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Reversing NK cell exhaustion: a
novel strategy combining
immune checkpoint blockade
with drug sensitivity
enhancement in the treatment of
hepatocellular carcinoma
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Anling Li, Yujie Lu and Bangde Xiang*

Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
Hepatocellular carcinoma (HCC) is one of the most common lethal cancers

worldwide. Natural ki l ler cells (NK cells) play a key role in l iver

immunosurveillance, but in the tumor microenvironment, NK cells are readily

depleted, as evidenced by down-regulation of activating receptors, reduced

cytokine secretion, and attenuated killing function. The up-regulation of

inhibitory receptors, such as PD-1, TIM-3, and LAG-3, further exacerbates the

depletion of NK cells. Combined blockade strategies targeting these

immunosuppressive mechanisms, such as the combination of PD-1 inhibitors

with other inhibitory pathways (eg. TIM-3 and LAG-3), have shown potential to

reverse NK cell exhaustion in preclinical studies. This article explores the promise

of these innovative strategies in HCC immunotherapy, providing new therapeutic

directions for optimizing NK cell function and improving drug sensitivity.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world,

accounting for about 90% of all primary liver cancer cases (1–3). Statistics show that HCC

causes about 850,000 new cases and 800,000 deaths each year, and the extremely high

mortality rate highlights a major threat to global public health (2, 4–6). HCC is often
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asymptomatic in the early stages, resulting in most patients being

diagnosed at a later stage, with a poor prognosis and difficult to treat

(7–10). The treatments for HCC include surgery, localized ablation,

liver transplantation, chemotherapy, radiotherapy, and

immunotherapy, etc (11–15). However, due to the complex

structure of the liver and the heterogeneity of HCC, there are

significant limitations in the practical application of these methods

(16, 17). Immunotherapy, especially immune checkpoint inhibitors,

is effective in some patients with HCC, but the overall response rate

is low and drug resistance is easy to (18). Therefore, the

development of new strategies that can augment the effect of the

existing immunotherapeutic treatments is urgently needed.

Natural Killer Cells (NK cells) are an important component of the

innate immune system, capable of rapidly recognizing and clearing

virus-infected and tumor cells without relying on antigen presentation

(19). In the hepatobiliary system of healthy adults, NK cells exhibit a

unique behavioral pattern, with a high activity and frequency,

occupying 22.6% of the total number of Intrahepatic lymphocytes

(IHLs) (20). Studies have shown that NK cells are effective in inhibiting

hepatocellular carcinoma development and progression in the liver
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microenvironment. However, immunosuppressive factors in the tumor

microenvironment, such as TGF-b and IL-10, often impair the anti-

tumor function of NK cells, leading to their functional depletion

(19, 21). NK cell exhaustion refers to the gradual loss of NK cell

function due to prolonged exposure to tumor antigens and inhibitory

signals in the tumor microenvironment, and is characterized by

downregulation of activation receptors, decreased cytokine secretion,

and decreased killing capacity. It is also accompanied by upregulation

of inhibitory receptors such as PD-1, TIM-3, and LAG-3 (Figure 1C)

(22–24). These changes enable tumor cells to evade immune

surveillance and promote growth and metastasis.

Understanding for these mechanisms of immunosuppression

provides new directions for the optimization of immunotherapy.

By combined blockade of multiple inhibitory pathways such as PD-1,

TIM-3, LAG-3, and others, researchers are working to reverse NK cell

exhaustion (25, 26). Emerging therapies such as immune checkpoint

inhibitors, chimeric antigen receptor for NK cells (CAR-NK)

therapies, and immunomodulatory drugs (e.g., IL-15 and IL-2)

show great potential to enhance the antitumor activity of NK cells

and improve drug sensitivity (27–30).
FIGURE 1

(A) Tumor microenvironment of hepatocellular carcinoma (HCC). (B) Workflow of CAR-NK therapy. (C) Overview of inhibitory receptors involved in
the interaction between NK cells and tumor cells. (D) Overview of activating receptors involved in the interaction between NK cells and tumor cells.
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2 Biology of NK cells

