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Clinical feasibility of Ethos auto-
segmentation for adaptive
whole-breast cancer treatment
Jessica Prunaretty*, Fatima Mekki †, Pierre-Ivan Laurent †,
Aurelie Morel, Pauline Hinault , Celine Bourgier, David Azria
and Pascal Fenoglietto

Radiotherapy Department, Montpellier Regional Cancer Institute, Montpellier, France
Introduction: Following a preliminary work validating the technological

feasibility of an adaptive workflow with Ethos for whole-breast cancer, this

study aims to clinically evaluate the automatic segmentation generated by Ethos.

Material and methods: Twenty patients initially treated on a TrueBeam

accelerator for different breast cancer indications (right/left, lumpectomy/

mastectomy) were replanned using the Ethos
®

emulator. The adaptive

workflow was performed using 5 randomly selected extended CBCTs per

patient. The contours generated by artificial intelligence (AI) included both

breasts, the heart, and the lungs. The target volumes, specifically the tumor

bed (CTV_Boost), internal mammary chain (CTV_IMC), and clavicular nodes

(CTV_Nodes), were generated through rigid propagation. The CTV_Breast

corresponds to the ipsilateral breast, excluding 5mm from the skin. Two

radiation oncologists independently repeated the workflow and qualitatively

assessed the accuracy of the contours using a scoring system from 3 (contour

to be redone) to 0 (no correction needed). Quantitative evaluation was carried

out using the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), surface

Dice (sDSC) and the Added Path Length (APL). The interobserver variability (IOV)

between the two observers was also assessed and served as a reference. Lastly,

the dosimetric impact of contour correction was evaluated. The physician-

validated contours were transferred onto the plans automatically generated by

Ethos in adaptive mode. The dose prescription was 52.2Gy in 18 fractions for the

boost, 42.3Gy for the breast, IMC, and nodes. The CTV/PTV margin was 2mm for

all volumes, except for the IMC (5mm). Dose coverage (D98%) was assessed for

the CTVs, while specific parameters for organs at risk (OAR) were evaluated:

mean dose and V17Gy (relative volume receiving at least 17Gy) for the ipsilateral

lung, mean dose and D2cc (dose received by 2cc volume) for the heart, the

contralateral lung and breast.

Results: The qualitative analysis showed that no correction or only minor

corrections were needed for 98.6% of AI-generated contours and 86.7% of the

target volumes. Regarding the quantitative analysis, Ethos’ contour generation

outperformed inter-observer variability for all structures in terms of DSC, HD,

sDSC and APL. Target volume coverage was achieved for 97.9%, 96.3%, 94.2%

and 68.8% of the breast, IMC, nodes and boost CTVs, respectively. As for OARs,

no significant differences in dosimetric parameters were observed.
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Conclusion: This study shows high accuracy of segmentation performed by

Ethos for breast cancer, except for the CTV_Boost. Contouring practices for

adaptive sessions were revised following this study to improve outcomes.
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1 Introduction

Breast cancer (BC) is the most frequently diagnosed cancer and

the leading cause of cancer-related death in women worldwide,

according to the latest GLOBOCAN study (1). Breast-conserving

surgery followed by whole breast irradiation is the current standard

of care for patients with early stage BC (2). In recent years, advanced

radiotherapy techniques such as Intensity Modulated Radiation

Therapy (IMRT), Simultaneous Integrated Boost irradiation or

deep-inspiration breath hold have played a crucial role in improving

the precision of radiation delivery to tumors. These techniques

effectively maximize the target dose while minimizing toxicity to

normal tissues and sparing surrounding organs at risk (OAR) (3–6).

Adaptive radiotherapy (ART) is also being investigated for this

indication (7). In fact, breast cancer patients have many anatomical

variations: heart movement, breathing, arm position can all lead to

changes in breast position and shape, as can seroma and swelling

following radiation or surgery (8). The ART would therefore allow

treatment margins to be reduced, and consequently the volume

irradiated. Nevertheless, segmentation remains a key step in online

ART (oART), as it must be as short as possible while ensuring high

delineation accuracy, given the significant consequences of

radiation treatment errors.

With the advent of artificial intelligence (AI) and deep learning

(DL), the accuracy of auto-segmentation has improved significantly,

particularly for organs at risk, and its use in routine clinical practice is

now widespread (9). Various commercial software solutions are

available for auto-segmentation and offer high-quality, consistent

contours with comparable performance (10, 11). However,

delineation of the clinical target volume (CTV) is more challenging

due to factors such as physician experience, contouring techniques,

and variations in delineation guidelines (12–14). As a result, manual

peer review and quality assurance procedures are still recommended

before clinical application (15, 16).

