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One of the most prevalent disorders relating to neurodegenerative conditions

and dementia is Alzheimer's disease (AD). In the age group 65 and older, the

prevalence of Alzheimer's disease is increasing. Before symptoms showed up, the

disease had grown to a severe stage and resulted in an irreversible brain disorder

that is not treatable with medication or other therapies. Therefore, early

prediction is essential to slow down AD progression. Computer-aided

diagnosis systems can be used as a second opinion by radiologists in their

clinics to predict AD using MRI scans. In this work, we proposed a novel deep

learning architecture named DenseIncepS115for for AD prediction from MRI

scans. The proposed architecture is based on the Inception Module with Self-

Attention (InceptionSA) and the Dense Module with Self-Attention (DenseSA).

Both modules are fused at the network level using a depth concatenation layer.

The proposed architecture hyperparameters are initialized using Bayesian

Optimization, which impacts the better learning of the selected datasets. In the

testing phase, features are extracted from the depth concatenation layer, which

is further optimized using the Catch Fish Optimization (CFO) algorithm and

passed to shallow wide neural network classifiers for the final prediction. In

addition, the proposed DenseIncepS115 architecture is interpreted through Lime

and Gradcam explainable techniques. Two publicly available datasets were

employed in the experimental process: Alzheimer's ADNI and Alzheimer's

classes MRI. On both datasets, the proposed architecture obtained an

accuracy level of 99.5% and 98.5%, respectively. Detailed ablation studies and

comparisons with state-of-the-art techniques show that the proposed

architecture outperforms.
KEYWORDS

neuroimaging, Alzheimer's disease, MRI, network-level fusion, multiscale inception
module, dementia stages classification, optimization, shallow neural network
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1 Introduction

Brain-related disorders are among the most challenging

conditions due to their high cost, their sensitivity, and the

difficulty in treating them. The most prevalent brain disease

affecting people is Alzheimer's disease, which causes various

degrees of memory loss and knowledge loss (1). According to the

most recent World Alzheimer Report (2), there are 55 million

clinically diagnosed AD patients worldwide, and by 2050, that

number is expected to reach 139 million (3). People over the age

of 65 are the most likely to suffer from this irreversible disorder (4).

Alzheimer's disease is more prevalent in individuals with diabetes,

cardiovascular issues, and hypertension. This neurological

condition begins slowly and gets worse every day. The early signs

and symptoms of Alzheimer's include memory loss, difficulties

completing daily tasks, confusion about where you are, visual or

spatial difficulties, language difficulties, poor decisions, withdrawal

from work, mood swings like depression, as well as behavioral and

personality changes (5). As a result of the most recent advances in

multimodal neuroimaging data, early disease detection has been

enabled in neuroscience (6, 7). The pattern of brain shrinkage and

image intensities, however, are so similar that it has been difficult to

distinguish between healthy and Alzheimer's brains (8). The body

gradually loses its ability to function, which may finally result in

death, even though the exact cause of this disorder is unknown (9).

AD does not have a cure at present, but if detected early, its

progression may be slowed.

In order to diagnose brain disorders, neuroimaging techniques

such as magnetic resonance imaging (MRI) (10) or computed

tomography (CT) (11) with positron emission tomography (PET)

(11) use images to provide three-dimensional (3D) images of the

brain (12). It was estimated that AD patients would live only 3.1

years, especially if they were diagnosed at an early stage. Mild

cognitive impairment (MCI) is a state of amnesia that may be an

early indicator of Alzheimer's disease (13), but it is constantly

getting worse. Non-sympathetic (generalized psychosis)

Alzheimer's disease progresses in three stages: mild (stage 1),

severe (stage 2), and moderate dementia (stage 3) (14). It is

essential for AD diagnoses to be automated since clinical

treatments are highly expensive (15). Machine learning (ML)

paradigms have been expanded with new methods for learning in

healthcare, especially for medical imaging (16). The traditional ML

techniques focused on handcrafted features such as shape, color,

and geometric; however, the complex imaging datasets required

more patterns for an accurate prediction. Issues in traditional ML

techniques include extra middle steps for the extraction of

individual patterns, large number of extracted patterns (extracted

features), and irrelevant information extraction.

