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Photodynamic diagnosis (PDD) and autofluorescence imaging (AFI) are emerging

cancer diagnostic technologies that offer significant advantages over traditional

white-light endoscopy in detecting precancerous lesions and early-stage

cancers; moreover, they hold promising potential in fluorescence-guided

surgery (FGS) for tumors. However, their shortcomings have somewhat

hindered the clinical application of PDD and AFI. Therefore, it is imperative to

enhance the efficacy of PDD and AFI, thereby maximizing their potential for

practical clinical use. This article reviews the principles, characteristics, current

research status, and advancements of PDD and AFI, focusing on analyzing and

discussing the optimization strategies of PDD and AFI in tumor diagnosis and FGS

scenarios. Considering the practical and technical feasibility, optimizing PDD and

AFI may result in an effective real-time diagnostic tool to guide clinicians in tumor

diagnosis and surgical guidance to achieve the best results.
KEYWORDS

photodynamic diagnosis, autofluorescence imaging, photosensitizer, tumor,
fluorescence-guided surgery, diagnosis, optimization strategy
1 Introduction

Cancer poses a serious threat to global human health and has surpassed cardiovascular

diseases as the leading cause of death in economically developed countries while remaining

a major cause of mortality in developing countries (1). According to the estimates of

GLOBOCAN (2), approximately 20 million new cases of cancer were recorded in 2022,
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with nearly 9.7 million cancer-related deaths. Considering the

growing incidence and mortality rates of cancer, improving

cancer detection to achieve early diagnosis and treatment plays a

crucial role in enhancing the prognosis of cancer patients.

Fluorescence imaging techniques, such as photodynamic

diagnosis (PDD) and autofluorescence imaging (AFI), have

demonstrated significant advantages and potential in the early

detection of cancer (3, 4).

Over the past few decades, significant advancements have been

made in the application of fluorescence imaging technology in

cancer diagnosis, particularly in the field of gastrointestinal tumor

imaging, as well as in the diagnosis of tumors in the respiratory

tract, skin, and bladder (5–8). Currently, fluorescence imaging plays

a pivotal role in tumor diagnosis, surgical guidance, and

intraoperative margin assessment, especially in the early diagnosis

of cancer and intraoperative precision localization, thereby

improving patient prognosis (9, 10). In traditional cancer surgery,

decisions are mainly based on imaging data, the visual appearance

of the tumor, and palpation. In contrast, PDD and AFI provide real-

time, convenient, and accurate fluorescent image guidance for

surgery (4, 6). Traditional endoscopy can only detect lesions

based on the overall morphological changes, which is prone to

missed diagnosis (11). However, PDD and AFI can identify

precancerous changes and early tumors by examining the

microstructural, biochemical, and molecular characteristics.

In addition, The ideal optical diagnostic techniques are non-

invasive, objective, and reusable, offering high diagnostic accuracy

and low toxicity. Nonetheless, no single optical imaging technique

incorporates all these properties. Currently, optimizing or refining

detection techniques has become a routine practice in the process of

cancer diagnosis and surgical excision (12). Therefore, the

optimization of PDD and AFI is of great clinical significance for

improving the diagnosis and surgical guidance of traditional

endoscopy in tumors.
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2 Photodynamic diagnosis

2.1 PDD principles and characteristics

Photodynamic diagnosis (PDD), also known as fluorescence

endoscopy, is an optical diagnostic technique that relies on an

exogenous probe, such as a photosensitizer (PS), as a contrast

mechanism to indicate pathological tissue (13). PS is injected,

which is selectively accumulated in cancer cells, and exposure to

excitation light of a certain wavelength triggers a unique

fluorescence (14) (Figure 1). Thus, the fluorescence produced by

PS differentiates between normal and abnormal tissue (14).

Notably, PDD uses a PS that has a high affinity for tumor tissue,

is highly specific, and is primarily excited in the lower visible blue

wavelength range. Still, the activation of PS in the excited singlet

state is transient, with a lifespan typically ranging from a few

nanoseconds to a few picoseconds. This process does not induce

cell signal death pathways, and can only be used for fluorescence

diagnosis, without causing cell damage (15). Moreover, PDD can be

used to visualize biological tissues and identify disease areas.

