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Exploration of ANKRD27 as an
immune-related prognostic
factor in pan-cancer and
hepatocellular carcinoma
Ningzhe Shen †, Congcong Fan †, Haosun Ying †, Xinmiao Li,
Weizhi Zhang, Jinglu Yu, Jianjian Zheng* and Yifei Li*

Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou, China
Introduction: Ankyrin repeat domain 27 (ANKRD27) has been found to be

associated with certain cancers. However, its clinical potential in pan-cancer

remains unclear.

Methods: Public datasets (TCGA and GTEx) were applied to analyze ANKRD27

expression in multiple cancer types and its correlations with immune scores,

immune checkpoint genes, and immune modulatory genes. We also examined

ANKRD27 expression in hepatocellular carcinoma (HCC) patients using TCGA

and GSE14520 datasets. The upregulation of ANKRD27 was verified via qRT-PCR

in vitro. Based on TCGA-HCC, external, and GSE14520 cohorts, the associations

between ANKRD27 expression and survival outcome were explored via the

Kaplan-Meier survival curve. The effects of ANKRD27 reduction on HCC cell

growth, movement, and invasion were evaluated by CCK-8, Wound healing, and

Transwell assays.

Results: ANKRD27 exhibited aberrant expression in multiple cancers and was

correlated with immune traits, including immune infiltration, immune checkpoint

genes, and immunemodulatory genes. Elevated expression of ANKRD27 was found

in TCGA-HCC and GSE14520 cohorts and was confirmed in HCC cell lines. HCC

patients with high ANKRD27 expression had poorer prognosis. In vitro, reducing

ANKRD27 decreased the capability of proliferation, migration, and invasion in HCC

cells. High ANKRD27 expression was associated with sensitivity to certain drugs.

Conclusion: ANKRD27 displays abnormal levels of expression in different cancer

types and is linked to immune status in cancer. Furthermore, ANKRD27may serve

as a prognostic predictor for HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignant tumors globally (1–3). Benefiting from the advancement

of therapy methods and drug development, the survival rate of

patients diagnosed with HCC has shown a significant improvement

(4). Nevertheless, the 5-year recurrence rate among individuals

diagnosed with HCC remains alarmingly high at approximately

70%. Additionally, the 5-year survival rate stands at a low rate of less

than 10% (5, 6). As such, there is an imminent need to ascertain

novel targets or biomarkers for the improvement of diagnosis and

prognosis in patients with HCC.

Ankyrin repeat domain 27 (ANKRD27, also known as VARP)

has been reported to be implicated in the pathogenesis of

esophagitis and respiratory diseases (7–10). Additionally,

Mohanad Mohammed et al. demonstrated that ANKRD27 is a

risk predictor of colorectal cancer (11). However, a thorough

investigation of the value of ANKRD27 in pan-cancer and HCC

has not been conducted.

The current research identified abnormal ANKRD27 expression

in various cancer types, including HCC. Within TCGA and

independent cohorts, there was a compelling correlation between

heightened ANKRD27 expression in patients with HCC and an

unfavorable prognosis. Additionally, the association between

ANKRD27 expression and cancer immunity, immune

checkpoints, and anti-tumor medications were explored. Notably,

inhibiting ANKRD27 in vitro significantly reduces the proliferation,

migration, and invasion abilities of HCC cells, highlighting its

potential as an oncogenic driver in HCC.
2 Materials and methods

2.1 Data acquisition

Data of two public pan-cancer cohort (TCGA Pan-Cancer and

TCGA TARGET GTEx) were downloaded from UCSC platform

(12–14). Specifically, data were selected by removing samples with

an expression level of 0 and cancers with less than 3 samples in a

single cancer type. A Log2 (x+1) transformation was performed on

the transcriptome expression values. The GSE14520 dataset was

downloaded from GEO. The data of external cohort were collected

from a local hospital, which is approved by the First Affiliated

Hospital of Wenzhou Medical University (KY2023-198).
2.2 Assessing the prognostic value across
multiple cancer types