Recent advancements in the area of deep learning (DL)

techniques are becoming more and more popular in several

applications, especial ly in medical imaging (17, 18) .

Convolutional neural networks (CNN), a specialized DL method,

significantly outperform state-of-the-art ML techniques in various

applications (19). These studies highlight CNN's superior ability to

automatically extract and learn complex features from data, leading

to improved accuracy and performance in tasks such as image
Frontiers in Oncology 02
recognition, classification, and other predictive modeling scenarios

(20, 21). The DL algorithms work based on the hidden layers such

as convolutional layer, pooling layer, and fully connected layers

(22). There are several pre-trained DL architectures available for

classification purposes such as GoogleNet (23), Alexnet (24), VGG

(25), ResNet, and Inception-ResNet (25). Each model has a different

way of learning mechanism. These models performed well for

several classification tasks; however, in medical imaging, it

degrades the performance when there is an issue of data

imbalance and complex patterns of the disease. In addition, these

models degraded the performance due to similar patterns of

different classes, as shown in Figure 1. Therefore, for the

customized models, it is always required that these are designed

from scratch for a specific problem (26). The customized CNN

models are usually designed based on the structure of the hidden

layers and the number of learnable (27). This work proposed a novel

network-level fused deep architecture based on dense and inception

modules with self-attention mechanism for the classification of

brain MRIs to predict and diagnose Alzheimer's disease. In the

proposed network, deep features are extracted from brain MRI

images using DenseNet and multi-scale Inception modules. These

architectures are further integrated at the network level and can

accurately predict patients with AD such as EMCI, MCI, and LMCI

and those who are cognitively normal.

Following is a summary of the major contributions of this work:
• Develop a novel network-level fused convolutional neural

network architecture called Dense with Multiscale

Inception Self Module (DenseIncepS115) for the

classification of Alzheimer's disease.

• The inception module with multiscale heads is designed to

improve model accuracy and generalization. The concept of

inverted bottlenecks is also considered to optimize network

learning on the selected datasets.

• To increase model robustness, a data augmentation

technique is also designed based on color enhancement.

• Extracting deep features with the use of multi-head self-

attention mechanisms that are later optimized using Catch

Fish Optimization Algorithm (CFOA).

• Demonstrating the efficiency of the proposed architecture,

several ablation studies have been performed such as

computed results using several pre-trained networks,

selection of learning rate through manual approach, and

confidence interval-based analysis.
2 Literature review

Alzheimer's disease has been attributed to genetics, but its

underlying causes remain unknown. There are numerous issues

related to social cognitive abilities that are affected by Alzheimer's,

which also cause a number of neurological issues related to memory

(28). Sarraf et al. (29) discussed about the very first use of MRI data

in deep learning applications for Alzheimer's disease prediction and

medical image analysis. The suggested pipelines produced average
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accuracy rates of 94.32% for fMRI and 97.88% for MRI, whereas the

high accuracy rate of 98.84% for MRI was attained by subject-level

classification. Hamdi et al. (12) addressed the problem of

differentiating Alzheimer's disease patients from normal controls

by developing a novel and improved CAD system based on a

convolutional neural network (CNN). Using the 18FDG-PET

images of 855 patients—220 Alzheimer's disease patients and 635

normal controls—from the ADNI database, the presented method

was assessed. The findings demonstrated that the CAD system

produced 96% accuracy, 96% sensitivity, and 94% specificity,

respectively. Zhang et al. (30) developed an attention-based CNN

that was trained using multilevel data from brain MRI to classify

Alzheimer's disease. Using the ADNI dataset, this method identified

Alzheimer's disease patients with 97.35% accuracy, MCI converters

with 87.82% accuracy, and non-converters with 78.79%

accuracy, respectively.

Divya et al. (31) utilized MRI features from the ADNI dataset to

classify normal control (NC), mild cognitive impairment (MCI),

and Alzheimer's disease (AD) using feature selection techniques

and supervised learning algorithms. The best results were obtained

with a support vector machine (SVM) with a radial basis function

kernel, achieving 96.82%, 89.39%, and 90.40% accuracy for binary

classifications of NC/AD, NC/MCI, and MCI/AD, respectively. The

LeNet model was modified in this study (32) by concatenating Min-

Pooling layers with Max-Pooling layers so that low-intensity pixels

are preserved. This new model performed best when compared with

20 different DNN models, with an average accuracy of 96.64% for
Frontiers in Oncology 03
Alzheimer's disease classification compared to 80% for the

original LeNet.

