in cancer metabolism. The Warburg effect highlights

tumor cells’ reliance on glycolysis, leading to elevated lactate

production (10, 12). Beyond metabolism, lactate acts as a

regulatory molecule influencing immune modulation (12) and

histone lysine lactylation, which translates metabolic signals into

transcriptional changes (13, 14). In HCC, Gao et al. showed that

K28 lactylation promotes proliferation and metastasis by inhibiting

adenylate kinase 2 (AK2) (15), while Xu et al. found that

Demethylzeylasteral (DML) suppresses H3K9la and H3K56la

lactylation, inhibiting HCC progression (16). Bioinformatics

studies by Chen et al. revealed that lactylation-related genes

predict HCC prognosis, immunity, mutations, and drug

sensitivity (17). These findings position lactylation as a promising

epigenetic target in cancer research.

Mitochondria are vital for ATP production via oxidative

phosphorylation and play key roles in respiration, metabolism, and

apoptosis (18). Their genome encodes components of the electron

transport chain (ETC), a major source of reactive oxygen species

(ROS), which trigger signaling pathways, promote proliferation, and

drive tumor progression (19, 20). The interplay between glycolysis

and mitochondrial metabolism regulates tumor microenvironment

adaptation, with glycolysis-derived lactate altering mitochondrial

functions and mitochondria-generated ROS influencing histone

lactylation. Oncogenic factors like c-Myc, HIF-1a, PI3K/Akt, and
p53 modulate these interactions, linking mitochondria to HCC

progression and therapy resistance (21–24). Prognostic models

using mitochondria-related genes, such as those by Zhang B et al.

(eight genes) and another study (six genes), highlight mitochondria’s

critical role in HCC diagnostics and therapeutics (25, 26).

Pyruvate from glycolysis is converted to lactate under hypoxia,

creating an immunosuppressive environment and promoting

cancer growth. Lactate also modifies histone lysines, regulating

gene expression (27). Leah I. Susser et al. showed that

mitochondrial fragmentation increases lactate, driving histone

lacty lat ion and M2-l ike macrophage responses (28) ,

demonstrating a bidirectional link between lactate and

mitochondrial dynamics. This highlights a bidirectional

relationship where glycolytic intermediates such as lactate

influence mitochondrial dynamics, and mitochondrial processes
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modulate epigenetic reprogramming through lactylation.

Thompson’s group revealed lactate activates the electron

transport chain in mitochondria, boosting ATP production (29).

Jingwei Ma et al. found lithium carbonate enhances T-cell anti-

tumor activity by driving lactic acid into mitochondria. However,

research on lactylation and mitochondria in HCC remains scarce.

First, we screened for genes associated with lactylation and

mitochondria, termed LMRGs and analyzed their differential

expression across databases such as The Cancer Genome Atlas

(TCGA), Gene Expression Omnibus (GEO), and the International

Cancer Genome Consortium (ICGC). Using least absolute

shrinkage and selection operator (LASSO) regression, we

established an LMRG model to identify prognosis-related genes.

We then performed mutational, immunological, and drug

sensitivity analyses. Additionally, we selected a key gene, MRPL3,

from the model for clinical and immune correlation analyses. By

linking lactylation and mitochondrial functions, we aimed to unveil

novel regulatory mechanisms and identify actionable biomarkers

for HCC, addressing critical gaps in existing research.
2 Materials and methods

2.1 The source of the LMRGs

Zhao Y et al. first identified histone lactylation and its regulatory

role in cellular functions (13). Based on their findings, lactylation-

related genes were identified by extracting genes directly reported to be

involved in lactylation processes or significantly impacted by lactylation

in their study. These genes were included based on their functional

relevance to lactylation, as demonstrated through experimental

evidence or validated mechanisms. For mitochondria-related genes,

we utilized the Human MitoCarta3.0 database, a comprehensive

resource cataloging mitochondrial proteins and pathways (30),

available at https://www.broadinstitute.org/mitocarta/mitocarta30-

inventory-mammalian-mitochondrial-proteins-and-pathways. Genes

annotated as mitochondrial components or pathways in

MitoCarta3.0 were selected for further analysis. To define the

lactylation-mitochondria-related genes (LMRGs), we intersected

the identified lactylation-related gene set with the mitochondria-

related gene set. This intersection highlighted genes simultaneously

associated with lactylation and mitochondrial functions.
2.2 Collection of analytical data

We retrieved expression and clinical data about HCC from

multiple sources, including TCGA (https://portal.gdc.cancer.gov/),

GEO (https://www.ncbi.nlm.nih.gov/geo/), and ICGC (https://

dcc.icgc.org/). TCGA’s dataset was notably supplemented with

mutation data and copy number variation (CNV) information.

The expression and clinical data were subsequently integrated into a

matrix file using Strawberry Perl software (version 5.30.0.1). Data

for pan-cancer were sourced from the University of California Santa

Cruz Xena browser (UCSC Xena) database (http://xena.ucsc.edu/),
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RNAseq data in TCGA and Genotype-Tissue Expression (GTEx) in

TPM format and their corresponding normal tissue data were

processed uniformly by the Toil program (31). We have

organized the data used and presented it in a tabular form (Table 1).
2.3 Recognition of differentially
expressed LMRGs

The differentially expressed genes between normal and tumor

tissues from TCGA and GEO were identified by the “limma” R

package, we set the cutoff criteria for significant fold changes and

false discovery rates (FDR) to ensure robust identification of key genes.