Moreover, multiple clinical trials of PDD have shown that its

tumor-detection capabilities exceed that of white-light endoscopy

(WLE) (16, 17), which greatly improves the early diagnosis of

tumors and the prognosis.
2.2 The application and shortcomings
of PDD

Currently, PDD technology is widely applied in the diagnosis of

clinical tumors and fluorescence-guided surgery (FGS) (18, 19). PS

plays an essential role in the PDD process. The compound

selectively accumulates in tumor cells and is activated by light of

a specific wavelength to trigger fluorescence, thereby promoting
FIGURE 1

Photodynamic diagnosis (PDD) is based on the different concentrations of photosensitizer (PS) in normal and tumor tissues. (A) After injection of PS,
under PDD laser light (330-440nm) irradiation, normal tissue emits green fluorescence while tumor tissue displays red fluorescence. (B) Under
excitation light irradiation, the PS molecule absorbs energy from the ground state to the single excited state. Subsequently, the PS returns to the
ground state while emitting light of a higher wavelength (lower energy) than that used for excitation.
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effective PDD (20). In the PDD of tumors, the most commonly used

PSs (mainly second-generation) include 5-aminolevulinic acid (5-

ALA) (21), hexaminolevulinate (HAL) (22), methylene blue (23),

and indocyanine green (ICG) (24), etc. The classification and

characteristics of PS are shown in Table 1.

5-ALA is the most extensively studied photosensitizer to date

and has been approved by the European Union since 2007 for use in

fluorescence-guided resection of malignant gliomas (25). However,

in a systematic retrospective analysis of FGS applications to 467

low-grade gliomas, the results showed that fluorescence positivity

was found in 34 out of 451 (7.3%) of grade II tumors in 5-ALA-

mediated PDD; whereas in 9 out of 16 (56.2%) of grade I tumors,

the mean fluorescence rate of 5-ALA was 9.2% (26). Due to lower

fluorescence rates and limited local bioavailability (e.g., poor

lipophilicity (27)) hinders the use of 5-ALA in daily clinical

practice. Therefore, a more lipophilic PS was synthesized.

Compared with 5-ALA, HAL exhibits a higher efficiency in

converting to protoporphyrin IX (PpIX), stronger tissue

penetration, and a higher PpIX fluorescence intensity at lower

concentrations (28). In a study of 699 nonmuscle invasive bladder

cancer patients, Drejer et al. (29) observed tumor recurrence within

8 months after randomization under HAL-mediated PDD and

WLE examinations. Results showed 117 of 351 patients in the

PDD intervention group had recurrence, while 143 of 348 in the

WLE control group (P=0.049), with an odds ratio of 0.67 (P=0.02,

95% CI: 0.48-0.95). Moreover, Lapini et al. (30) The diagnostic

accuracy of PDD versus WLE in bladder tumors was compared and

the results showed that WLE guided biopsy had a sensitivity of

76.8%, a specificity of 36.5%, a positive predictive value of 50.9%,

and a negative predictive value of 64.8%, while HAL-PDD guided

biopsy had a sensitivity of 99.1% (significantly higher than that of

WLE, p<0.00001), specificity 30.2% (not significantly different from

WLE), positive predictive value 54.9%, and negative predictive value

97.4%. The proportion of patients correctly diagnosed with PDD

and WLE was 97.9% and 88.5%, respectively (p=0.0265). This

further indicated that HAL-mediated PDD has a higher detection

capability for precancerous lesions and early-stage tumors

compared to traditional WLE. However, the HAL excitation

range falls within the visible light spectrum, and the compound

has poor tissue penetration. In contrast, ICG, as a second-

generation photosensitizer excited at near-infrared wavelengths, is
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characterized by safety, simplicity, rapidity, and avoidance of

autofluorescence interference, which has facilitated its widespread

application (31–33). Shiomi et al. (34) and Bargon et al. (24) found

that ICG-mediated PDD had a positive role in detecting and

guiding the localization of intraoperative sentinel lymph nodes in

esophageal cancer and breast cancer, respectively. Nevertheless, the

clinical application of ICG-mediated PDD in tumor diagnosis and

FGS still confronts several challenges. For instance, ICG exhibits a

low photostability, a moderate fluorescence quantum yield, and a

high plasma protein binding rate (35). Simultaneously, the in vivo

fluorescence duration of ICG is brief. This is because free ICG has a

propensity to aggregate rapidly and be eliminated from the body

within the physiological environment (36), and it also demonstrates

a low specificity for target tumor cells (37).