2.1 Generation, differentiation and function
of NK cells

NK cells (natural killer cells) are important effector cells of the

immune system responsible for anti-tumor and anti-viral resistance,

derived from bone marrow hematopoietic stem cells and matured

through a multi-step differentiation process (31, 32). Human NK cells

are classified into two major subpopulations based on the expression

of CD16 and CD56. The majority (85%-95%) of NK cells in

peripheral blood are of the CD56-CD16+ subpopulation, displaying

a developmentally mature phenotype and possessing a high degree of

cytotoxicity (33, 34). Unlike T cells, which depend on antigen

presentation, NK cells are capable of lysing without the need for

antigen presentation, and are able to pass through lysates containing

granzyme B and perforin. Cell particles containing granzyme B and

perforin cross the immune synapse to mediate sequential killing of

infected or malignant cells (35).

In contrast, the CD56+CD16- subpopulation has fewer NK cells

and exhibits an immature phenotype. Although the latter have low

cytotoxicity when not activated, they are capable of producing large

amounts of cytokines and exerting potent immunomodulatory effects

when stimulated by pro-inflammatory cytokines (e.g., IL-15) (36, 37).

The two subpopulations complement each other functionally, with

the former being primarily responsible for the direct killing effect, and

the latter playing an important role in immune response via

cytokine secretion.

Upon maturation, NK cells have a potent killing capacity,

although this cytotoxicity is not associated with major

histocompatibility complex (MHC) expression because NK cells

do not express somatically rearranged antigen receptors (38, 39).

Instead, NK cells regulate NK cell activity through a balance of their

activating (e.g., NKG2D, NKp46) and inhibitory (e.g., KIR family)

receptors, thereby killing or causing tolerance in target cells (40, 41).

CD16 (low affinity IgG Fc region receptor III, FcgRIII), the most

potent activating receptor expressed by NK cells and the only

receptor that can activate NK cells on its own, can assist

antibody-mediated immune responses through the antibody-

dependent cell-mediated cytotoxicity (ADCC) pathway (42–44).

The Fc portion of the antibody was engineered to increase its

affinity for CD16a and enhance the ADCC effect. For example,

replacing four amino acids in the Fc region to become a GASDALIE

mutant significantly enhanced the affinity of Fc for CD16a, while

the affinity for CD32b remained almost unchanged (45).

NKG2D protein is an important activating cell surface receptor

protein, which is mainly expressed on cytotoxic immune cells, such

as NK cells, CD8+ T cells, etc (46, 47). The first known NKG2D

receptor is MICA with MICB, which is expressed in a wide variety

of tumors (liver cancer, breast cancer, lung cancer) and organ

transplant recipient MIC is expressed in tissue cells (48–51).

MICA exhibits a very low tumor mutation burden, suggesting

that its expression is not significantly affected by DNA editing

mechanisms, so NKG2DL overexpression may be a potent strategy

for anti-tumor progression (52, 53).
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2.2 NK cells in the liver

NK cells are distributed in high concentrations in the liver,

accounting for 50% of hepatic innate immune cells, making the liver

one of the major sites of NK cell residency (31, 54, 55). This feature

arises from the fact that embryonic hepatic hematopoietic stem cells

are divided into two fractions, one of which continues to remain in

the adult liver, generating the characteristic tissue-resident NK cells

(LrNK) (56).

Compared to peripheral blood, NK cells in the liver differ in

both effector molecule expression and cellular activity. The CD56

+CD16- subpopulation is predominant in the liver (33). LrNK cells

have a suppressive function in the immune tolerance

microenvironment of the liver, particularly in inhibiting the

antiviral response of T cells through the PD-1/PD-L1 pathway.