Samples with incomplete survival information and clinical

information were excluded. Four types of clinical outcomes

(overall survival (OS), disease-specific survival (DSS), disease-free

interval (DFI), and progression-free interval (PFI)) were used to

assess the prognostic value of ANKRD27 in different cancer types

(15). The `coxph` function from the R package ‘survival’ was used
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in Cox regression analysis (16). The Kaplan-Meier survival curve

was utilized to analyze the prognostic differences between HCC

patients with high- and low- ANKRD27 expression. The Log-rank

test was utilized for statistical assessment to attain significance

in prognosis.
2.3 Immune traits and RNA modification

Firstly, ANKRD27, a set of 60 genes associated with the immune

checkpoint pathway (17), 150 genes related to immune pathways

(18), and 44 marker genes for RNA modifications (19) were

gathered from a dataset of pan-cancer (20). Then, the stromal

scores and the relationship between genes and immune infiltration

scores in individual tumors were calculated via “ESTIMATE” and

“psych” R packages, respectively (21–23). TIMER 2.0 database

provides public immune cell infiltration data for cancers and the

infiltration scores of B cell, T cell CD4, T cell CD8, Neutrophil,

Macrophage, and DC were measured using the R package”IOBR”

(24, 25). The relation between ANKRD27 expression and genes

related to immunostimulators, immunoinhibitors, chemokines,

chemokine receptors, and MHC was analyzed using the

Spearman correlation analysis in R software.
2.4 Exploring the relationship between
ANKRD27 and clinical features

According to the median value of ANKRD27 expression, the

patients with HCC were divided into two groups (high- and low-

ANKRD27 expression groups). The prognostic differences between

the two groups were analyzed via R package “survival”, and the

significance of the prognostic differences between the two groups

was assessed using the Log-rank test. The R package ‘pROC’ was

used to conduct Receiver Operating Characteristic (ROC)

analysis (26).
2.5 Functional enrichment

Differentially expressed genes (DEGs) between high- and low-

ANKRD27 expression groups were identified by R package “limma”

(27) following the criteria: p < 0.05 and |log2-fold change (FC)| >

1.5. Functional enrichment analyses, including Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG),

were conducted via R package “clusterProfiler” (28). GSEA analysis

was performed with GSEA software (29).
2.6 Drug sensitivity

Predicted the chemotherapeutic response for each sample based

on the largest publicly available pharmacogenomics database (the

Genomics of Drug Sensitivity in Cancer, GDSC) (30). The

prediction was implemented by R package “oncoPredict” (31).
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2.7 Cell culture and quantitative real-
time PCR

HCC cell lines (Huh-7 and Hep-G2) and normal hepatic

cell line (LO2) were cultured with mediums in 5% CO2 at 37°C.

The cell lines were obtained from the Servicebio company.

Total mRNA was extracted with Trizol reagent, followed by

reverse transcription into cDNA with Revert Aid First Strand

cDNA Synthesis Kit. SYBR Green Master Mix was applied

to conduct qRT-PCR, and the relative mRNA levels were

commutated via the 2-DDCT method with GAPDH as an internal

reference. The primer sequences of ANKRD27 and GAPDH are

shown in Supplementary Table S1.
2.8 Western blotting

The cells were washed in PBS and lysed with RIPA buffer

supplemented with a protease inhibitor cocktail. The BCA protein

assay kit quantified the protein concentration. Proteins were

separated using SDS-PAGE gels and subsequently transferred to

PVDF membranes. These membranes were subsequently blocked

and subjected to overnight incubation with primary antibodies at 4°

C. Following incubation with secondary antibodies, the protein

bands were observed and measured using the chemiluminescence

detection system and ImageJ software, respectively, with GAPDH

serving as the reference standard.
2.9 Transfection

ANKRD27-targeted specific small interfering RNA (si-

ANKRD27) was synthesized by Genepharma (Suzhou, China).

Briefly, cells (6 × 104 cells/well) were added into 6-well plates,

incubating at 37°C under 5% CO2 conditions. Then, Huh-7 cells

were transfected with si-ANKRD27 to knock down ANKRD27

expression following the manufacturer’s protocol. The sequences

of si-ANKRD27 are listed in Supplementary Table S2.
2.10 Cell proliferation, migration, and
invasion assays

ANKRD27-knockdown Huh-7 cells were seeded in 96-well

culture plates (2 × 103 cells per well). The absorbance at 450 nm

was measured daily for three consecutive days using the CCK-8

kit. Transwell chambers were placed into a 24-well plate to detect

the invasion ability of the Huh-7 cells with or without si-

ANKRD27 transfection. For the wound healing assay, 5 × 104

cells were seeded onto 6-well plates at 48 h after RNA

transfection. After reaching 90% - 95% cell fusion, the layer was

scratched with a 1000 ml pipette tip. Images were captured using

microscopy at 0h and 24h after wounding. All assays were

conducted independently in triplicate.
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2.11 Statistical analysis