The Varian Ethos system (Varian Medical Systems, Palo Alto,

CA, USA) uses Cone Beam Computed Tomography (CBCT)for

oART and employs DL-based algorithm and structure-guided

deformation for structure segmentation (17). So far, Ethos’

experience with oART for breast cancer has been limited to

partial breast irradiation (18, 19) and our own technological

feasibility study for whole-breast irradiation (20). To our
02
knowledge, this is the first clinical study to evaluate the

performance of Ethos auto-segmentation in breast cancer with

regional lymph nodes.
2 Material and methods

2.1 Patient selection

This study was conducted using data from 20 patients who were

treated for invasive breast cancer between November 2021 and

December 2022 on a TrueBeam accelerator. Patients were included

regardless of age, histological subtype, tumor grade, type of surgery

(lumpectomy or mastectomy), or whether they received

neoadjuvant chemotherapy. Patient characteristics are

summarized in Table 1.
2.2 Treatment planning

Patients underwent Computed Tomography (CT) scans (GE

Optima CT580, General Electric Healthcare, Waukesha, WI, USA)

with a 2.5 mm slice thickness, in the supine position, free breathing,

with both arms positioned above the head and supported by a

personalized foam cushion.

The ESTRO consensus guidelines (21, 22) were used to

delineate target volumes, breast/wall, and axillary (Berg I);

subclavicular (Berg II, III) and supraclavicular (Berg IV) lymph

nodes (Nodes hereafter); and internal mammary chain (IMC).

Organs at risk were delineated following French RecoRad 2022

(23) recommendations using TheraPanacea software (24).

The prescribed doses for target volumes were 52.2 Gy for the

tumor bed (boost) and 42.3 Gy for the breast, internal mammary

chain (CTV_IMC), and clavicular lymph nodes (CTV_Nodes) over

18 fractions. CTV-PTV margins were set at 2 mm for all areas

except for the IMC, where a 5 mm margin was applied. Dose

constraints for the CTVs and organs at risk (OAR) are outlined in

Table 2. The dose prescription, PTV margins, and dose constraints

were based on the clinical trial “Adaptive radiotherapy in

hypersensitive and high locoregional risk breast cancer

(SAHARA-04).” (25).
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2.3 Ethos auto-segmentation

The Ethos adaptive workflow for breast cancer was reproduced

using a Varian Ethos emulator (v1.1, Varian Medical Systems, Palo

Alto, CA). The AI generates the contours of the influencer structures

(also known as organs that influence on the shape and position of the

target), namely the right and left breasts (or chest walls), both lungs

and the heart. The Varian’s in house AI-based algorithm uses

convolutional neural networks to create the influencers (17). The

contours of the target volumes are then generated by elastic or rigid

registration, according to the user’s choice, to define the CTV_Boost,

the CTV_IMC and the CTV_Nodes. The target propagation is based

on structure-guided deformations (resulting from the influencer and

bone structures generated in the previous step). Our previous study

showed a better contour accuracy with rigid propagation and will be

the reference propagation for this study (20). The CTV_Breast and

CTV_Chestwall are derived structures from the breast and chestwall

excluding the 5mm beneath the skin.
2.4 Contour accuracy

For each patient, 5 extended CBCTs performed initially for

their treatment, were randomly selected in order to simulate 5
Frontiers in Oncology 03
adaptive sessions. First, two radiation oncologists independently

repeated the adaptive workflow and each Ethos ’ auto-

segmentation contour (influencers and target volumes) were

reviewed. A qualitative evaluation using a physician’s rating was

performed for each structure and each adaptive session (i.e 8

structures per CBCT and a total of 100 CBCTs). The scores were

defined as follows:

0- No correction needed

1- Minor corrections (≤ 25% of the structure volume)

2-Major corrections (>25% of the structure volume)

3- Contour not usable

Once the score was assigned, the radiation oncologists corrected

the contours online, if necessary, by comparing them with the

original contours delineated on the simulation CT. A quantitative

study was then carried out by comparing the automatically

generated contours and the physicians’ contours using similarity

metrics. The Dice similarity coefficient (DSC) and the Hausdorff

distance (HD) were chosen because of their frequent use in the

literature (26, 27) and their complementary properties. However,

these two metrics do not correlate with the time required to edit

contours. The surface Dice similarity coefficient (sDSC) (28) and

the added path length (APL) (29) are more suitable for evaluating

time savings (29). Unlike the DSC, which measures on the overlap

between two volumes, the sDSC measures the similarity between

two surfaces. The APL, on the other hand, is defined as the

additional distance to overlap the two contours. The interobserver

variability (IOV) between the two physicians was also assessed and

served as a reference.
2.5 Dosimetric evaluation

The automated planning process resulted in the adapted plan

generated by Ethos without editing contours. When evaluating the

resulting dose to the physicians’ contours, several dose-volume

histogram parameters were analyzed using some dose constraints
TABLE 2 Dose constraints for CTVs and organs at risk.