For example, Zhou et al. found that exogenous transfusion of LrNK

cells to normal or LrNK cell-deficient mice suppressed antiviral T-

cell responses in the liver and was dependent on the PD-1-PD-L1

axis. In contrast, NK (cNK) cells circulating in the peripheral blood

promoted T-cell responses (57).
3 Immunosuppressive factors and NK
cell exhaustion mechanisms in the
HCC tumor microenvironment

The tumor microenvironment (TME) of HCC consists of

immune cells, immunosuppressive cells, and mesenchymal

s tromal ce l l s wi th hypox ia , angiogenes i s , metabol ic

reprogramming, inflammation, and immunosuppression

(Figure 1A) (58, 59). The TME of HCC is characterized by the

secretion of a variety of immunosuppressive factors, such as

interleukin (IL)-6, IL-10, and transforming growth factor-b
(TGF-b), prostaglandin E2 (PGE2) to directly inhibit NK cell

activity and promote NK cell exhaustion (60–64).

TGF-b is known to be a potent immunosuppressive factor,

which impairs tumor cell recognition by NK cells by down-

regulating the expression of activation receptors on the surface of

NK cells, such as NKG2D (65, 66). In addition, TGF-b further

impairs its anti-tumor effect by inhibiting IFN-g production and

ADCC in NK cells (67, 68). IL-10, on the other hand, impairs its

killing activity by inhibiting NK cell proliferation and cytokine

secretion (e.g., IFN-g and TNF-a) (69).
In addition, IL-6, as another important immunosuppressive

factor, further promotes immunosuppression in the tumor

microenvironment through a complex signaling mechanism.

Studies have shown that in intrahepatic cholangiocarcinoma

(ICC) cells, IL-6 induces the expression of cyclic RNA (circRNA)

GGNBP2 (cGGNBP2). cGGNBP2 encodes a protein, cGGNBP2-

184aa, which forms a positive feedback loop that sustainably

activates the STAT3 signaling pathway, thereby promoting tumor

cell proliferation and metastasis (70). This sustained STAT3

activation indirectly inhibits NK cell function by regulating other

immune cells in the tumor microenvironment, further promoting

NK cell exhaustion.
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These inhibitory factors not only act directly on NK cells, but also

indirectly promote NK cell exhaustion by modulating the function of

other immune cells such as regulatory T cells (Tregs) and myeloid-

derived suppressor cells (71, 72). For example, this multilayered

inhibitory mechanism causes NK cells to gradually lose their

function in the TME, which facilitates immune escape from the tumor.

In the TME of HCC, the complex interaction of NK cells with

other immune cells forms a suppressive network that further

exacerbates NK cell functional exhaustion. Immunosuppressive cells

such as dendritic cells (DCs) and regulatory T cells further diminish

NK cell activity through secretion of inhibitory factors or direct cell-to-

cell contact (73). DCs often exhibit abnormal function in HCC, which

are unable to efficiently activate NK cells, but instead may further

inhibit NK cell activity through the high expression of PD-L1 on the

surface (74). Meanwhile, the increase of Tregs is also one of the

important reasons for the suppression of NK cell function in TME.

Tregs directly inhibit the activation and function of NK cells through

cellular indirect contact and secretion of TGF-b and IL-10 (75).
4 Mechanisms of activation of
exhaustion signaling pathways

NK cell exhaustion is closely associated with the activation of

specific signaling pathways, of which the PD-1/PD-L1 pathway is one

of the most important (Figure 1D). PD-1 is an inhibitory receptor

that is highly expressed in the depleted state of NK cells, whereas its

ligand, PD-L1, also exhibits a significant up-regulation in tumor cells

and tumor-associated immune cells (76). When PD-1 binds to PD-

L1, it inhibits the killing function and cytokine secretion of NK cells

by down-regulating the activation signals in NK cells (77, 78). In

addition, the PD-1/PD-L1 signaling pathway inhibits the activation of

the Akt and mTOR pathways in NK cells, leading to metabolic

dysfunction and further weakening its anti-tumor effects (79).