Shamrat et al. (33) developed a fine-tuned CNN architecture for

Alzheimer's disease prediction into five stages. They modify the

model based on the layers and hyperparameters. After that, they

used 60,000 MRI scans from the ADNI database and obtained

highest accuracy of 96.31%. Tanveer et al. (34) presented a

computationally efficient ensemble of neural networks trained

with transfer learning. The classification accuracy for mild

cognitive impairment (MCI) vs. Alzheimer's disease (AD) was

98.71% and 83.11%, respectively, on two independent datasets

split by cognitively normal (NC) vs. AD. Hajamohideen et al.

(35) developed an architecture for a Siamese Convolutional

Neural Network (SCNN) which embeds input images as k-

dimensional embedding's with a triplet loss function. This

embedding space was used to classify Alzheimer's disease using

both pre-trained and non-trained CNNs. Model effectiveness was

evaluated using ADNI and OASIS datasets, which yielded accuracy

rates of 91.83% and 93.85%, respectively.

Alp et al. (36) investigated the use of Vision Transformer (ViT)

for processing MRIs in the diagnosis of Alzheimer's disease. ViT

used as a time series transformer to classify the MRI features once

they had been extracted and modeled. On ADNI T1-weighted

MRIs, the model was evaluated for binary and multiclass

classification. In comparison to deep learning models such as

CNN with BiL-STM and ViT with Bi-LSTM, the model

demonstrated a high level of accuracy, scoring above 95% for
FIGURE 1

Five different categories of ADNI dataset: Alzheimer's disease (AD), cognitively normal (CN), early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), and subjective memory complaint (MCI).
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binary and 96% for multiclass classification. Shaffi et al. (37) offered

an ensemble classifier based on machine learning for the prediction

of AD from MRI scans. It demonstrated an amazing accuracy of

96.52%, which is 3-5% better than the best individual classifier.

They used the Alzheimer's Disease Neuroimaging Initiative and

Open Access Series of Imaging Studies datasets to assess well-

known machine learning classifiers and obtained improved

accuracy above 94%. The study (16) suggested a bilateral filtering

and histogram equalization image enhancement strategy to enhance

the quality of the dataset. Then, to classify dementia into three

groups, a custom CNN architecture has been designed. Using the

designed custom architecture, the presented architecture obtained

an accuracy of 93.45% and 95.62% for multiclass and binary

class, respectively.

In summary, the above mentioned studies focused on the pre-

trained models and supervised learning algorithms. In addition,

they also focused on the traditional augmentation techniques such

as flip and rotate methods. These methods not focused on the

networks fusion and features optimization. Also, they did not focus

on the shallow neural network classifiers for the prediction of AD

from the MRI scans. In this work, we proposed a novel network-

level fused CNN architecture for the prediction of AD from the

MRI scans.
3 Proposed methodology

In this work, we proposed novel DenseIncepS115 architecture

for the prediction of Alzheimer's disease from MRI scans. The

proposed architecture comprises two novel modules—inception

module with multiscale self-heads and dense module with self-

attention. Figure 2 illustrates the proposed architecture of
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Alzheimer's disease prediction. In the proposed architecture, a

dataset augmentation step has been performed at the first step to

increase the training diversity. In the second step, both modules are

fused at the network level using depth-concatenation layer. The

model is trained on the selected dataset, whereas Bayesian

optimization (BO) has been opted for the hyperparameters'

initialization. In the testing phase, features are extracted from the

testing data and optimized using an improved Catch Fish

Optimization Algorithm technique. The best features are selected

and passed to the shallow wide neural network (SWNN) classifier

for final classification. Furthermore, the fused model is interpreted

using GRAD-CAM and LIME explainable techniques.
3.1 Dataset collection and augmentation