Specifically, genes with a fold change (|log FC |) > 2 or< 0.5 and an

FDR< 0.05 were considered significant. These thresholds were chosen

based on widely accepted standards in transcriptomic analysis and

were further validated for consistency with the biological relevance of

identified genes. Take the intersection of DEGs and LMRGs to get the

final differentially expressed LMRGs (DE-LMRGs). For the identified

DE-LMRGs, we conducted tumor mutation burden (TMB) analysis by

TCGA dataset. The frequency of CNV in DE-LMRGs was calculated

based on gene copy number gain and deletion. A functional

enrichment analysis of DE-LMRGs was conducted, encompassing

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis, utilizing the “clusterProfiler” R package.
2.4 Clustering analysis on the basis of
DE-LMRGs

The TCGA and GEO expression and survival data were merged

and batch effects were removed using the “ComBat function” of the

“SVA” R package. Based on the DE-LMRGs, we conducted a clustering

analysis of the merged data by the “ConsensusClusterPlus” R package,

the HCC patients were thus classified into different LMRG clusters. To

verify the accuracy of the clustering, Principal Component Analysis

(PCA) was performed to show the overall differences between different

clusters. We analyzed the survival differences between patients in

different clusters and plotted the survival curves using the “survival”

R package. By the “pheatmap” R package, a heatmap of gene

expression linked to clinical information was created. Gene Set

Variation Analysis (GSVA) based on the “c2.cp.kegg.symbols.gmt”

gene set was performed to explore the functional pathways of HCC

between different clusters. To determine the immune cell content

between different clusters, Single Sample Gene Set Enrichment

Analysis (ssGSEA) was subsequently conducted. Both processes are

realized by the “GSVA” and “GSEABase” R packages.
2.5 Construction and validation of the
LMRG prognostic model

In order to further explore the role of LMRGs on prognosis, we

developed the LMRG score. Regarding the clinical features of HCC,

univariate Cox (uniCox) analysis was performed on the merged
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data. Then, we added the ICGC data as an external test set and the

merged data as an internal training set to build the LMRG model

using LASSO regression, subsequently the LMRG score is calculated

according to the following formula:

LMRG    Score =o coef  (LMRGs) �  exp (LMRGs)

The median LMRG score was used to stratify HCC patients into

high- and low-LMRG-score groups. Subsequently, risk plots and

expression heatmaps were constructed, leveraging the prognosis-

related LMRGs, to facilitate a more intuitive understanding of the

disparities in gene expression profiles between the distinct LMRG

groups. We did Kaplan-Meier (KM) analysis using the “survminer”

and “survival” R packages.

The Receiver Operating Characteristic (ROC) curve was

employed to demonstrate the predictive capacity of the model,

and Principal Component Analysis (PCA) and t-distribution

Stochastic Neighbor Embedding (t-SNE) were designed to better

distinguish different LMRG groups, which were implemented by the

“timeROC” and “Rtsne” R packages, respectively.
2.6 Prognosis analysis of the clinical

To ascertain the correlation between the LMRG score and clinical

status, we performed both uniCox and multivariate Cox (muiCox)

analyses. Subsequently, the LMRG score of HCC patients and their
Frontiers in Oncology 04
clinical features were finely mapped to 1-, 3-, and 5-year overall

survival with the “rms” R package. To validate the precision and

reliability of the nomogram for clinical utilization, in-depth

calibration curves were generated and analyzed. Furthermore, the

discrepancies in LMRG score were examined in relation to various

clinical characteristics, which were represented in box-and-line plots.
2.7 Correlation between the LMRG model
and LMRG clusters

We investigated the differences in LMRG score between the two

clusters to define whether the LMRG model could be applied to

clustering. Then, correlations between the LMRG clusters, LMRG

score, and survival outcome were assessed and depicted by using the

“galluvial” R package.
2.8 PPI network and enrichment analysis

A Protein-Protein Interaction (PPI) network of prognosis-

related LMRGs and DE-LMRGs was constructed through the

STRING website (https://cn.string-db.org/cgi/input.pl).

Furthermore, we performed GO and KEGG enrichment analysis

on the prognosis-related LMRGs to elucidate the underlying

pathways that are pertinent to our model.
TABLE 1 The clinical features of HCC patients from TCGA, GEO, and ICGC datasets.

Clinical
features

Total patients(851) TCGA(424) GSE76427(167) ICGC(260)

Number
Percentage

(%)
Number

Percentage
(%)

Number
Percentage

(%)
Number

Percentage
(%)

Type

Tumor 749 88.01% 374 88.21% 115 68.86% 260 100%

Normal 102 11.99% 50 11.79% 52 31.14% 0 0%

Fustat

Alive 201 26.73% 132 35.01% 23 20.00% 46 17.69%

Dead 551 73.27% 245 64.99% 92 80.00% 214 82.31%

Age

≤65 398 52.93% 235 62.33% 65 56.52% 98 37.69%

>65 353 46.94% 141 37.40% 50 43.48% 162 62.31%

Unknown 1 0.13% 1 0.27% 0 0% 0 0%

Gender

Female 212 28.19% 122 32.36% 22 19.13% 68 26.15%

Male 540 71.81% 255 67.64% 93 80.87% 192 73.85%

Stage

I-II 509 67.69% 262 69.50% 90 78.26% 157 60.38%

III-IV 219 29.12% 91 24.14% 25 21.74% 103 39.62%

Unknown 24 3.19% 24 6.37% 0 0% 0 0%
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2.9 Immunological and tumor stem
cell analysis

Immune cell infiltration levels across all samples were

quantitatively assessed utilizing the CIBERSORT algorithm,

permitting us to subsequently evaluate the relationship between the

LMRG score and derived immune score. The correlations between

prognosis-related LMRGs, LMRG score, and immune cells were also

analyzed. These steps were visualized through the “ggpubr,” “ggplot,”

and “reshape2” R packages. We scored the tumor microenvironment

(TME) by the ESTIMATE algorithm on three dimensions:

StromalScore, ImmuneScore, and ESTIMATEScore. And

differences in the distributions of high- and low-LMRG-score

groups were visually represented and compared using violin plots.