Currently, researchers are attempting to overcome the

shortcomings of second-generation photosensitizers by

developing probes that can specifically recognize and target tumor

cells (e.g., third-generation PSs), ensuring selective recognition and

enhanced diagnostic efficacy (38). Nanoparticles (NPs) have been

employed with great success as passive carriers (39) for the study of

third-generation PSs, such as gold nanoparticles (AuNPs), silver

nanoparticles, polymer nanoparticles, and silicon-based materials

(40, 41). In addition, NPs can achieve passive targeting of tumors

through enhanced permeability and retention (EPR) effects. The

EPR passive uptake effect allows NPs-mediated PS to move freely

into the tumor microvascular system through porous blood vessels

and lymphatic drainage, thereby increasing PS localization in tumor

cells (42). The advantages of bioactive nanoconjugates (BNCs) of

NPs bound to PSs lie in their unique physicochemical properties

(e.g., EPR effect) and the ability to improve the selectivity and

specific targeting of second-generation PS through chemical

modification (43–45). The BNC-mediated PDD process is

displayed in Figure 2.

In addition, the target cell specificity of BNCs can be

significantly improved by modifying the surface of BNC to bind

active targeting fractions, such as antibodies (46). For example,

Deken’s group (47) investigated the in vitro and in vivo antitumor

efficacy of photodynamic diagnosis and therapy using BNCs

targeting HER2, which were found to bind specifically to the

target and showed a higher affinity for HER2-positive tumor cells.

Although BNC-mediated PDD has many advantages and potential
TABLE 1 Characteristics of different generations of PSs.

PS generation Biological characteristics PS Example PDD (exc)/(em)

1st PS*
(Low chemical purity and stability)

Only passive uptake
Low of light absorption and
intracellular localization

Hematoporphyrin (330-410 nm) / (630 nm)

2nd PS
(Overall performance is better than 1st PS)

Shorter half-life
Improved passive uptake and tissue light
penetration
Minimized adverse reactions
Poor water solubility and sub-cellular localization

5-ALA
HAL
ICG
MB

(375-490 nm) / (600-740 nm)
(360-465 nm) / (610-650 nm)
(780 nm) / (820-850 nm)
(670 nm) / (700 nm)

3rd PS
(2nd PS + Nanoparticles +
Target biomolecules)

Deeper tissue light penetration
Improved PS tumor cell specific uptake
and localization

ZnPcS4 + AuNP + Anti-
GCC mAb

(330-350 nm) / (620-640 nm)
*PS, Photosensitizer; 5-ALA, 5-Aminolevulinic acid; HAL, Hexaminolevulinate; ICG, Indocyanine green; MB, Methylene blue; ZnPcS4, Zinc sulfothiolphthalocyanine; AuNP, Gold nanoparticle.
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for clinical applications. However, it faces challenges in mediating

fluorescent diagnostics and surgical navigation, such as in vivo

environmental interference, non-specific binding, altered

photophysical and chemical properties, PS drug release, and

internalization issues (48–50). Moreover, PSs may have negative

effects, such as pain, vomiting, and hypotension (51, 52), which

limits their clinical application to a certain extent. Therefore, there

is a need to further optimize BNC-mediated PDD (Such as reducing

PS side effects and improving BNC optical stability, etc.) to improve

its shortcomings in diagnostic and FGS application scenarios.
3 Autofluorescence imaging

3.1 AFI principles and characteristics

Autofluorescence (AF) is a widespread phenomenon in plants

and animals. Cells and matrices in biological tissues contain many

molecules, such as NADH, FAD, elastin, and porphyrin (53–56),

which can produce AF signals corresponding to their absorption

spectra when irradiated with excitation light of certain

wavelengths (Figure 3).