However, PD-1/PD-L1 is not the only signaling pathway driving

NK cell exhaustion. Other inhibitory receptors such as TIM, TIGIT

and LAG-3 are likewise significantly up-regulated in NK cells in the

depleted state, forming a co-inhibitory network (26, 80).
4.1 TIM-3

TIM-3 is highly expressed in the depleted state of NK cells and acts

as a co-inhibitory receptor involved in the modulation of type I immune

responses. The immunomodulatory mechanism of TIM-3 is dependent

on its binding to several ligands, such as Galectin-9, phosphatidylserine

(PtdSer), HMGB1 and CEACAM-1 (81). PtdSer acts as an “eat-me”

signal that promotes the clearance of apoptotic cells by binding to TIM-3.

HMGB1, a damage-associated molecular pattern (DAMP), regulates the

innate immune response by suppressing the inflammatory response

when it binds to TIM-3. Binding of CEACAM-1 is thought to be closely

related to inhibitory signaling by TIM-3.

These ligands, including CEACAM-1, Galectin-9, PtdSer, and

HMGB1, bind to different regions of TIM-3, respectively, triggering

intracellular inhibitory signals (82). For example, upon binding of
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TIM-3 to Galectin-9, the Y256 and Y263 sites in its cytoplasmic

domain are phosphorylated, leading to dissociation of the articulator

BAT3 from TIM-3, which in turn inhibits TCR signaling and reduces

NK cell immune response, especially reducing the secretion of key

cytokines such as IFN-g (82). Phosphorylation of the Y256 and Y263

sites is not only a critical step in TIM-3-regulated signaling, but also

promotes the activation of other inhibitory signals by preventing the

binding of BAT3 to TIM-3.
4.2 TIGIT

The co-inhibitory receptor, TIGIT, blocks the direct interaction

of NK cells with tumor cells by binding to the ligands CD155 and

CD112, which are highly expressed in antigen-presenting cells

(APCs) and tumor cells, diminishing their killing ability and

further inhibiting cytokine secretion by NK cells, such as TNF-a
and IFN-g (83, 84). In addition, TIGIT interferes with tumor

recognition by NK cells through competitive inhibition of CD226.

Although TIGIT shares the same ligand as CD226, it binds to CD155

and CD112 with higher affinity, thereby inhibiting CD226-mediated

activation signaling. This competitive mechanism further exacerbates

the depleted state of NK cells (84).
4.3 LAG-3

LAG-3 is a structurally similar inhibitory receptor to CD4 that

inhibits NK cell activation mainly through binding to MHC class II

molecules (85). LAG-3 is highly expressed not only in T cells but also

upregulated on NK cells, and this upregulation leads to suppression of

both innate and adaptive immune functions in tumor patients.

LAG-3 hinders effective recognition and clearance of tumor cells

by NK cells through interaction with FGL1 (fibrinogen-like protein),

which is highly expressed in hepatocytes and tumor cells. In addition,

LAG-3 regulates downstream molecules (e.g., SHP-1 and SHP-2)

through inhibitory signaling motifs (e.g., FXXL motifs and KIEELE

motifs) in its intracellular structural domains, further blocking the

activation signaling pathway of NK cells by dephosphorylating

activating signaling molecules (26, 86).