The Kruskal-Wallis test was used to assess the gene expression

in different tumor tissues. The Wilcoxon rank-sum test was used to

compare gene expression between normal and tumor tissues. For

comparison analysis, we employed unpaired Student’s t-test and a

one-way analysis. Discrepancies in genes mutation frequency across

samples was analyzed by the chi-square test. R software or

GraphPad Prism was applied in the process of statistical analyses,

with significance set at p <0.05.
3 Results

3.1 Pan-cancer analysis of ANKRD27
gene expression

To elucidate the expression of ANKRD27 from a pan-cancer

perspective, pan-cancer data were collected, encompassing the data

derived from the TCGA and GTEx databases. According to the data

from TCGA, it was demonstrated that ANKRD27 expression was

increased in twelve different cancer types, including LIHC, COAD,

ESCA, and others, while significantly lower in nine cancer types,

encompassing GBM, LUAD, KIRC, and others (Figure 1A).

Further, the GTEx database has been introduced to expand the

number of normal samples. As shown in Figure 1B, ANKRD27 was

aberrantly expressed in most cancers (eighteen cancer types),

including LIHC, LAML, STAD, and others.
3.2 Survival analysis

To gain insight into the prognostic value of ANKRD27, four

types of clinical outcomes (OS, DSS, DFI, and PFI) were analyzed.

As shown in Figure 2A, heightened ANKRD27 expression emerged

as a prognostic risk factor among patients afflicted with LGG,

LAML, LIHC, BRCA, MESO, and ACC. Further, a prognostic

analysis of DSS substantiated a significant correlation between

ANKRD27 expression and five distinct tumor types, namely LGG,

LUSC, MESO, LIHC, and ACC (Figure 2B). Regarding DFI, it was

found that heightened ANKRD27 expression may exert a risk factor

among patients diagnosed with CESC, LUSC, and LIHC

(Figure 2C). Additionally, PFI prognostic analysis indicated that

high expression of ANKRD27 was suggestive of a worse outcome

for patients afflicted with LGG, LIHC, LUSC, ACC, CESC, and

SKCM (Figure 2D).
3.3 Correlation between ANKRD27 and
immune traits

In order to gain an in-depth understanding of the impact of

ANKRD27 on the tumor microenvironment (TME), we conducted

an investigation to examine the correlation between ANKRD27 and

the extent of immune traits such as immune cell infiltration,
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immune checkpoints, immune modulation, and stromal score

across diverse cancer types. ANKRD27 exhibited a significant

negative correlation with the extent of immune cell infiltration in

malignancies such as SARC, LUSC, ESCA, and UCSC, which

implied that ANKRD27 might be involved in developing an

immunosuppressive microenvironment in cancers (Figure 3).

Additionally, it was illustrated that ANKRD27 expression showed

a positive correlation with the level of inhibitory immune

checkpoints, such as CD274, PDCD1, CTLA4, and HAVCR2,

across various types of cancer (Figure 4). According to the

analysis of stromal scores, ANKRD27 expression in GBM, SARC,

LUSC, SKCM-P, BRCA, and others was significantly negatively

correlated with immune scores (Supplementary Figure S1).

Additionally, ANKRD27 expression was significantly linked to the

levels of various genes related to immunostimulators,

immunoinhibitors, chemokines, chemokine receptors, and MHC

in a wide range of cancer types (Supplementary Figure S2).
3.4 RNA modification analysis of ANKRD27
in pan-cancer

Gene expression may be impacted by epigenetics, thus, the

correlation between RNA modification and ANKRD27 were

explored. Herein, three modification patterns were analyzed,
Frontiers in Oncology 04
including m1A, m5C, and m6A. Supplementary Figure S3 showed

a strong positive correlation between ANKRD27 and the

expressions of different RNA modification-related genes in

pan-cancer.
3.5 Upregulation of ANKRD27 in HCC

To assess the role of ANKRD27 in HCC development, we first

estimated the expression levels of ANKRD27. In the TCGA and

GSE14520 cohorts, there was a high expression of ANKRD27 in

TCGA and GSE14520 cohorts (Figures 5A, B). Further, the hepatic

carcinoma cell lines, Huh-7 and Hep-G2, were utilized to assess the

expression levels of ANKRD27, with the LO2 (normal hepatic cell

line) serving as a control. The upregulated expression of ANKRD27

was found in Hun-7 and Hep-G2 cell lines compared to LO2

(Figure 5C). The results of ROC curve (AUC value = 0.927)