At the beginning of the last century, scientists discovered that

excised tumor tissues can emit fluorescence under ultraviolet light

irradiation. Subsequently, biologists have conducted extensive

research on various fluorophores within organisms, revealing that

the fluorescence characteristics of these molecules are related to

their physicochemical properties (57, 58). Autofluorescence

imaging (AFI), based on the principle of AF, involves the

emission of longer wavelength AF signals by endogenous

fluorophores in biological tissues under the irradiation of

excitation light at specific wavelengths. These signals are then

collected and processed by special sensors, which display unique

fluorescent images or spectra (59). It is noteworthy that for different
Frontiers in Oncology 04
types of cancer, the AF intensity of cancerous tissues can be either

higher or lower than that of normal tissues, e.g., melanoma’s AF is

higher than that in normal tissues (60), while our team’s previous

study found that the green AF intensity of the cancerous tissues in

the lung parenchyma of lung cancer patients was significantly lower

than that of the normal tissues of the lung cancer patients (61). Our

study suggested that the significantly decreased green AF intensity,

which may result from changes of the AF of keratins, can become a

potential biomarker for non-invasive diagnosis of lung cancer (61).

Therefore, normal tissues can be distinguished from cancerous

tissues based on the differences in the AF images or spectral

signals of the tissues to achieve the purpose of clinical diagnosis.
3.2 The application and shortcomings
of AFI

AFI does not rely on exogenous probes (e.g., ICG (62)) for

labeling and does not require the removal of tissue specimens for

testing (63). Therefore, this method avoids liver and kidney

function damage and many adverse reactions caused by

exogenous tracers. In addition, the superior sensitivity of AFI

compared to WLE may be related to its ability to detect subtle

fluorescence changes produced by precancerous lesions or early

tumors. Differences in overall fluorescence emission between

normal and abnormal tissues are due to differences in fluorescent

molecule concentration, metabolic state, and spatial distribution

(64). And this difference in color or intensity of fluorescence

emission can be captured in real-time in the AF assay for early

microscopic lesions not detected by WLE.

AFI endoscopy (AFIE), which combines AFI technology with a

number of endoscopes commonly used in clinical practice, has

greatly improved the diagnosis of precancerous lesions and early

tumors (11). Early AFIEs were mainly fiber-optic endoscopes,
FIGURE 2

Schematic diagram of the photodynamic diagnosis PDD mediated by a bioactive nanoconjugate (BNC) composed of nanoparticles (NPs), antibody,
and photosensitizer.
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which diagnosed pre-cancerous lesions and early tumors by

detecting real-time pseudo-color images generated by AF of their

own tissues. For example, Niepsuj et al. further tested the detection

capability of AFIE in a study of 34 patients with short-segment

Barrett’s esophagus. Under AFIE and WLE examination, 109 and

136 biopsy specimens were removed from Barrett’s mucosa,

respectively, and it was found that the frequency of detection in

AFIE-guided biopsy specimens was significantly higher than in

WLE-guided biopsy specimens (8.3% vs. 0.7%; p=0.016) (65).

Moreover, Sun et al. (66) conducted a meta-analysis of AF and

white light bronchoscopy (WLB) for detecting bronchial carcinoma.