ADNI dataset: Data from the Alzheimer's disease neuroimaging

initiative (ADNI) database were used in this investigation. In 2003,

the ADNI was developed as a public–private partnership under the

direction of principal investigator Michael W. Weiner, MD. The

purpose of this project was to explore the potential utility of

positron emission tomography (PET), magnetic resonance

imaging (MRI), and other biological markers in monitoring the

development of early diagnosis of Alzheimer's disease and mild

cognitive impairment (38). The dataset used in this work, which was

collected from Kaggle, contains five categories: AD, CN, EMCI,

LMCI and MCI genetic information, and the results from cognitive

tests are included in the ADNI collection (39). Figure 3 illustrates

the sample images of this dataset. The dataset contains both and

female patients, wherein 100 out of 416 patients aged 60+ have been

diagnosed with AD, ranging from very mild to moderate. A brief

description of the dataset is given in Table 1.
FIGURE 2

Proposed automated framework for classifying Alzheimer's disease using network-level fusion.
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Alzheimer MRI dataset: The AD preprocessed magnetic

resonance imaging (MRI) images (ADMPIs) make up the dataset.

The dataset contains four classes such as mildly demented,

moderately demented, non-demented, and very mildly demented.

The image details in each class are given in Table 1. In this work,

1,564 ADMPIs were used from the Kaggle source (40). A few

sample images are shown in Figure 3.

During dataset collection, it was observed that the samples in

both datasets have a class imbalance problem and are insufficient to

train a deep learning model efficiently. This can lead to biases and

overfitting during the model's training. To address these challenges,

we performed an augmentation process to normalize the samples in

each class and increase the diversity in the selected datasets. In the

augmentation step, we performed three operations, such as flip left,
Frontiers in Oncology 05
flip right, and rotations. The overall description of the datasets is

presented in Table 1.
3.2 Proposed DenseIncepS115 architecture

Deep learning is an important research area in the area of

computer vision for classification and detection tasks. Medical

imaging is an important research area, and many deep learning

techniques are introduced for the classification and detection of

medical diagnosis such as breast cancer, skin cancer, brain tumor,

Alzheimer's disease (AD), and a few more. AD draws much

attention from researchers working in the area of neuro-related

diseases. Through DL, a better precision rate can be achieved for

diagnosis and classification. In this paper, we proposed a novel

DenseIncepS115 Architecture with explainable AI (XAI) for the

classification and interpretation of AD from MRI scans. The dense

and inception modules were chosen because the densely connected

layers allowed the network to capture fine-grained information,

such as subtle tissue degradations and gray matter changes, which

indicate early Alzheimer's disease. In addition, inception modules

have the capability to capture inclusive and specific regions, such as

overall brain shrinkage and cortical folding–shifting in Alzheimer's

disease. In this study, the capabilities of both modules are integrated

using a network-level fusion method in the classification of

Alzheimer's disease through the different phases.

The proposed architecture consists of two modules such as an

inception module with multiscale self-heads and a dense module

with self-attention. The total number of parameters of the proposed

architecture is 6.9 million, whereas the total numbers of layers is 115.

Figure 4 shows the architecture of the proposed DenseIncepS115

model. The input size of the proposed architecture is 227 × 227 × 3.

Dense module with self-attention: The self-module consists of

71 layers, including nine residual blocks and 22 convolution layers.

At the start of the architecture, a convolutional layer has been added

with a 3 × 3 filter size, stride value of 2, and depth of 32. Then, ReLU

activation has been added as a nonlinearity function that attached

with the batch normalization layer. After this, a first residual block
TABLE 1 Description of selected Alzheimer MRI dataset for this paper.

S. no. Classes Original
images

Augmentation
(training/testing)

Alzheimer ADNI 5-classes MRI dataset

1 AD 728 4,004/364

2 CN 696 4,004/348

3 EMCI 720 4,004/360

4 LMCI 704 4,004/352

5 MCI 700 4,004/350

Alzheimer MRI 4-classes dataset

1 Mildly
demented (MD)

1,075 2,560/537

2 Moderately
demented (MoD)

756 2,560/120

3 Non-
demented (ND)

3,200 2,560/1,280

4 Very mildly
demented (VMD)

2,240 2,560/896
FIGURE 3

A few sample images of the selected Alzheimer's datasets.
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has been added. Each block contains five layers such as

convolutional layer, BN (batch normalization), ReLU,

convolutional layer, and ReLU layers. In the first residual block,

the first convolutional layer has a depth size of 64 with a stride value

of 1 and 1×1 filter size. A ReLU activation layer is added with the

batch normalization layer. The first residual block concludes by

adding the last convolutional layer with depth of 64, stride value of

1, and filter size of 1 × 1. Then, these residual blocks are connected

to the other layers by adding the first depth concatenation layer that

concatenate inputs along the channel dimension which involves

taking inputs with the same height and width.