suggested the favorable predictive accuracy of ANKRD27 in HCC

(Figure 5D). Notably, patients exhibiting heightened expression of

ANKRD27 demonstrated a significantly diminished OS in

comparison to those with lower ANKRD27 expression levels

(Figure 5E). Additionally, in external cohort and GSE14520

cohort, patients with high ANKRD27 expression showed poorer

survival probability as well (Supplementary Figures S4A, C). In

external cohort, the time-dependent ROC analysis exhibited AUC
FIGURE 1

Pan-caner analysis of ANKRD27 expression. (A) TCGA. (B) TCGA+GTEx. (*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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values of 0.794, 0.614, and 0.636 at 1, 2, and 3 years, respectively

(Supplementary Figure S4B). In GSE14520 cohort, the AUC values

of 1, 2, and 3 years were 0.664, 0.664, and 0.672, respectively

(Supplementary Figure S4D). The above findings suggested the

favorable predictive accuracy of ANKRD27.
3.6 Correlation between ANKRD27 and
clinicopathological parameters

Next, to evaluate the potential of ANKRD27 in clinical

application, we analyzed the correlation between ANKRD27 and
Frontiers in Oncology 05
different clinicopathological features (age, sex, TNM stage,

histological grade, and pathological stage). The research findings

demonstrated that HCC patients with high expression of

ANKRD27 exhibited elevated pathological stage, histological

grade, and TNM stage compared to the control group

(Figures 6A, B; Supplementary Figure S5). Univariate Cox

regression analysis unveiled that ANKRD27 was a prognostic

indicator for HCC (Figure 6C). Moreover, for patients with HCC,

ANKRD27 was identified as an independent risk factor by

multivariate Cox regression analysis (Figure 6D). These findings

underscored the potential of ANKRD27 as a prognostic factor for

patients with HCC.
FIGURE 2

Prognostic value assessment in pan-cancer. (A) OS. (B) DSS. (C) DFI. (D) PFI.
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3.7 Analysis of functional enrichment
and mutation

Analysis of somatic mutations showed that high expression of

ANKRD27 may induce high-frequency mutations in genes such as

TP53, PREX2, and RPS6KA3 (Figure 7A). The DEGs were used for

GO and KEGG functional enrichment analyses. Remarkably, HCC

patients with high ANKRD27 expression exhibited a significant

enrichment of cancer-related gene sets. GO enrichment analysis

revealed that high expression of ANKRD27 enriched in

chromosome segregation, spindle, and protein serine/threonine

kinase activity (Figure 7B). For KEGG analysis, the endocytosis and

cell cycle pathways were enriched (Figure 7C). The GSEA analysis was

further performed. Within the Hallmark gene set, the Wnt/b-Catenin
pathway and the G2M_checkpoint pathway was significantly enriched

in high-ANKRD27 expression groups (Figure 7D). In the KEGG gene

set, the homologous recombination and the DNA replication pathway

were significantly enriched (Figure 7E).
3.8 Immune checkpoints and
drug sensitivity

Immunotherapy targeting immune checkpoints plays a vital

role in the treatment of cancer (32). Thus, we investigated the
Frontiers in Oncology 06
correlation between ANKRD27 and immune checkpoint molecules.

It was found that CD274, CTLA4, HAVCR2, PDCD1 and TIGIT

was significantly increased in the high-ANKRD27 expression group

(Figure 8A). There were positive correlations between ANKRD27

and CD274, CTLA4, HAVCR2, PDCD1 as well as TIGIT in TCGA-

HCC cohort and external cohort (Figure 8B; Supplementary Figure

S6A). Furthermore, it was found that the knockdown of ANKRD27

in HCC cells led to a decrease in the expression levels of multiple

immune checkpoints (Supplementary Figure S6B). These findings

suggested that increased ANKRD27 expression may enhance

immune escape in HCC.
3.9 Drug sensitivity

Rapamycin (33), Cisplatin (34), Doxorubicin (35), Sorafenib

(36), Roscovitine (37), and Mitomycin (38) are common

chemotherapeutic drugs for patients with HCC. As shown in

Figures 8C-F, compared to the patients with low ANKRD27

expression, individuals within the high ANKRD27 expression

exhibited lower IC50 concentrations of Rapamycin, Cisplatin,

Doxorubicin, and Sorafenib. It indicated that patients with

elevated ANKRD27 expression may exhibit heightened sensitivity

to a range of therapeutic agents, including Rapamycin, Cisplatin,
FIGURE 3

Association between ANKRD27 and immune cell infiltration in pan-caner. (*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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Doxorubicin, and Sorafenib. By contrast, HCC patients with high