In addition, we conducted tumor stem cell correlation analysis of the

LMRG model based on RNA stemness scores (RNAss).
2.10 Chemotherapy drug
sensitivity analysis

Data on drugs were taken from the Genomics of Drug Sensitivity

in Cancer (GDSC) website (https://www.cancerrxgene.org). The half-

maximal inhibitory concentration (IC50) was employed to evaluate

drug sensitivity between the high- and low-LMRG-score groups

using the “oncoPredict” R package.
2.11 Expression and prognostic analysis
of MRPL3

We extracted the ENSG00000114686.8 (MRPL3) molecule

from the UCSC database, performed log2(TPM+1) transformation

of the expression values, and analyzed the data differences using the

“stats” R package. Moreover, we extracted this molecule in the

TCGA-ALL database according to the same method and performed

a paired-sample difference analysis using the same R package. We

obtained the TCGA prognostic dataset (32), excluding samples with

a follow-up duration of less than 30 days, and employed the

“survival” package to construct a Cox proportional hazards

regression model, which aimed to elucidate the correlation

between gene expression profiles and prognosis within each

tumor type. The outcomes of this analysis were then graphically

represented using the “ggplot2” R package.
2.12 Single-cell sequencing analysis
of MRPL3

This step was achieved on the Tumor Immunity Single Cell

Center 2 (TISCH2) flat (http://tisch.compgenomics.org/home/).

The GEO scRNA-seq dataset (GSE140228), which contains

62,530 cells from 5 HCC tissues, was selected for this study, and

the scRNA-seq was performed using a 10x Genomics platform. The
Frontiers in Oncology 05
“NormalizeData” function in “Seurat” was used to normalize the

data. The raw count (UMI) in each cell was 10,000.
2.13 Cell culture and tissue collection
of HCC

The human hepatic normal cell line (THLE2) and five HCC cell

lines (Huh7, Hep3B, HepG2, HCC-LM3, Li-7) for this experiment

were cultured using DMEM medium (Gibco, USA) containing 10%

fetal bovine serum (BiologicalIndustries, Israel). In addition, 30

pairs of primary HCC tumors and adjacent tissues were collected at

Jiangsu Province Hospital of Chinese Medicine (Nanjing, China).

The research project was granted ethical approval by the Ethics

Committee of Jiangsu Province Hospital of Chinese Medicine (No.

2023NL-132-01), and written informed consent was obtained from

all participants.
2.14 Real-time reverse transcriptase PCR

RNA was extracted from tissues and cells using TRIzol reagent

(Gibco, USA) and Complementary DNA (cDNA) synthesis was

performed using PrimeScript®RT Kit (TaKaRa, Japan).

Subsequently, a fluorescent quantitative PCR instrument and

primers were used for RT-qPCR analysis of this cDNA, which

was repeated thrice per sample.
2.15 Knockdown of MRPL3 via transfection

A specific shRNA, designed to downregulate MRPL3

expression, was synthesized by GenePharma Co., Ltd. (Shanghai,

China), with pLKO.1 serving as a control. Lentiviral packaging and

transfection were then performed in 293T cells. The concentrated

lentivirus, along with hexadimethrine bromide (Beyotime, China),

was introduced into HCC cell lines (Hep3B, HCC-LM3). The

transfected stable cell lines were selected using puromycin

(Solarbio, China). Cell Counting Kit-8 assay (CCK-8).

The cells were categorized into sh-NC, sh-MRPL3 of the

Hep3B, and HCC-LM3 after transfection and were uniformly

planted in 96-well plates, respectively. After 24h of incubation,

100ml of fresh DMEM medium and 10ml of CCK8 solution were

subsequently added to every well. The plates were incubated again

for 4h, and then the absorbance at 450nm was measured on an

enzyme-linked immunoassay detector (Tecan, Switzerland).
2.16 Flow cytometric apoptosis assay

Hep3B, HCC-LM3 cells were incubated with RNase A and

propidium iodide (Sigma, USA) for 15 min at 20°C away from light.

Then, the cells were treated with Annexin V-FITC/PI Apoptosis

Detection Kit (Roche, Switzerland) in accordance with the

instructions provided by the manufacturer. The distribution of
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cell cycle phases was ultimately analyzed using flow cytometry (BD,

USA), and the apoptosis level was analyzed.
2.17 Western blot assay

Total protein extraction from Hep3B cells and 5 pairs of

patients’ tissues was conducted using a protein extraction kit

(Beyotime, China), and determination of protein concentration

was performed by a BCA kit (Beyotime). The extracted proteins

were separated on a 10% SDS-PAGE gel and transferred to PVDF

membranes (Millipore, USA). The membranes with cell proteins

were blocked and incubated with primary antibodies (Cleaved-

Caspase3, Cleaved-Caspase9, Bcl-2, E-cadherin, vimentin,

GAPDH) overnight, while the membranes with tissue proteins

were blocked and incubated with MRPL3 antibody overnight.

After incubation with secondary antibodies (Goat anti-rabbit IgG

(h+l), HRP), bands were detected by chemiluminescence using an

imaging system. All antibodies used were purchased from Affinity

Biosciences (USA).
2.18 Wound-healing assay

After spreading Hep3B, HCC-LM3 cells to complete fusion, a

line of cells was removed by scratching at the bottom of the culture

dish using a sterile gun tip. The influence of cell proliferation was

excluded by changing the serum-free medium, and the healing of

the scratch was photographed and recorded at predetermined time

points (0h, 48h). The capacity of the cells to migrate was evaluated

by quantifying the alteration in the width of the scratch.
2.19 Cell migration and invasion assays