Co-upregulation of these inhibitory receptors is particularly

evident in response to chronic antigenic stimulation, especially in

NKG2C+ NK cells, where the expression of LAG-3 and PD-1 rises

progressively over time (87).
5 Immunotherapy and drug
sensitization in the restoration of NK
cell function

5.1 Immune checkpoint inhibitors
(PD-1/PD-L1)

Immune checkpoint inhibitors (ICIs), especially PD-1/PD-L1

inhibitors, have demonstrated significant clinical efficacy in the
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treatment of a variety of solid tumors, such as lung, breast, advanced

hepatocellular, and pancreatic cancers (6, 88–92). These inhibitors work

by blocking the binding of PD-1 to its ligand PD-L1, restoring the anti-

tumor activity of NK cells and T cells, and increasing their cytotoxicity

and secretion of immune factors such as IFN-g and TNF-a. In different

types of tumors, including HCC, lung cancer, and melanoma, NK cells

have shown variable responses to PD-1/PD-L1 inhibitors, influenced by

the tumormicroenvironment and the extent of PD-1 expression on NK

cells. It has been found that not all of the PD-1 in NK cells is derived

from endogenous expression, and that NK cells also acquire PD-1 and

other inhibitory substances from the membrane of the tumor cells

through SLAM receptor-mediated trogocytosis. NK cells can also

acquire inhibitory molecules such as PD-1 from the membrane of

tumor cells through SLAM receptor-mediated trogocytosis (93). This

process results in the suppression of the anti-tumor function of NK

cells, which can be reversed by PD-1 inhibitors.
5.2 Joint innovative applications
of immunotherapy

Although PD-1/PD-L1 inhibitors show good single-agent efficacy

in some tumors, single-agent efficacy is typically lower in metastatic

tumors of the hepatobiliary system, and patients experience initial

resistance or subsequent decreased drug sensitivity. Therefore,

investigators are exploring further enhancement of the anti-tumor

effects of NK cells through combination therapies (6, 94–96). The

combined blockade of PD-1/PD-L1 inhibitors with other inhibitory

pathways has shown promising potential in reversing immune

exhaustion during hepatocellular carcinoma treatment. TIM-3, is

highly expressed in the TME of HCC, especially on tumor-

infiltrating NK cells (e.g., cNK and LrNK cells). Studies have shown

that TIM-3, through binding to its ligand phosphatidylserine (PtdSer),

induces inhibition of downstream signaling pathways such as PI3K/

mTOR, which in turn leads to dysregulation of NK cells and tumor

evasion of the immune (6). Through gene ablation, antibody blockade,

or lentiviral-mediated TIM-3 disruption experiments, the researchers

succeeded in restoring NK cells’ cytokine secretion (e.g., IFN-g, TNF-a)
and cytotoxicity, significantly inhibiting HCC growth (88).

IL-15 and IL-2, two of the most widely studied cytokines, are

able to enhance anti-tumor efficacy by stimulating NK cell

proliferation and enhancing their effector functions. IL-15

significantly increases NK cell cytotoxicity by activating the

downstream JAK/STAT signaling pathway through binding to IL-

15Ra (97, 98). IL-2 is also capable of enhancing NK cell activation

through the CD25 receptor, but is less used due to its tendency to

induce proliferation of Tregs. Currently, researchers are developing

modified versions of IL-2, such as mutant IL-2 with selective

activation of NK cells, to avoid the side effects of Tregs (99).
6 Conclusion and future

With the development of technologies such as single-cell

sequencing, we have the opportunity to further explore the TME and
Frontiers in Oncology 05
reveal the complex immune cell interactions therein. Although the

presence of NK cells in the TME has long been recognized, it remains

challenging to effectively manipulate NK cells for therapeutic purposes.

NK cell exhaustion in HCC is closely associated with the upregulation

of immune checkpoints. Strategies to restore NK cell function, such as

immune checkpoint inhibition and cytokine therapy, have shown

promise in clinical studies. Notably, CAR-NK cell therapy, with its

broad anti-tumor activity and low immune rejection (Figure 1B) (102).

It has demonstrated success in hematologic cancers and offers new

hope for treating solid tumors like HCC (27, 100, 101). Moving

forward, the combination of CAR-NK therapy with other

immunotherapies, along with advances in single-cell technologies,

will drive further progress in HCC immunotherapy.
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