ANKRD27 expression presented drug resistance on Roscovitine

treatment (Figure 8G). No notable disparity in drug sensitivity to

Mitomycin was observed between the groups characterized by high

and low expression of ANKRD27 (Figure 8H).
3.10 Validation of the role of ANKRD27 in
biological behaviours of HCC cells

Furthermore, the capabilities of HCC cells in proliferation,

migration, invasion were assessed after ANKRD27 knockdown.

Two types of si-RNA targeting ANKRD27 (si-ANKRD27#1 and
Frontiers in Oncology 07
si-ANKRD27#2) were synthesised. Based on the efficiency of

knockdown, si-ANKRD27#2 was selected (Figure 9A).

ANKRD27 knockdown exerted an inhibitory effect on the

proliferative capacity of HCC cells, as evidenced by the CCK-8

assay (Figure 9B). Wound healing assay demonstrated that

ANKRD27 knockdown attenuated the migratory ability of HCC

cells (Figure 9C). Additionally, the transwell assay demonstrated

that ANKRD27 knockdown significantly reduced the number of

cells passing through the wells, suggesting that ANKRD27

knockdown impairs the invasive ability of HCC cells

(Figure 9D). Thus, the negative effect of ANKRD27 knockdown

on HCC cell proliferation, migration, and invasion was confirmed

in vitro.
FIGURE 4

Association between ANKRD27 and immune checkpoints in pan-caner. (*p < 0.05).
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FIGURE 5

High expression of ANKRD27 and poor prognosis in HCC. (A) High expression of ANKRD27 in TCGA-HCC cohort. (B) High expression of ANKRD27 in GSE14520
cohort. (C) Validation of high ANKRD27 expression in HCC cell lines (Huh-7 and Hep-G2) and normal hepatic cell line (LO2). (D) The diagnostic value of
ANKRD27 expression in normal individuals and cancer patients. (E) The OS survival curve between high- and low- ANKRD27 expression groups. (***p < 0.001).
FIGURE 6

Association between ANKRD27 and clinicopathological characteristics of HCC. (A, B) Comparison of ANKRD27 expression in normal liver tissue and
cancer tissue with different clinicopathological features, including pathological stage (A) and histological grade (B). (C) univariate cox regression
analysis. (D) multivariate cox regression analysis.
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4 Discussion

Previously, ANKRD27 has been reported to be involved in

endosomal transport in vivo (39). Moreover, ANKRD27 has been

shown to participate in diseases prognosis, including eosinophilic

esophagitis, Uveal Melanoma and colorectal cancer (7, 11, 40). In

the present study, we conducted assessment of the role of

ANKRD27 in pan-cancer. Furthermore, ANKRD27 was

demonstrated to serve as a prognostic biomarker and was

considered an immune-related factor for HCC.
Frontiers in Oncology 09
Expression analysis utilizing data from public datasets (TCGA

and GTEx) revealed the dysregulated expression of ANKRD27 in

multiple cancer types. Immune responses play a crucial role in the

TME (41). We investigated the relationship between ANKRD27

and immune cell infiltration, immune checkpoint expression,

stromal scores, and immune modulatory genes at a pan-cancer

level. Significant correlations were observed between ANKRD27

and multiple immune features. For instance, high ANKRD27

expression was associated with elevated immune checkpoint

expression and poor stromal scores. Recently, the role of RNA
FIGURE 7

Analysis of somatic mutation and functional enrichment. (A) Differences in mutation genes between high- and low- ANKRD27 expression groups. (B) Go
enrichment. (C) KEGG pathway enrichment. (D) GSEA analysis in Hallmark gene set. (E) GSEA analysis in KEGG gene set. (*p < 0.05, ** p < 0.01, **** p < 0.0001).
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modification patterns in tumors, including m1A, m5C, and m6A,

has garnered increasing attention (42). m6A, one of the most

prevalent mRNA modifications, is involved in a variety of cellular

processes, such as RNA transcription, translation, and degradation

(43, 44). m5C influences RNA structure and stability, while m1A

affects the structure and function of RNA molecules (45). Studies

have indicated that these modifications are associated with the
Frontiers in Oncology 10
prognos i s o f HCC and play a ro le in the immune

microenvironment (45). In this study, ANKRD27 was found to be

associated with RNA modification-related genes suggesting that

ANKRD27 may influence gene expression and cellular processes,

thereby modulating the progression of tumors.