Matrigel (BD, USA) was applied to the upper layer of Transwell

chambers (Costar, USA) to test the invasive ability of cells; the step

is not necessary when detecting cell migration ability. The

experimental cell lines were inoculated into the upper layer of

Transwell chambers containing serum-free medium, and the lower

layer was placed in a 10% FBS medium for chemotaxis. Following a

24-hour incubation period, non-migrating or non-invasive cells

were meticulously removed with cotton swabs. Subsequently,

methanol was employed to immobilize the remaining cells, which

were then stained with crystal violet. Three views of each chamber

were selected and counted under a microscope (Olympus, Japan) to

quantify the capacity for cell migration and invasion.
2.20 Statistical analysis

The statistical analyses in this study were conducted using R

software (version 4.2.1). The specific statistical tests employed include

Student’s t-test for comparing two groups, one-way ANOVA

followed by Tukey’s post hoc test for multiple group comparisons,

and Kaplan-Meier survival analysis with the log-rank test for survival
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comparisons. The rationale for selecting these tests was to ensure that

the methods align with the data distribution and study objectives. For

instance, the t-test and ANOVA were chosen based on the

assumption of normal distribution, which was verified using the

Shapiro-Wilk test prior to analysis. For non-normally distributed

data, non-parametric tests such as the Mann-Whitney U test or

Kruskal-Wallis test were applied as appropriate.

Additionally, Pearson’s or Spearman’s correlation analyses were

conducted depending on the data distribution to explore

relationships between variables. To mitigate the risk of type I

errors in multiple comparisons, we applied the Benjamini-

Hochberg procedure to adjust p-values when necessary. The

statistical significance threshold was set at p<0.05 for all tests.

Data are presented as mean ± standard deviation (SD) unless

otherwise specified. Visualizations, including scatter plots,

boxplots, and Kaplan-Meier survival curves, were generated using

GraphPad Prism version 9 (GraphPad Software, San Diego, CA,

USA) to enhance the clarity and reproducibility of the results.
3 Results

3.1 Identification and functional analysis of
lactylation-mitochondria-related genes
in HCC

We searched for 1223 lactylation-related genes from the

Supplementary file of Zhao’s article (33) and 1136 mitochondria-

related genes from the MitoCarta website, taking the intersection of

the two, and ended up with 82 LMRGs (Figure 1A). The 82 genes

identified in this study are presented in detail in Supplementary

Table S1. In addition, gene expressions between normal and tumor

samples in TCGA and GEO datasets were analyzed separately,

resulting in 24,951 differential genes in TCGA and 5,692 differential

genes in GSE76427 (Figures 1B, C). Taking the overlap of these

differentially expressed genes with LMRG, we finally gained 23 DE-

LMRGs (Figure 1D).

To initially explore LMRGs, we first analyzed the TMB and CNV

incidence of DE-LMRGs in samples of HCC (Figures 1E, F). As

shown in the figure, the mutation frequency of these genes was low

and there was no obvious consistency in copy number variation, as

we visualized the variation of DE-LMRGs on specific chromosomes

(Figure 1G). Next, we analyzed the enrichment, and DE-LMRGs were

predominantly enriched within amino acid metabolic process under

biological processes (BP); mitochondrial matrix under cellular

components (CC), and flavin adenine dinucleotide binging under

molecule function (MF) (Figures 1H, I). The predominant

enrichment of KEGG pathways was observed in propanoate

metabolism and lipoic acid metabolism (Figures 1J, K).
3.2 Clustering analysis and immune
profiling of LMRG clusters in HCC

The HCC samples from TCGA and GSE76427 datasets were

merged and batch-corrected. After that, we clustered the merged
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data, and the difference between LMRG clusters was clearest when the

number of groups was 2 (Figures 2A, B), and PCA results showed

that the samples between the two clusters could be discerned with

clarity (Figure 2C). In terms of OS, there were significant differences

between LMRG clusters (p<0.01) (Figure 2D). Finally, we plotted the

heatmap of gene expression and clinical features (Figure 2E).

GSVA analysis was performed between two clusters and

demonstrated that most of the differential pathways between the

clusters were related to acid metabolism (Figure 2F). In addition, we

quantified the relative amounts of 23 different immune cell types in

two LMRG clusters by ssGSEA analysis. Results showed that most of

the differences between the clusters were in T cell types (Figure 2G).
3.3 Prognostic analysis and risk scoring
model based on LMRGs in HCC

To identify LMRGs associated with prognosis, we performed

uniCox analysis on the merged data. As results revealed, of 23 DE-

LMRGs, 10 genes were associated with HCC prognosis, and 8 of them

(NT5DC2, TXNRD1, MRPS23, AIFM2, ACACA, MRPL3, APOO,

SIRT4) were associated with poor prognosis, and 2 of them (GCDH,

ADHFE1) were associated with good prognosis (Figure 2H).
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To avoid LMRG model overfitting, LASSO regression was

applied for further screening. The 10 genes mentioned above

associated with prognosis were assigned coefficients, and 3

prognosis-related LMRGs (ACACA, MRPL3, MRPS23) were

screened by lambda.min (Figures 3A, B). Subsequently, the

LMRG score for each sample is calculated utilizing the following

methodology: LMRG Score = [exp (ACACA)*0.0798] +[exp

(MRPL3)*0.2829]+[exp(MRPS23)*0.1586]. The sample was

categorized into the high- and low-LMRG-score groups, whereby

the median score was used as the cut-off point. Expression of these 3

prognosis-related LMRGs in different LMRG groups is

demonstrated by the heatmap (Figure 3E).
3.4 Validation of the LMRG model
validation and clinical application of the
LMRG-based prognostic model in HCC

The above-merged data was taken as the internal training set, and

another HCC data from the ICGC dataset was used as the external

test set; the samples in the test set were also classified into high- and

low-LMRG-score groups in accordance with the above methodology.