The second residual block is added in same layer pattern in which

the convolutional layers have a depth size of 96 and 64 with a stride

value of 1 and filter size 1 × 1. Moreover, a depth concatenation layer

has been added to connect it with the other layers, and there is a skip

connection between both depth concatenation layers. A convolutional

layer with ReLU has been added after this, with filter size of 2 × 2 and

stride value of 2. The depth size is increased in this block to 128 from

what was previously 96. A max-pool layer is added after this to get the

most activated neurons with a stride value of 2 and filter size of 3 × 3.

Three more residual blocks are added after the max-pooling layer. All

of these blocks are connected with skip connection through the depth

concatenation layer. The number of layers in each block is five, which

is similar to the first residual and second residual block. The

convolutional layers in the first block have a depth size of 128 and

filter size of 1 × 1. In the second block, the convolutional layers have a

depth size of 128 and 64, whereas the stride is 1 and the filter size is 1

× 1. A third block follows the first block, of which both convolutional

layers have depth of 128, filter size of 1 × 1, and stride of 1. After that,

a convolutional layer with ReLU is added, which has a depth of 256, a

filter size of 2 × 2, and a stride value of 2. Another max-pool layer has

been attached with a filter size of 3 × 3 and a stride value of 2.

There are four more residual blocks attached to the network after

the second max-pool layer that are connected via depth

concatenation. The max-pooling layer and the depth concatenation

layer, as well as the remaining four depth concatenation layers, are
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interconnected by skip connections. These blocks follow the same

number of layers (five) as the previous blocks in the same pattern but

with different parameters. In the first block, both convolutional layers

have a depth of 256 with different filter sizes of 1 × 1 and 3 × 3 and a

stride value of 1 × 1. With the second residual block, both

convolutional layers have a depth size of 128 and constant filter

sizes of 1 × 1 and stride of 1. The third block follows the first block in

which both convolutional layers have depth of 256 and a stride value

of 1 with the same filter size of 1 × 1. At the end, a convolutional layer

has been added that has a filter size of 2 × 2, a stride value of 2, and a

depth size of 256. Another max-pool layer is added with a filter size of

3 × 3 and a stride of 2. After that, a self-attention module is added for

the in-depth information extraction of each image. The self-attention

module is visually shown in Figure 5. The self-attention module is

mathematically formulated as follows:

As the inputs of attention module are queries, keys, and values

which are defined with Aq, Ak, and Av , respectively, these notations

created a linear transformation as follows:

Aq = M  XAq
(1)

Ak = M  XAk
(2)

Av = M  XAv
(3)

where M denotes the input feature matrix of the convolutional

layer and M ∈ Rm�n. After that, the attention score is computed

among Aq and Ak using a dot product, which is later scaled down by

the factor of
ffiffiffiffiffi
dk

p
. This scaling is performed to prevent the dot

product from growing too large during the training process. The

attention score can be formulated by using the following equation:

AtS =
qkTffiffiffiffiffi
dk

p (4)

The computed score AtS is passed to softmax function to obtain

the final attention weights as follows:
FIGURE 4

A visual architecture of the proposed DenseIncep-115 CNN.
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AtW = Sfmx(AtS) (5)

On each row of the attention score, the softmax function has

been applied, which sums up to 1 for the final score. Hence, the

weighted sum is applied to create the attention weights as final

features.

Attn (Aq,Ak,  Av) = (AtW)v (6)

Inception module with multiscale self-heads: The proposed

inception module with multiscale self-heads consists of 44 layers

and follows the inverted bottleneck pattern in residual blocks. The

first convolutional layer has a depth size of 16 and a filter size of 1 ×

1 with a stride value of 2. Then, the first inception module has been

added, in which the first convolutional layer is added with a depth

value of 16 and a filter size of 1 × 1. The second convolutional layer

also has a depth size of 16 and a filter size of 1 × 1 with a single

stride. For the third convolutional layer, a depth size of 32 is opted,

with a filter size of 1 × 1 and a stride value of 1. In the next or third

convolutional layer, a max-pool layer has been added with a filter

size of 3 × 3 and a stride value of 1. The first convolutional layer is

followed by a second convolution layer with a depth size of 16 and a

filter size of 1 × 1. The output is divided in two convolutional layers

of filter size 1 × 3 and 3 × 1, respectively. Moreover, 1 × 1 and 3 × 1

filters are added before the max-pooling layer of filter size 1 × 1.