CTV constraints

CTV Boost D98% ≥ 49.6Gy D2% ≤ 108%

CTV Breast/Chestwall D98% ≥ 40.2Gy D2% ≤ 108%

CTV nodes (IMC and CLN) D98% ≥ 38.07Gy D2% ≤ 106%

OAR constraints

Heart V17Gy < 10% V35Gy < 5%

Ipsilateral lung V17Gy < 30% Dmean < 16Gy

Lungs V17Gy < 22%

Brachial plexus Dmax < 46.25Gy

Spinal cord Dmax < 38.54Gy

Contralateral breast Dmean < 2Gy

LAD coronary Dmax < 17Gy
(if possible)
frontiersin.org
TABLE 1 Patient characteristics, including treatment side, type of
surgery, and volume of breast/chest wall CTV.

Patient Laterality Type
CTV Breast/Chest
Wall Volume (cc)

1 Right Conserving surgery 802.5

2 Right Conserving surgery 489.7

3 Right Conserving surgery 904.6

4 Right Conserving surgery 501.2

5 Right Conserving surgery 381.5

6 Left Conserving surgery 575.0

7 Left Conserving surgery 754.2

8 Left Conserving surgery 692.5

9 Left Conserving surgery 870.3

10 Left Conserving surgery 475.4

11 Right Mastectomy 415.9

12 Right Mastectomy 274.0

13 Right Mastectomy 527.8

14 Right Mastectomy 250.3

15 Right Mastectomy 516.1

16 Left Mastectomy 384.5

17 Left Mastectomy 237.6

18 Left Mastectomy 368.5

19 Left Mastectomy 621.1

20 Left Mastectomy 623.6
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provided by the SAHARA-04 protocol and some additional relevant

parameters. To study the target volume coverage (boost, breast/

chestwall, IMC and CLN), the dose received by 98% of the volume

(D98%) was used. For the organs at risk (OAR), the mean dose and

the doses received by 2cc (D2cc) was recorded for the heart,

contralateral breast and both lungs; the volume receiving 17 Gy

(V17Gy) for the ipsilateral lung was evaluated too. The Mann-

Whitney test was applied to assess the significant differences

between the doses received by the Ethos contours and the

physician contours.
3 Results

3.1 Contour accuracy

Figure 1 shows the distribution of qualitative scores assigned by

the two radiation oncologists to the structures generated by AI

(influencers) and the CTVs produced through rigid propagation. In

total, 98.6% of the influencers required no or minor adjustments,

compared to 86.7% of the CTV contours. The lowest score was

observed for the CTV_Boost with 22.2% of the contours considered

not usable or requiring major corrections.

Quantitative results, including DSC, HD, sDSC, and APL for

the Ethos contours, along with the corresponding inter-observer

variability (IOV), are displayed as boxplots in Figure 2. For the

influencer structures (i.e., both breasts, both lungs, and the heart),

the DSC and sDSC median values exceeded 0.9, while the HD

median values were below 20mm. The median APLs showed the

highest values for both lungs. Additionally, autocontours

consistently outperformed inter-observer variability across all

metrics. For the CTVs propagated rigidly, the median DSC and

sDSC were above 0.8, and the median HD was less than 10mm. The

median APLs achieved the highest values for CTV_Nodes. Once

again, autocontours outperformed inter-observer variability across

all metrics. Figure 3 shows an example of CTV_IMC delineation

comparison with the worst DSC results (DSCauto vs Med1 = 0.34;

DSCauto vs Med2 = 0.44; DSVIOV = 0.56) in axial (left) and sagittal

(right) slices.
Frontiers in Oncology 04
The comparison of dose metrics for the OARs is presented in

Table 3. The dose differences between the auto-generated and

physician contours were less than 0.1 Gy, except for the heart,

where an increase of 0.6 Gy was observed for D2cc. However, no

statistically significant difference was found.