The KM curves demonstrated that the high-LMRG-score group
FIGURE 1

Identification and Functional Enrichment Analysis of Lactylation-Mitochondria-Related Genes (LMRGs) in HCC. (A) Venn plot of LMRGs. (B) Volcano
plot of gene expression variation between hepatic normal and HCC tissues in TCGA dataset and (C) in GEO dataset. (D) Identification of DE-LMRGs.
(E) Waterfall plot of mutation frequencies and types of DE-LMRGs in HCC. (F) Frequency of copy number variation in DE-LMRGs. (G) Circos plots of
chromosome distributions among DE-LMRGs. (H, I) GO enrichment analysis of DE-LMRGs. (J, K) KEGG pathway enrichment analysis of DE-LMRGs.
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exhibited a poorer prognosis than the low-LMRG-score group in

both the training and test sets (Figures 3C, D). Furthermore, the risk

curves and survival status plots illustrated the risk and survival status

of the samples in the training and test sets (Figures 3H-K). Next, we

validated the model using ROC curves, PCA analysis, and t-SNE

analysis, respectively. We visualized the Area Under Curve (AUC)

values for survival times of 1-, 2-, and 3-year, which were 0.728, 0.647,

and 0.664 for the training set and 0.697, 0.650, and 0.664 for the test

set (Figures 3F, G). PCA and t-SNE plots showed little overlap

between high- and low-LMRG-score groups and a significant

tendency toward clustering within the two groups (Figures 3L-O).

Moreover, when the clinical features of HCC were analyzed by

uniCox and multiCox in the training set, we discovered that “stage”

and “LMRG Score” were independently associated with a poor
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prognosis for patients with HCC (Figures 4A, B), and this result was

verified in the test set (Figures 4C, D).

When comparing the differences in LMRG score across various

clinical features, we found that age and gender factors did not have a

statistically significant impact on LMRG score. However, tumor

stage significantly influenced the LMRG score, demonstrating

notable statistical differences (Supplementary Figure S1).

Finally, the nomogram based on the LMRGmodel could predict

the 1-, 3-, and 5-year survival rates of HCC patients (Figure 4E).

Moreover, the calibration curves demonstrated the accuracy and

reliability of the aforementioned predictions (Figure 4F).

Additionally, we investigated the correlation between the

LMRG clusters and the LMRG model, observing a statistically

significant difference in LMRG score between the two clusters
FIGURE 2

Clustering, Immune Profiling, and Prognostic Analysis of LMRG Clusters in HCC. (A) The patients were divided into 2 clusters. (B) CDF curves when
k=2-9. (C) PCA plot showing independence between two clusters. (D) Survival analysis between LMRG clusters. (E) Heatmap of DE-LMRGs
expression, clusters, and clinical features. (F) GSVA analysis of the KEGG pathways in LMRG clusters. (G) Immune infiltration level of LMRG clusters
(*p<0.05; **p<0.01; ***p<0.001). (H) Forest plot of univariate Cox regression analysis for DE-LMRGs.
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(p<2.22e-16) (Figure 4G). LMRG clusters, LMRG score, and

survival status of HCC patients can be visualized by the Sankey

plot (Figure 4H).
3.5 Immune profiling, tumor
microenvironment, and functional
enrichment of the LMRG model in HCC

In order to investigate the relationship between the LMRGmodel

and tumor immune cells, we performed sample immune cell score
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assignments using the CIBERSOFT algorithm and found that the

LMRG score showed a positive correlation withMacrophages M2 cell

but a negative correlation with T cells CD4 memory resting

(Figures 5A, B). However, no significant correlation was found in

the remaining cells. The overall correlation plot is shown in the

Supplementary Material (Supplementary Figure S2). Next, the TME

analysis revealed that the low-LMRG-score group exhibited elevated

StromalScore, ImmuneScore, and ESTIMATEScore values

(Figure 5D). Stem cell analysis reveals a positive correlation

between RNAss and LMRG score (Figure 5C). The gene mutation

data of HCC from TCGA were visualized between different LMRG
FIGURE 3

Development, Validation, and Visualization of the LMRG-Based Prognostic Risk Model in HCC. (A) Selection of the optimal penalty parameter for
LASSO regression. (B) LASSO coefficient configuration. (C) Kaplan-Meier survival curves between high- and low-LMRG-score groups in the internal
training set and (D) in the ICGC external test set. (E) Heatmap of prognosis-related LMRGs expression in the training set. (F) ROC curves for OS in
the training set and (G) in the ICGC test set. (H, I) Patients’ LMRG score distribution, survival status, and time distribution in the training set and
(J, K) in the ICGC test set. (L, M) PCA and t-NSE plot in the training set and (N, O) in the ICGC test set.
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groups by waterfall plots, with TP53, CTNNB1, TNN, MUC16, and

PCLO being the most commonly mutated genes (Figures 5E, F).

Although 157 of the 178 (88.2%) samples in the high-LMRG-score

group had tumor mutations, compared to 148 (83.15%) in the low-

LMRG-score samples, the results revealed no statistically significant

differences between the two groups (Supplementary Figure S3). The 3

prognosis-related LMRGs in the model were analyzed for enrichment

and were mainly enriched for the fatty-acyl-CoA biosynthetic process

in BP, for the mitochondrial inner membrane in CC, and for the

structural constituent of the ribosome in MF (Figures 5G, H). In

terms of pathway enrichment, they were mainly present in AMPK

signaling, Pyruvate metabolism, and Propanoate metabolism

pathways (Figures 5I, J).
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3.6 Identification of drug sensitivities
associated with the LMRG model in HCC