Ten articles involving 1,830 patients’ data were included. The

results showed that the sensitivity of AFI was 0.92 (95% CI: 0.88-

0.95), which was higher than that of WLB 0.70 (95% CI: 0.58-0.80,

p<0.01). The specificity of AFI was 0.67 (95% CI: 0.51-0.80), while

that of WLB was 0.78 (95% CI: 0.68-0.86, p=0.056). The positive

predictive values of AFI vs. WLB were 85.0% and 76.7% respectively

(p<0.05), and the negative predictive values of AFI vs. WLB were

67.6% and 70.5% respectively (p=0.06). The area under the curve

(AUC) of AFI was 0.92, and that of WLB was 0.81. The Egger test

yielded a P value of 0.225, indicating no publication bias. These

studies demonstrated that AFI detects lesions better than WLB and

has a higher sensitivity. In addition, Moriichi’s team demonstrated

the potential of the AFI system for the detection of precancerous

lesions and early tumors in a study evaluating the grading of

heterogeneous hyperplasia in colon tumors (67). Subsequently,

Takeuchi et al. (68) further tested the detection ability of AFIE

through a multicenter randomized controlled trial. Patients were

randomly divided into the WLE group (404 patients) and the AFIE

group (398 patients). The results showed that the number of flat

tumors detected in the AFIE group was significantly higher than

that in the WLE group (0.87 (95% CI, 0.78-0.97) vs. 0.53 (95% CI,

0.46-0.61)). In another visualization study using AFI video-

endoscopy versus WLE to assess squamous cell carcinoma of the

esophagus and pharynx, Suzuki et al. found that the proportion of

lesions that were clearly visible on AFI video-endoscopy was

significantly higher than on WLE (79% vs. 51%; p<0.05) (69).

These studies demonstrated the potential of AFI for the clinical
Frontiers in Oncology 05
diagnosis of precancerous lesions and early tumors. Furthermore,

AFI has shown great potential in the application of FGS (70). For

instance, Thomas et al. (71) achieved enhanced intraoperative

adrenal visualization and effective tumor resection during

adrenalectomy by introducing near-infrared AFI detection

technology during surgery. In another study on intraoperative AF

detection of parathyroid glands that lasted 5 years, Ladurner et al.

(72) used AFI as a detection method during surgery and examined a

total of 205 parathyroid glands in 117 patients. Among these, 179

glands (87.3%) were correctly identified by AF.

Nonetheless, the clinical application of AFI is circumscribed. In

the current era of high-definition video endoscopes, the image

quality associated with AFIE based on fiber-optic technology is

considerably subpar (the fiber-optic technology provides relatively

low resolution and contrast (73)), and the cumbersome imaging

platform system gives rise to its unsatisfactory operability (68, 73).

Meanwhile, the specificity of AFI diagnosis is relatively low, with a

relatively high false positive rate; the equipment cost of AFI is

higher than that of conventional WLE, and the image quality is

easily disturbed by several factors (such as the internal and external

environments of tissue cells, the imaging environment, the

performance of signal sensors and operation techniques, etc.)

(74–77). To some extent, these drawbacks limit the clinical

application and adoption of AFI systems. Thus, AFI should be

further optimized to improve its deficiencies in diagnostic and FGS

application scenarios, which is of positive significance for

improving the prognosis of cancer patients.
4 Optimization strategy for PDD
and AFI

4.1 Optimization in diagnosis

Effective PDD relies on exogenous probes, selecting PS with

known photophysical and pharmacokinetic properties.

Additionally, exogenous PS exhibits stronger fluorescence than

endogenous fluorophores. However, second-generation PSs have

lower specificity (78), have significant side effects (79), and increase

the cost of medication, thereby limiting the use of PDD in tumor

diagnosis. In addition, PS needs to be injected before the start of

PDD, and the long interval between PS administration and

irradiation greatly extends the duration of diagnosis and

treatment, while reducing the comfort of the therapy (80).

Moreover, the dosage and method of administration for PS have

not been standardized, potentially leading to excessive or

insufficient dosages of PS (81). Therefore, PDD should be further

optimized. For example, BNC (third-generation PSs) can reduce the

adverse effects of PDD, thereby enhancing its potential for clinical

application (82). Simelane’s group (83) successfully prepared a BNC

based on polyethylene glycolated AuNP and showed selectively

improved subcellular accumulation within the target colorectal

cancer, somewhat optimizing the drawbacks of insufficient

PDD specificity.
FIGURE 3

Jablonski diagram illustrates the molecular mechanism of
autofluorescence phenomenon produced by fluorophores under
laser light irradiation.
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Furthermore, regardless of how PS interacts with the target

tissue, the continuous emission of its fluorescent signal will

ultimately generate a certain level of background signal

interference (84). In contrast, activatable fluorescent probes are

optically silent and emit strong fluorescence only in tumors (e.g.,

AVB-620 (85)). Therefore, employing an activatable PS reduces the

interference of background signals and improves the diagnostic

ability of PDD. Nonetheless, PDD-based FGS is still limited to

clinical trials due to the shortcomings of PS drugs. However, these

can be circumvented by AFI, which does not rely on exogenous

probes for tumor detection. Thus, the rapid metabolic clearance of

PS in vivo as well as its adverse outcomes for patients can be

significantly improved by combining PDD with AFI.