The specific role of ANKRD27 in HCC were additionally

explored. Analysis of two public cohorts (TCGA and GSE14520)
FIGURE 8

Association between ANKRD27 and immune checkpoints as well as drug sensitivity. (A) Comparison of immune checkpoints expression between
high- and low- ANKRD27 expression groups. (B) Correlation between ANKRD27 and immune checkpoints (CD274, CTLA4, HAVCR2, PDCD1 and
TIGIT). (C) Rapamycin. (D) Cisplatin. (E) Doxorubicin. (F) Sorafenib. (G) Roscovitine. (H) Mitomycin. (** p < 0.01, *** p < 0.001, **** p < 0.0001).
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revealed aberrant expression of ANKRD27 in HCC. Furthermore,

this finding was validated in HCC cell lines (Huh-7 and Hep-G2) in

vitro. Moreover, upregulation of ANKRD27 was associated with

clinical features of HCC, including advanced pathological stage,

higher histological grade, and worse TNM stage. Importantly, in

both TCGA-HCC cohort, external cohort, and GSE14520 cohort,

patients with high ANKRD27 expression exhibited poorer survival

probability, suggesting the potential of ANKRD27 as a prognostic

biomarker in HCC. Mutation analysis showed a tight association

between high ANKRD27 expression and mutations in TP53,

RPS6KA3, and PREX2. TP53 is a critical tumor suppressor gene
Frontiers in Oncology 11
(46), while mutations in RPS6KA3 and PREX2 have been implicated

in the development of liver cancer (47, 48). Recent studies have

indicated that the expression levels of immune checkpoints may be

closely associated with the immunity status of HCC (49, 50). Herein,

ANKRD27 expression was found to be positively correlated with the

expression of multiple immune checkpoint genes. Moreover, it was

found that the knockdown of ANKRD27 led to a decrease in the

expression levels of multiple immune checkpoints. These findings

suggest that ANKRD27may participate in the progression of HCC by

regulating the expression of immune checkpoints. Drug sensitivity

analysis provided insights for therapeutic selection. Notably, patients
FIGURE 9

Knockdown of ANKRD27 impeded the cell capability of HCC. (A) Knockdown efficiency of si-ANKRD27#1 and si-ANKRD27#2. (B) CCK-8 assay
displayed the effect of ANKRD27 knockdown on cell proliferation. (C) Wound healing assay showed the impairment of cell migration on ANKRD27
knockdown. (D) Transwell assay assessed the effect of ANKRD27 on tumor invasion capability. (*** p < 0.001, n.s., no significant).
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with high ANKRD27 expression in HCC were found to be more

sensitive to treatment with Rapamycin, Cisplatin, Doxorubicin, and

Sorafenib. In vitro experiments demonstrated that knockdown of

ANKRD27 weakened HCC cell proliferation, migration, and

invasion, indicating a pro-carcinogenic role of ANKRD27 in HCC.

Based on these findings, designing prospective clinical trials to test

ANKRD27 as a therapeutic target or biomarker for treatment

stratification of HCC patients may be a feasible strategy in

future studies.

Indeed, our study has several limitations. Firstly, the majority of

the findings are based on publicly available data. Given the

limitations of clinical data, which may harbor potential regional

or demographic disparities, there is an urgent need for additional

prospective data to further validate the prognostic value of

ANKRD27 in HCC. Additionally, the specific regulatory

mechanisms still require further investigation.
5 Conclusion

The comprehensive investigation of ANKRD27 in pan-cancer

revealed its prognostic value in cancer. The prognosis, cancer

immunity, and drug sensitivity of patients with HCC are linked

to abnormal ANKRD27 expression. Furthermore, ANKRD27 may

serve as a prognostic predictor for HCC.
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