To find effective drugs for the treatment of HCC, we calculated

IC50 values of 198 chemotherapeutic drugs in HCC samples and

identified 86 drugs with significant differences. We listed 8 drugs, 5

(ML323, BPD-00008900, Sepantronium bromide, MK-1775,

Daporinad) of which had elevated IC50 values in the low-LMRG-

score group, thus more sensitive to the treatment of high-LMRG-score

patients (Figures 6A-J). And 3 (AZD2014, Doramapimod, SB505124)

of which were more favorable for the treatment of patients in the low-

LMRG-score group (Figures 6K-P). Other drugs sensitive to HCC are

detailed in the Supplementary Material (Supplementary Table S2).
FIGURE 4

Evaluation of the prognostic efficiency of the LMRG model. (A, B) Cox analysis in the training group. (C, D) Cox analysis in the test group.
(E) Nomogram Predicts Patient Survival at 1, 3, and 5 years. (F) Calibration of Nomogram. (G) Distribution profile of LMRG score in two LMRG
clusters. (H) Sankey plot of LMRG clusters, LMRG score, and survival outcome. **p<0.01; ***p<0.001.
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3.7 Visualization of immune cell
distribution and MRPL3 expression in
HCC samples

We selected GSE140228 for visualization, a chip containing 5

samples, and first showed the percentage of each cell in each as well as

in the total sample, found that CD8T and CD4T cells have high

occupancy content (Figures 7A, B). By descending to two dimensions,

the distribution of immune cells can be observed (Figures 7D, E). The

distribution of MRPL3 was then demonstrated as well, and it was
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found to be predominantly aggregated in DC, ILC, Plasma, and

Tprolif cells (Figures 7C, F).
3.8 MRPL3 as a prognostic biomarker and
therapeutic target in HCC: expression
patterns, survival analysis, and
experimental validation

MRPL3 had the highest coefficient value in the LMRG model,

and no articles targeting this gene for the treatment of HCC were
FIGURE 5

Immunization, mutation and enrichment analysis of the LMRG model. (A) M2 immune cell correlation. (B) CD4 T-cell immune cell correlation.
(C) Correlation between the LMRG score and RNAss. (D) TME scores between the high- and low-LMRG-score groups. (E, F) Waterfall plot of
mutation frequencies for the LMRG model. (G, H) GO enrichment analysis of prognosis-related LMRGs. (I, J) KEGG pathway enrichment analysis of
prognosis-related LMRGs. **p<0.01; ***p<0.001.
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found. Thus, we performed a single gene analysis for MRPL3.

Moreover, we showed the PPI profiles of all DE-LMRGs

(Figure 8A) and found that HIBCH as a hub protein linked to

other proteins that can tightly link the prognosis-related LMRGs

(ACACA, MRPL3) to other DE-LMRGs.

Among 33 tumors, we found that MRPL3 showed high expression

in most tumors, compared to paracancerous tissue (Figure 8F). As

paired samples were present in TCGA, we also performed differential

expression analysis of MRPL3 in paired samples, and the results were

as above (Figure 8G). This was also true in TCGA-HCC, with high

expression in HCC tissue and low expression in paracancerous tissue

(Figure 8B). Next, we analyzed the survival profile of MRPL3 in 33

tumors using Hazard Ratio (HR) values to indicate their prognosis and
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found that MRPL3 was correlated with a poor prognosis in the

majority of tumor types (Figure 8J), as was the case for TCGA-HCC

(Figure 8H). MRPL3 demonstrated remarkable predictive efficacy in

forecasting the prognosis of HCC patients, with the AUC value was

0.786 (Figure 8I). To validate the expression of MRPL3 in HCC, we

performed RT-qPCR and Western blot experiments. The

results demonstrated a notable elevation in the expression level of

MRPL3 in HCC tissues in comparison to normal hepatic tissues

(Figures 8C, E). Consistent with this finding, cellular experiments

revealed that all five HCC cell lines exhibited higher expression of

MRPL3 than the hepatic normal cell line (Figure 8D). Abbreviations

for all tumors are detailed in the supplemental document

(Supplementary Table S3).
FIGURE 6

Association between LMRG score and susceptibility to chemotherapy. (A, B) ML323, (C, D) BPD-00008900, (E, F) Sepantronium bromide, (G, H) MK-
1775, (I, J) Selumetinib, (K, L) AZD2014, (M, N) Doramapimod, (O, P) SB505124.
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3.9 Functional characterization of MRPL3:
impact on proliferation, apoptosis,
migration, and invasion in HCC cells

To further identify the biological function of MRPL3, sh-RNA

was utilized to knockdown MRPL3 in Hep3B and HCC-LM3 cell

lines for subsequent experiments (Figure 9A). CCK-8 revealed a

significant reduction in cell viability following the knockdown of

MRPL3 in Hep3B cells, with effective inhibition of cell proliferation

observed at 72 hours (p<0.01) (Figure 9B). The same result was

obtained in HCC-LM3 cells (Figure 9C). Flow cytometry also

revealed that knockdown of MRPL3 promoted apoptosis in Hep3B

and HCC-LM3 cells (Figure 9D, F), with a majority of apoptotic cells

observed in the late stage (Figures 9E, G). Western blotting results

(Figure 9H) indicated that in Hep3B cells, compared to sh-NC, sh-

MRPL3 exhibited significantly increased expression levels of

apoptotic proteins (c-caspase3 and c-caspase9). Additionally, there

was increased expression of E-cadherin and decreased expression of

vimentin, which are associated with tumor suppression and

progression, respectively. These findings suggest that knockdown of

MRPL3 may not only promote apoptosis in HCC cells but also

potentially enhance their invasion and migration.

Furthermore, wound-healing assays revealed that the

downregulation of MRPL3 significantly hindered the migratory

capacity of Hep3B and HCC-LM3 cells (Figure 10A). Transwell

assays observed that the knockdown of MRPL3 not only suppressed

the migration of the HCC cells but also inhibited the invasion

abilities (Figure 10B). These experimental results uncover the

central biological functions of MRPL3 in HCC.
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4 Discussion

Lactate, a byproduct of tumor metabolism, plays a dual role in

tumorigenesis, progression, and immunosuppression (34). Recent

studies have also revealed its epigenetic impact, including histone

modification, which regulates gene expression (13). Mitochondria,

essential for energy production, are similarly vital for tumor cells.