When convolutions do not significantly change the dimensions of

the input, neural networks performed better work and reduced the

dimensions. An excess of small dimensional reductions may result

in information loss; therefore, convolutions and smart factorization

techniques can be made more computationally efficient. This

module is connected by adding one depth concatenation layer.

After that, a convolutional layer with ReLU is added, which has a

filter size of 3 × 3 with a stride value of 2 and depth of 64. A max-

pool layer that has a stride value of 1 and filter size of 3 × 3

was attached.

Three inverted residual blocks are added after the inception

module, where each block consists of six layers such as
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convolutional, ReLU, batch normalization, grouped convolutional,

convolutional, and batch normalization layer. In the first block, the

convolutional layer has a depth size of 128, with a filter size of 1 × 1

and a stride value of 1. Then, a batch normalization layer is added

with ReLU activation. After that, the grouped convolutional layer is

added with a 3 × 3 filter size. The first residual block concludes by

adding the last convolutional layer with a depth of 256, a stride

value of 1, and a filter size of 1 × 1. These residual blocks are

connected to the other layers by adding the first depth

concatenation layer. The second block is identical to the previous

block with the same parameters. In the third block, convolutional

layer with a filter size of 1 × 1 was employed, with a stride value of 1

and depth size of 256 and 312, respectively. After that, a

convolutional layer with ReLU is added, which has a filter size of

3 × 3 and a stride value of 2 with a depth of 256. A max-pooling

layer has been added with 3 × 3 filter size that followed a global

average pool layer. At the end, we added a multi-headed self-

attention module, as illustrated in Figure 5. The flattened layer is

always added before the self-attention module.

The outputs of both modules are fused at the network level

using a depth concatenation layer, as shown in Figure 4. Through

the depth concatenation layer, information of different layers can be

stacked into a single layer based on the depth dimension. It enriches

the information in the form of feature vector and, as an output,

accurate AD prediction.

Consider that we have two feature vectors denoted by f1 and f2
of dimensions N � 256 and N � 256, respectively. The depth

concatenation (DC) is formulated through the following equation:

DC = DepthCAT(f1,  f2),  where; DC = h� w � (d1 + d2) (7)

Here d1 and d2 denote the depth of both feature vectors that is

256. Hence, the final feature vector dimension after the DC layer is

512, which passed to the fully connected layer and softmax for the

final classification. The softmax is employed as a classification layer

in the proposed architecture. Mathematically, the combined loss

function of softmax and cross entropy is defined as follows:
FIGURE 5

Visual illustration of self-attention for in-depth feature extraction from MRI scans.
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loss = − log
ety

oCl
j=1e

tj

 !
(8)

= −ty + log oCl
j=1e

tj
� �

(9)

where ty denotes the raw score for the true class. The detailed

architecture is described under Algorithm 1.
Fron
1: Input: DA: Alzheimer's Training Set; AL:

Actual Labels

2: Output: Trained DenseIncepS115 Model

3: dataset split: Dtrain ,Dvalidation ← split(DA, 0:60, 0:40)

4: Augtrain ,Augvalidation ←Transf orm

( Dtrain ,Dvalidation ,  Resize,  transf ormations)

5: DenseIncepS115 architecture:

1: Input image size: 227×227×3

2: Dense Module with Self-Attention:

1: Convolutional layer: Filters: 32, Size: 3×3,

Stride: 2

2: ReLU+ BN

3: Residual Block (1st Block)

Convolution Layer: Filters: 64, Size: 1×1,

Stride: 1

Batch Normalization + ReLU

Convolution Layer: Filters: 64, Size: 1×1,

Stride: 1

Depth Concatenation Layer + Skip Connection

4: Add Residual Block (2nd Block)