The results of the dosimetric evaluation of the CTVs are shown in

Figure 4. The CTV coverage constraints, based on D98% > 95% for the

CTV_Boost and CTV_Breast, and D98% > 90% for the CTV_IMC

and CTV_Nodes, were met for 97.9% of the breast structures, 68.8%

of the tumor bed structures, 96.3% of the IMC structures, and 94.2%

of the CLN structures. Figure 5 presents the previous example with

the lowest DSC results (Figure 4), yet the CTV_IMC coverage still

meets the dosimetric constraint (D98% > 90%).
4 Discussion

The aim of this study was to evaluate the clinical application of

Ethos auto-segmentation for online whole breast ART and the

dosimetric impact of physician corrections. While the performance

of the Ethos auto-segmentation in the pelvic region is well

documented (30–34), there are currently no published studies

focusing on its use in whole-breast cancer.

First, the practical relevance was demonstrated by geometric

similarity metrics that exceeded inter-observer variation, with most

structures needing no or minor adjustment. The Ethos system

generated highly accurate influencer structures, with DSC values

above 0.9 and HD values below 20 mm. The highest APL was

achieved for the lungs due to their large volume, and according to

the Vaassen correlation (29), the lungs would require the most

correction time. Regarding the structures produced through rigid

propagation (i.e CTV), the DSC and HD results are satisfactory with

values superior to 0.8 and below 10mm, respectively. CTV_Nodes

was the structure that required more time for correction due to the

highest APL. Our results are in agreement with the other DL-based

segmentation algorithms (35–40). Almberg et al. (35) trained and

validated their own DL-segmentation model and achieved median

DSC values of 0.96, 0.98 and 0.94 for the heart, both lungs and

breast, respectively. For the CTV (IMC and Nodes), their results
FIGURE 1

Qualitative scoring by the two radiation oncologists for all structures.
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FIGURE 3

Example of CTV_IMC delineation with the worst DSC results (DSCauto vs Med1 = 0.34; DSCauto vs Med2 = 0.44; DSVIOV = 0.56) in axial (left) and
sagittal (right) slices.
FIGURE 2

Boxplots of DSC, HD, sDSC and APL for the structures generated by AI (left column) and the structures rigidly propagated (right column). Purple
boxplots correspond to the Ethos contours while grey boxplots show the IOV results.
Frontiers in Oncology frontiersin.org05
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ranged from 0.70 to 0.81, which were lower than those in our study.

This discrepancy is likely due to the different methods used to

generate these structures: Ethos uses rigid propagation for CTVs,

whereas Almberg et al. employed DL-based segmentation.

Evaluating the dosimetric impact of contour corrections is a key

step in assessing system performance, particularly in an online

adaptive workflow where time constraints are critical (16). For

example, although the lung structure had the highest APL median

value, correction were deemed unnecessary due to their minimal

dosimetric impact. In contrast, the CTV_IMC showed the largest

deviation in similarity metrics relative to its volume, yet dose
Frontiers in Oncology 06
coverage remained unaffected, largely because a larger PTV

margin of 5 mm (compared to 2 mm for other CTVs) was used

to account for segmentation uncertainties. The most significant

dosimetric impact was observed for CTV_Boost, with only 68.8% of

the structures meeting the dose coverage requirement. Despite a

standardized protocol for surgical clipping of the breast tumor bed

to facilitate accurate localization of the CTV, CTV_Boost

delineation in our department is performed manually and is

subject to interpretation. In addition, accurate assessment of the

tumor bed on CBCT images, as required by the Ethos adaptive

workflow, can be challenging due to poor image quality, particularly

in soft tissue. Recently, Li et al. (41) developed a contrast learning-

based generative model to generate of high-quality synthetic CT

from low-quality CBCT and evaluated its performance for post-

breast-conserving patients. This method improved the target

delineation, such as the tumor bed region. In addition, the newly

commercialized CBCT technology, the HyperSight imaging

solution (Varian Medical Systems), has shown superior image

quality compared to previous imaging on the Ethos platform,

along with HU accuracy sufficient for direct dose calculation

using the acquired image data (42) and could improve the target

delineation in soft tissue (43, 44). However, its performance has not

yet been assessed for breast cancer.

As a result of this study, a change in contouring practice for

CTV_Boost was implemented. In adaptive treatments, CTV_Boost

is now defined by an automatic expansion around the surgical clips,

which are more easily visible on CBCT images. Additionally, a

procedural guide was created to assist radiation oncologists in

managing the breast oART workflow, which includes the

following guidelines:
- No correction required for influencer structures (heart, both

lungs, and breasts)

- No correction needed for CTV_IMC

- Special attention should be given to the CTV, allowing for

rigid movement of the structure (no deformation)

- Verify the surgical clip delineation for CTV_Boost
The primary limitation of this study was the relatively small

cohort of 20 patients. Notably, no specific anatomies, such as breast
FIGURE 4

Percentage of sessions fulfilling the coverage constraint: D98% >
95% for CTV_Breast and CTV_Boost, D95% > 90% for CTV_IMC
and CTV_Nodes.
FIGURE 5

Example of CTV_IMC coverage with the worst DSC results but acceptable CTV dose constraint (D98% Med1 = 96.2%; D98% Med2 = 97%;
D98%Auto = 97.4%).
TABLE 3 Comparison of dose metrics (average ± standard deviation)
between auto and physicians’ contours delineated for OARs.