Mutations in mitochondrial genes can drive tumor development,

while inhibiting mitochondrial function disrupts tumor

metabolism, potentially inducing cell death (35, 36). Under

aerobic conditions, pyruvate enters the TCA cycle as acetyl-CoA,

but in anaerobic conditions, lactate is produced as an alternative

(37). This underscores a strong connection between lactylation and

mitochondria. To explore this relationship, we conducted

molecular-genetic bioinformatics analyses using public datasets.

We identified 82 lactylation-mitochondria-related genes (LMRGs)

by intersecting lactylation-related genes from original studies with

mitochondria-related genes from MitoCarta3.0.

Lactylation, a recently identified post-translational modification,

has been implicated in the metabolic reprogramming of cancer cells. In

hepatocellular carcinoma (HCC), lactylation of specific proteins can

modulate mitochondrial function, thereby influencing tumor

progression. For example, the lactylation of lysine at position K28 of

the AK2 protein has been shown to promote HCC deterioration.

Additionally, SIRT3-mediated de-lactylation of CCNE2 inhibits liver

cancer cell proliferation, underscoring the regulatory role of lactylation

in cell cycle control (15). Recent studies have also revealed that histone

lactylation is associated with enhanced transcription of mitochondrial

biogenesis regulators, linkingmetabolic reprogramming with epigenetic
FIGURE 7

Immune cell composition and mrpl3 expression analysis in HCC by single-cell sequencing analysis. (A, B) Content of various cell types.
(C) Expression of MRPL3 in various immune cells. (D, E) Two-dimensional distribution of cells in tissues. (F) Two-dimensional distribution of MRPL3
in tissues.
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control (16). These findings suggest that targeting lactylation could offer

new therapeutic avenues for HCC treatment (17).

Based on LMRGs, we successfully clustered HCC patients into

distinct groups with high intra-cluster consistency. We then

developed a prognostic model for HCC using LMRGs, which

demonstrated strong predictive accuracy for patient survival.

Among the identified prognosis-related LMRGs, ACACA,

MRPS23, and MRPL3 emerged as key candidates for HCC

diagnosis and treatment. ACACA promotes HCC malignancy by

aberrantly activating the Wnt/b-catenin signaling pathway. Its

downregulation significantly suppresses HCC cell migration,

invasion, proliferation, and EMT, while inducing cell cycle arrest

(38). MRPS23 is an independent prognostic marker associated with

tumor size, TNM stage, and overall survival (OS). Silencing MRPS23

reduces HCC proliferation both in vitro and in vivo (39). MRPL3,

primarily studied in early embryonic development, impacts ribosome

assembly and mitochondrial translation. It has been linked to lymph
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node metastasis, higher SBR grading, and Ki-67 expression in breast

cancer, suggesting a role in tumor proliferation (40–42). However, the

connection between MRPL3 and HCC remains largely unexplored,

requiring further investigation.

Hence, we conducted a series of analyses for MRPL3, which has

the highest coefficient in the LMRGmodel, to explore its association

with HCC. MRPL3, which is fully known as mitochondrial

ribosomal protein L3. Whereas mitochondrial ribosomes are

found within eukaryotic cells, which are responsible for

accomplishing the translation process within an organelle like the

mitochondrion (43), its instability and tumor development can lead

to a vicious cycle (44). Therefore, MRP family genes can be used as

markers for cancer diagnosis and prognostic status (45). We

analyzed the expression level of MRPL3 across 33 types of cancer

and discovered that it was significantly elevated in tumor tissues for

most cancers, including HCC. Furthermore, high levels of MRPL3

expression were associated with poor prognoses in many cancers,
FIGURE 8

Comprehensive Analysis of MRPL3 Expression, Prognostic Significance, and Diagnostic Value in HCC. (A) PPI network of all DE-LMRGs.
(B) Differential expression of MRPL3 in hepatic normal and HCC tissues according to TCGA dataset. (C) RT-qPCR results of MRPL3 in hepatic normal
and HCC tissues. (D) RT-qPCR results of MRPL3 in hepatic normal cell line and five HCC cell lines. (E) Western blot results of MRPL3 in hepatic
normal and HCC tissues. (F) Expression of MRPL3 in 33 tumors. (G) Differential expression of MRPL3 in paired samples. (H) Differential expression of
MRPL3 in multiple normal and tumor tissues. (I) The plausibility of MRPL3 for HCC survival prediction. (J) MRPL3 prognostic HR values in multiple
tumor types. *p<0.05; **p<0.01; ***p<0.001.
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such as prostate and colorectal cancer, which was consistent with

the bioinformatics analysis of the MRP family by the article of Yu L

et al. (46). We probed the correlation between MRPL3 and HCC

with in vitro experiments. MRPL3 expression was markedly

elevated in HCC compared to hepatic normal cells and tissues in

RT-qPCR experiments. More promisingly, MRPL3 proved to be a

reliable predictor of prognosis in HCC patients. Experimental

results demonstrated that MRPL3 knockdown influenced key

proteins related to apoptosis, cell proliferation, and migration. A

significant downregulation of MRPL3 markedly impeded the

growth and migration of HCC cells while simultaneously

enhancing their apoptotic response. These researches

demonstrated that MRPL3 may serve as a target to inhibit HCC

tumor progression, thus providing strong support for clinical

decision-making.

To further elucidate the mechanistic relevance of MRPL3 in

HCC, we explored its roles in lactylation and mitochondrial

functions, which revealed its potential as a crucial mediator in

tumor metabolic reprogramming and epigenetic regulation.