The diagnostic fundamentals of AFI and PDD are similar. The

main difference is that the former does not rely on exogenous PS

(Table 2), which greatly avoids unnecessary waiting times and the

toxic side effects of PS. Szygula’s group (86) compared the

sensitivity and specificity of AFI versus PDD in the diagnosis of

bladder tumors, revealing that the sensitivity and specificity of PDD

were 90.91% and 66.60%, as opposed to 97.83% and 70.07% for AFI,

respectively. These results demonstrate that AFI offers a more

sensitive diagnosis of intravesical lesions than PDD (AFI vs.

PDD; p=0.0056). However, the findings of Kriegmair et al. (70)

and Kuiper et al. (87) revealed that AFI had low specificity in the

diagnosis of flat tumors. This may be attributed to the differences in

AFI images or spectra being affected by the internal and external

environment of tissue cells (such as the concentration of

fluorophores, mucosal thickness, blood concentration, etc.) and

their absorption and scattering of light (76, 88). Therefore, AFI

requires further optimization to minimize the impact of

hemoglobin absorption spectra (89).

Moreover, AFI is not as effective as narrowband imaging (NBI)

(90) in observing submucosal blood vessels and mucosal

morphology, thus combining with NBI may further improve the

ability of AFI in tumor diagnosis (91). Additionally, fluorescence

intensity is an important parameter in tumor diagnosis with AFI or

PDD. However, the fluorescence emission spectra of the

fluorophores or PS of interest often overlap with those of other

fluorophores in the body, which poses a certain difficulty in
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distinguishing between them. In contrast, fluorescence lifetime

measurements utilize not only the fluorescence intensity of the

fluorophore but also its fluorescence lifetime (92). Compared to

fluorescence intensity measurements, fluorescence lifetime

measurements provide additional information about the sample

and facilitate the differentiation between scattered light and

potentially endogenous fluorophores (93), and often avoid some

of the factors that affect fluorescence intensity measurements (such

as photobleaching, concentration, wavelength, etc.) (94). Therefore,

combining fluorescence lifetime measurement technology can

further optimize the fluorescence diagnostic capabilities of PDD

and AFI. In the past several years, artificial intelligence (AI)

technology has made profound impact on clinical medicine (95),

including fluorescence-based diagnostics (96). Currently, AI

technologies are widely used to enhance fluorescence imaging,

process large amounts of complex and abstract data, perform

pattern recognition and image analysis, and provide intelligent

diagnosis (95, 97). This somewhat ameliorates the poor imaging

quality due to the inadequacy of fluorescent probes. Therefore, a

combined strategy with AI may overcome technical barriers and

improve the diagnostic accuracy of AFI with PDD to meet the

requirements of precision cancer surgery.
4.2 Optimization in FGS

The FGS system employing PDD and AFI mainly consists of

three components: the excitation light source, the signal detector,

and the signal acquisition and processing system, as shown in

Figure 4. These fluorescence-related components are primarily

based on mature technologies and methods that have been widely

used in fluorescence spectroscopy and microscopy (98). However,

the components of the fluorescence imaging system have some

shortcomings that limit their application in FGS. Therefore, each

fluorescence imaging system component should be further

optimized to enhance the application of PDD and AFI in FGS.

Common excitation light sources for PDD and AFI include

traditional light sources (mercury arc lamp systems) and light-

emitting diodes (LEDs). Compared to traditional light sources,
TABLE 2 Characteristics of autofluorescence imaging and photodynamic diagnosis.