Auto Physicians p-value

Ipsi_Lung
Dmean (Gy) 8.88 ± 0.92 8.91 ± 0.94 0.355

V17Gy (%) 15.57 ± 3.06 15.63 ± 3.15 0.437

Contra_Lung Dmean (Gy) 2.49 ± 0.40 2.53 ± 0.41 0.766

Heart
Dmean (Gy) 4.08 ± 0.95 4.12 ± 0.95 0.919

D2cc (Gy) 19.8 ± 6.35 20.36 ± 7.12 0.950

Contra_Breast
Dmean (Gy) 2.28 ± 0.43 2.33 ± 0.47 0.910

D2cc (Gy) 12.3 ± 4.51 12.35 ± 4.48 0.811
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expanders, which could challenge Ethos segmentation performance,

were included. Additionally, the study utilized CBCT data from a

TrueBeam accelerator instead of the Ethos system as whole-breast

treatments were only performed on a C-Arm linac during the study

period in our department. However, Cai et al. (45) demonstrated

that O-ring CBCT offers equivalent or superior image quality

compared to C-Arm CBCT images. Therefore, it is reasonable to

assume that the contours generated by Ethos on CBCT images from

both the TrueBeam and the Ethos systems are comparable, if

not improved.
5 Conclusion

This study demonstrated the high accuracy of segmentation

performed by Ethos for breast cancer, with the exception of the

CTV_Boost. Following this study, contouring practices for adaptive

sessions were revised to enhance outcomes and reduce the

segmentation workload.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

JP: Conceptualization, Investigation, Methodology, Writing –

original draft. FM: Data curation, Writing – review & editing. PL:

Data curation, Writing – review & editing. AM: Writing – review &

editing. PH: Software, Writing – review & editing. CB: Writing –
Frontiers in Oncology 07
review & editing. DA: Writing – review & editing. PF:

Conceptualization, Methodology, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The authors declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence andmortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

2. Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am Fam
Physician. (2010) 81:1339–46.

3. Racka I, Majewska K, Winiecki J. Three-dimensional conformal radiotherapy (3D-
CRT) vs. volumetric modulated arc therapy (VMAT) in deep inspiration breath-hold
(DIBH) technique in left-sided breast cancer patients-comparative analysis of dose
distribution and estimation of projected secondary cancer risk. Strahlenther Onkol
Organ Dtsch Rontgengesellschaft Al. (2023) 199:90–101. doi: 10.1007/s00066-022-01979-2

4. Popescu CC, Olivotto IA, Beckham WA, Ansbacher W, Zavgorodni S, Shaffer R,
et al. Volumetric modulated arc therapy improves dosimetry and reduces treatment
time compared to conventional intensity-modulated radiotherapy for locoregional
radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat
Oncol Biol Phys. (2010) 76:287–95. doi: 10.1016/j.ijrobp.2009.05.038

5. Osman SOS, Hol S, Poortmans PM, Essers M. Volumetric modulated arc therapy
and breath-hold in image-guided locoregional left-sided breast irradiation. Radiother
Oncol J Eur Soc Ther Radiol Oncol. (2014) 112:17–22. doi: 10.1016/j.radonc.2014.04.004

6. Sarkar B, Pradhan A. Planning system-dependent recommendations of intensity-
modulated technique for breast radiotherapy: A literature review-based adaptation and
institutional dosimetric experience from a large-volume tertiary cancer care hospital.
J Med Phys. (2023) 48:221. doi: 10.4103/jmp.jmp_51_23
7. De-Colle C, Kirby A, Russell N, Shaitelman SF, Currey A, Donovan E, et al.
Adaptive radiotherapy for breast cancer. Clin Transl Radiat Oncol. (2023) 39:100564.
doi: 10.1016/j.ctro.2022.100564

8. Iezzi M, Cusumano D, Piccari D, Menna S, Catucci F, D’Aviero A, et al.
Dosimetric impact of inter-fraction variability in the treatment of breast cancer:
towards new criteria to evaluate the appropriateness of online adaptive radiotherapy.
Front Oncol. (2022) 12:838039. doi: 10.3389/fonc.2022.838039

9. Erdur AC, Rusche D, Scholz D, Kiechle J, Fischer S, Llorián-Salvador Ó, et al.
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