MRPL3, identified as a key component of the LMRG model, is

intricately associated with both lactylation and mitochondrial

functions. As a mitochondrial ribosomal protein, MRPL3 is

essential for mitochondrial translation and maintaining

mitochondrial integrity, a critical factor for oxidative

phosphorylation and energy metabolism. Dysregulation of

MRPL3 can destabilize mitochondrial ribosome assembly,
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impairing the electron transport chain and leading to metabolic

reprogramming that supports tumorigenesis. Furthermore,

MRPL3’s overexpression in HCC tissues and cell lines correlates

with metabolic shifts toward glycolysis and lactate accumulation,

hallmarks of cancer metabolism. Lactate, in turn, promotes histone

lactylation, a process influencing gene expression relevant to tumor

proliferation and immune evasion. Our study revealed a significant

correlation between MRPL3 expression and poor prognosis in

HCC, highlighting its role in metabolic adaptation and tumor

progression. PPI analysis further linked MRPL3 with HIBCH, an

enzyme vital for mitochondrial amino acid metabolism, suggesting

a cooperative role in regulating mitochondrial and lactylation-

mediated metabolic pathways. Experimental validation confirmed

that silencing MRPL3 disrupted mitochondrial function and

inhibited HCC cell proliferation, migration, and invasion. These

findings suggest that MRPL3 not only contributes to mitochondrial

metabolism but also integrates lactylation-related epigenetic

regulation, underpinning its critical role in HCC pathophysiology.

Besides, the PPI network revealed that MRPL3 is not only

tightly linked to MRP family genes (MRPS23, MRPL24), but also

closely associated with HIBCH (47). Upregulation of HIBCH is

shown to be connected with poor prognosis in other tumors (48),

which is the same as the upregulation of MRPL3. HIBCH acts as a

hub gene associating prognosis-related LMRGs with other DE-

LMRGs, and its importance in biological processes cannot be

overstated. Research has demonstrated that HIBCH is crucial for
FIGURE 9

Impact of MRPL3 Knockdown on Proliferation and Apoptosis in Hep3B and HCC-LM3. (A) Expression of MRPL3 after silencing. (B, C) Silencing of
MRPL3 in Hep3B and HCC-LM3 cells, respectively, and CCK-8 assay of cell proliferative activity. (D, E) Apoptosis after silencing of MRPL3 in Hep3B
cells. (F, G) Apoptosis after silencing of MRPL3 in HCC-LM3 cells. (H) Western blot detection of MRPL3 apoptosis, migration and invasion related
proteins after silencing in Hep3B cells. **p<0.01; ***p<0.001.
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amino acid metabolism, with its proper function being closely

linked to overall cellular metabolic processes. Mutations in

HIBCH may trigger abnormalities in mitochondrial respiratory

chain enzymes and pyruvate dehydrogenase, which in turn

disrupts respiration and metabolism (49). However, the

underlying link between HIBCH and MRP family members is

currently under-explored. We venture to speculate in this paper

that there may be some as-yet-unknown mechanism of interaction

between MRPL3 and HIBCH capable of modulating the

progression of tumor and thus interfering with respiration and

the TCA cycle.

The LMRG score and MRPL3 both positively correlate with M2

macrophage infiltration, with Chen DY et al. highlighting MRPL3’s

role in M2 macrophage polarization (40). M2 tumor-associated

macrophages suppress inflammation, promote tumor proliferation,

and aid immune evasion (50). Targeting MRPL3 through

immunotherapy may help rebalance the M1/M2 ratio by

reprogramming M2-like macrophage metabolism, potentially

enhancing tumor treatment. The LMRG score also negatively

correlates with CD4+ T memory cells, though MRPL3 shows no

significant association. This discrepancy may stem from ACACA in

the LMRGmodel, as ACACA deficiency is known to enhance CD4+
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T memory cell generation by affecting fatty acid biosynthesis (51).

Immune-enhancing drugs might downregulate prognosis-related

LMRG expression, reducing HCC incidence. Drug sensitivity

analysis identified ML323 as a promising candidate for HCC

therapy. As a USP1 inhibitor, ML323 reduces macrophage

infiltration, regulates CD4+ T cell differentiation, and inhibits

Th17 cell development, maintaining immune balance and

exerting anti-tumor effects (52–54). While these findings inform

HCC treatment, they require validation through extensive clinical

trials. Additionally, our LMRG model, based on public datasets,

needs further testing with clinical samples.

Compared to traditional HCC biomarkers such as AFP, DCP,

and GPC3, MRPL3 demonstrated superior predictive power and a

stronger correlation with advanced clinicopathological features.

While AFP is widely used in clinical practice, its sensitivity and

specificity are often limited, particularly in early-stage HCC (55, 56).

Similarly, DCP and GPC3, although valuable, lack the integrative

insights provided by MRPL3 into mitochondrial dysfunction and

metabolic reprogramming (57, 58). Our analysis showed that

combining MRPL3 with AFP in a composite prognostic model

further improved predictive accuracy, emphasizing MRPL3’s

additive clinical utility. These results underscore MRPL3’s potential
FIGURE 10

Migration and invasion ability of MRPL3 in HCC cell lines. (A) Wound-healing assay of silencing MRPL3 in Hep3B and HCC-LM3 cells. (B) Cell
migration and invasion ability of silencing MRPL3 in Hep3B and HCC-LM3 cells. **p<0.01.
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not only as a standalone biomarker but also as a complementary

factor in enhancing the prognostic capacity of existing models.

The features of the article are the LMRG-based prognosis-

related genes as novel options for the diagnosis and treatment of

HCC, with MRPL3 among them avai lab le as a new

immunotherapeutic target. Patients with HCC can undergo

genetic testing based on their LMRG score, allowing for

classification in a high- or low-LMRG-score groups so that

patients can be given appropriate treatment. This will bring new

inspiration for the clinical treatment of HCC.
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