Technology Principle Fluorescent probe
Advantages

and Disadvantages
Application
scenario

AFI*

Tissue endogenous fluorophores can
produce Autofluorescence signals
corresponding to their absorption spectra
when irradiated with a certain
wavelength of excitation light

NADH
FAD

Collagen
Keratin

PpIX and Porphyrins

Advantages: Real-time, rapid, without PS,
economical and prevent the negative
effects of non–uniform distributions of
the probes
Disadvantages: Low fluorescence
intensity, poor specificity and
tissue penetration

Diagnosis / Fluorescence
Guided Surgery

PDD
This optical diagnostic technique
employs PS as a contrast mechanism for
the identification of pathological tissue

5-ALA
HAL
ICG
BNC

Advantages: High specificity, clear
imaging and deep tissue penetration
Disadvantages: Time-consuming,
poisonous side effect and rapid clearance
of PS

Diagnosis / Fluorescence
Guided Surgery
*AFI, Autofluorescence imaging; PDD, Photodynamic diagnosis; PS, Photosensitizer; 5-ALA, 5-Aminolevulinic acid; HAL, Hexaminolevulinate; ICG, indocyanine green; NADH, Nicotinamide
adenine dinucleotide; FAD, Flavin adenine dinucleotide; PpIX, Porphyrins IX; BNC, Bioactive Nanoconjugate.
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LEDs are characterized by longer lifespan, narrower bandwidth

emission (typically 20-30 nm), and higher signal-to-noise ratio (99).

However, the narrower bandwidth implies that LEDs are not

suitable for use with fluorophores with small Stokes shifts. The

laser light sources have high selectivity in wavelength, which is

typically much more intense; even if the wavelength does not

perfectly match that of the target fluorophore, these light sources

can still trigger fluorescence, such as laser diodes (100) and super-

continuum laser sources (101). Nevertheless, the size and cost of

laser light sources are higher than those of LEDs, which limits their

application in FGS. Therefore, new laser light sources should be

optimized to overcome their bulky size, simplify systems, and

decrease cost in the application of PDD and AFI in FGS.

Fluorescence signal detectors are essential components of

fluorescence imaging systems. Photomultiplier tubes (PMTs) are

the most commonly used non-photon number-resolving detectors

in biology and medicine and are characterized by high gain, low

noise, fast response, and low-temperature sensitivity (102).

Nonetheless, PMTs are bulky in size, require a high-voltage

power supply, and are sensitive to magnetic fields (77). In

contrast, silicon photomultipliers (SiPMs) have the advantages of

small size, low energy and bias voltage requirements, high quantum

efficiency, and insensitivity to magnetic fields, and they are

relatively less expensive (103). To some extent, SiPMs provide an

excellent alternative solution to traditional PMT detectors.

Meanwhile, the development of some photon number resolving

(PNR) detectors, such as supercon-ducting nanowire single-photon

detectors (104) and transition edge sensors (105), has greatly

improved the negative impact on experiments caused by the lack

of PNR capability in non-PNR detectors (e.g., SiPM). Additionally,

the development of charge-coupled device (CCD) cameras based on
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semiconductor materials, including electron-multiplying CCD

(106), has allowed detectors to amplify signals on the chip and

bypass readout noise to maintain high sensitivity at high speeds.

This effectively enables real-time imaging, particularly the

visualization of the structure of target tissues through real-time

fluorescence intensity signals, and has become one of the most

commonly used detectors in the FGS systems (107). Furthermore,

the complementary metal-oxide-semiconductor can provide higher

image acquisition speeds, lower power consumption, and is less

costly to manufacture than CCD (77). In conclusion,

semiconductor, PNR, and non-PNR detectors each have their

advantages; the development of suitable fluorescence detectors is

an important strategy to optimize the application of PDD and AFI

in FGS.

Currently, the fluorescence signal acquisition and processing

system mainly applies the fluorescence imaging and fluorescence

spectroscopy methods. The former method collects AF images of

different tissues through detectors and directly visualizes tumor cells

based on the fluorescence images (108). This approach is simple,

intuitive, has a large detection range, can diagnose in real-time, and

does not require complex equipment, which is very favorable for

clinical applications. Kriegmair et al. (70) used pseudocolor image

processing to display composite autofluorescent images to

differentiate between normal and cancerous tissues, achieving a

diagnostic sensitivity and specificity of 96.7% and 53.8%,

respectively. However, the fluorescence imaging method presents

many disadvantages, such as the time-consuming image analysis,

which is highly subjective, and the quality of the image being easily

affected by the surrounding environment.

On the other hand, the fluorescence spectroscopy method is

based on the difference in fluorescence intensity determined by
FIGURE 4

Schematic diagram of the tumor fluorescence-guided surgery system mediated by AFI and PDD, including an excitation light source, appropriate
fluorescence detector, and fluorescence signal acquisition and processing system.
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collecting AF spectra from different tissues (109). Compared to the

fluorescence imaging method, the fluorescence spectroscopy

method is more rigorous and provides higher specificity as it does

not need to be interpreted. Moreover, the spectral signals are rich in

information, including various types of lesions, degree of tumor

differentiation, and tissue subtypes (110). For example, Schuty et al.

(111) analyzed the AF differences between melanoma, nevus, and

normal skin by hyperspectral imaging and spectral vector analysis.

The results indicated that spectral vector analysis has great potential

for the diagnosis of melanoma. However, fluorescence spectroscopy

also has some shortcomings, such as high equipment costs, complex

structure, and the inability to visually display lesions. Moreover, this

method is not as precise and convenient as fluorescence imaging in

guiding surgical positioning. Therefore, combining fluorescence

spectroscopy with fluorescence imaging may represent a potential

approach to the FGS process.

Furthermore, in the field of FGS, the application of AI

technology can enhance image recognition and provide surgical

planning and decision making, ultimately achieving accuracy and

safety in FGS (112). For example, Hardy et al. assessed the

diagnostic efficacy of machine learning (ML) on regions of

interest (ROI) in ICG-mediated FGS for 24 patients with

colorectal liver metastases (CRLM). The results showed that the

ML algorithms achieved a classification accuracy of 97.2% for

CRLM ROIs (n = 132) within the 90s of ICG injection and all

benign lesion ROIs (n = 6). The “Optimized Tree” classifier

demonstrated an average accuracy of 97.2%, with a positive

predictive value of 92.3% for benign lesions (113). Meanwhile,

neural networks (NNs), as a branch of ML, mimics the structure

of the human brain and extracts data features through hierarchical

processing with self-learning and optimization capabilities.

Compared with traditional statistical methods, NNs are superior

in pattern recognition and calibration, reducing individual

differences in fluorescent features (97). For example,

convolutional neural networks (114) effectively process the

fluorescence images generated by the FGS process through image

processing, segmentation, feature extraction, and classification, and

finally improves the accuracy and diagnostic efficacy of FGS.

Finally, the trend of optimizing PDD and AFI by refining

multiple parameters in fluorescence imaging systems will

continue into the foreseeable future, as diagnostic and FGS

applications are poised to reap significant benefits from the

optimization strategy.
5 Conclusions

Fluorescence imaging, as an emerging technology for tumor

diagnosis, facilitates timely detection and treatment of cancer. This

review systematically describes the current research status and

progress of PDD and AFI, highlighting the clinical application

limitations of PDD and AFI for tumor diagnosis and FGS. The

optimization of fluorescent probes, improvement of fluorescent

imaging systems, and combined diagnostic strategies of PDD and

AFI can largely improve their shortcomings in diagnosis and FGS.
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However, well-designed and substantial clinical studies are still

needed to further substantiate this perspective. Further

optimization introduces certain technical challenges to the

application of PDD and AFI, such as the need to balance the

optimal excitation wavelengths for PDD and AFI while reducing the

signal-to-noise ratio, avoiding interference from ambient light in

imaging, and optimization of AI-based fluorescent signal processing

algorithms, etc. With further preclinical research and clinical trials,

we believe that optimized PDD and AFI will be widely applied in

clinical practice.
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