Same pattern as above with filters adjusted to 96

and 64

Convolution Layer: Filters: 128, Size: 2×2,

Stride: 2

ReLU + Max Pooling (Filter: 3×3, Stride: 2)

5: Add Three more Residual Blocks

Each with adjusted filter sizes (128, 64, 256)

Depth Concatenation Layer

6: Max Pooling Layer: Size: 3×3, Stride: 2

7: Add Four more Residual Blocks

Adjust filter sizes with varying patterns (256,

128)

Skip Connections and Depth Concatenation Layer

8: Flatten

9: Self-Attention SD  (Dense Module)

3: Inception Module with Multiscale Self-Attention:

1: Convolution Layer: Filters: 16, Size: 1×1,

Stride: 2

2: Inception Block

Multiple convolutional paths (1×1, 3×1, 1×3

filters)

Depth Concatenation of paths

3: Max Pooling + Convolution Layer: Filters: 64,

Size: 3×3, Stride: 2

4: Add three Inverted Residual Blocks
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Each with convolution, grouped convolution

adjusted (128,256, 312)

ReLU Activation

Depth Concatenation Layer

5: Global Average Pool Layer

6: Flatten

7: Self-Attention SI  ((Inception module)

4: Depth-wise Concatenation ((Network level Fusion)

1: jNL ←Concatenation(SD , SI )

5: Fully Connected (number of Classes)

6: Softmax

7: Classification

6: ,  t hyperparameters ←Hyperparameters(a ,w ,Augvalidation , e)

∴  a  learning Rate;w :mini batch size;  e  validation f requency

7: M←DenseIncepS115(Augtrain ,  AL ,  t hyperparameters)
Algorithm 1. Pseudocode for DenseIncepS115 architecture.
Training the proposed model: In training the proposed

architecture, we used 70% of each dataset to train the model and

the remaining 30% for the testing phase. In this process, several

hyperparameters are required to initialize, such as initial learning

rate, momentum, and batch size. These hyperparameters are usually

initialized based on a random process or hit and trial; however, we

employed Bayesian optimization (BO) (40) that returned the best-

fit values after 100 iterations. There are a few other hyperparameters

of this network, such as stride and filter size, that are selected based

on literature knowledge. After the initialization process, the

network has been trained with five folds and 100 epochs for

each dataset.
3.3 Testing the proposed framework

The proposed trained model DenseIncepS115 is tested on the

testing image set and explained in this section. Deep learning

features are extracted from the depth concatenation layer, and the

performance was analyzed. In the analysis process, some redundant

features are found; therefore, we employed a feature selection

algorithm—Catch Fish Optimization (CFO). The CFO algorithm

is applied in order to select the best features and pass them to the

shallow wide neural network and traditional neural network

classifiers. The shallow neural network has an advantage as it

requires less computational power and is easier to train compared

to deep neural networks. This simplicity often results in faster

processing times, which is crucial for timely diagnoses. The visual

illustration of the testing phase is shown in Figure 6.
3.4 Catch Fish Optimization Algorithm

The extracted features from Alzheimer's disease are often

complex and multidimensional. The motivation behind choosing
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the CFO algorithm is due to its adaptive search; it allows broad

exploration across all feature dimensions. Once a promising region

is found, it can refine (exploit) that region to select the most

appropriate features. This makes it effective to avoid local optima

and ensure significant patterns, which other methods may have

missed, and the complexity of Alzheimer's disease might vary

considerably, enabling the algorithm to react dynamically to

various features without requiring user intervention. This

facilitates partial expansion throughout the feature selection

process, ensuring that the optimal features are selected. After

feature extraction, it is observed that the extracted information

has some redundant features, which leads to the ineffective use of

computational resources, and weak features do not contribute

expressively to the model's decision. Therefore, we employed the

CFO algorithm for optimal feature selection. The Catch Fish

Optimization (CFO) algorithm introduced in (41) is based on the

easy and traditional fishing technique called "fishing in water

bodies," which is frequently used in rural regions. In the past,

fishermen used the phrase "trouble the water to catch the fish" to

describe a method of disrupting the water in a pond to confuse the

fish into thinking that they were in clear water and to capture them

easily. The basic tenet of CFOA is teamwork among members to

maximize fish catches. It is possible for individuals to use tools and

share stories about their individual experiences when they fish in

diverse bodies of water. The optimization process is based on the

following steps:

Step 1: The first step is to initialize the population. Every

fisherman in CFOA serves as a search agent. Mathematically, it is

defined as follows:

Fisher =

Fisher1,1 ⋯ Fisher1,2 ⋯     Fisher1,d

Fisher 2, 1

⋮

⋯   Fisher 2, 2

⋱

⋮   Fishe 2, d

⋮

⋮

FisherM,1 FisherM,2   FisherM,d

2
666666664

3
777777775
 M � w (10)
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Fisher is a complete matrix of location data forM search agents

in a space of dimension w. The locations can be updated based on

the following formula:

Fisherj,k = (ubk − lbk) ∗ n + lbk (11)

The location of the jth fisher in the kth dimension is denoted by

Fisherj,k, the upper and lower limits of the kth dimension are

denoted by ubk and lbk, and n is a random number between 0

and 1.

Step 2: In the second step, the fitness value and update fitness

and optimal position are computed. The fitness values of each

fisherman are determined via the fitness value evaluation function

fobj using their current position information. Mathematically,

fitness can be determined as follows:

fit = fobj (Fisher) =

fit1

fit2

⋮

fitN

2
666664

3
777775 (12)

The fitness values of the first and second fishermen are

represented by fit1 and fit2, respectively, in the fitness matrix. The

ratio of exploration to exploitation is evenly distributed among the

iterations using 0.5. In this procedure, global search was performed

during the first phase (when EFs=MaxEFs < 0:5) and exploited

during the second phase (when EFs=MaxEFs   >=   0:5).

Step 3: In this step, we determine whether exploration or

exploitation is the present stage. This phase is based on two

sub-stages.

a) Phase of exploration (EFs/MaxEFs<0.5): Update the position

and randomly reshuffle each fisherman's position using the

formulas (14)–(16) or (17) and (18). Fish population and capture

rate drop with continuous fish capturing. Fishermen shift from solo

exploration to group encirclement using individual skills in support.

This transition can be modeled using the capture rate parameter,

represented by â.
FIGURE 6

Visual illustration of the proposed architecture testing phase.
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â = 1 −
3  �EFs

2  �  MaxEFs

� � 3�EFs
2  �  MaxEFs

(13)

Fishermen have the option of either a group catch or an

independent search. Individual search is preferred when the rate

of capture a ̂ increases. They move to group capture as a ̂ decreases.
Random integers (0, 1) are used to simulate this: when  ƿ < a ̂,
independent search is selected, and when ƿ ≥ â, group capture is

selected. Here ƿ is a random value between 0 and 1.

Independent search ƿ < a ̂: Update the new position by applying

the following equations:

Exp =
fiti −   fitp

fitmax −   fitmin
(14)

S = D  �  
ffiffiffiffiffiffiffiffi
Exp

p
 �(1 −

EFs
MaxEFs

) (15)

Fisher X+1j,k = Fisher Xj,k

+ (Fisher Xpos,k − FisherTj,k)� Exp + ne � e� R (16)

For each of them, the range of values is (-1, 1), and Exp is the

empirical analysis value that the fisherman acquired using any posth

(pos  = 1   or   2   or …   or  M,  ƿ =   j) with fishermen as the point of

reference. The fitness values that show the optimal and worse results

for every position update, following Xth are, respectively, fit max and

fit min. The number of iterations of the fishermen's positions is

represented by X.

Fisher Xj,k and Fisher X+1j,k indicate the location of jth fisherman in

k-dimension after the iterations of Xth and (X + 1)th. The random

number ns is in the interval 0–1. The jth individual and the reference

are separated by a Euclidean distance D. A random unit vector of

dimension w is the   e. Identify the primary direction of travel and

the distance using empirical analysis; positive guidance should be

taken from the fisherman to the reference person. The range of

exploration S, which is less than or equal to D, also varies according

to the absolute value of Exp and the total number of evaluations

(EFs) carried out at the moment.

Group capture ƿ ≥ â: Nets are used by fishermen to cooperate

with one another and maximize their fishing capability. They form

up in groups of three to four at random to surround suspected areas.

Following is how the model and formula are defined:

Center = mean(FisherXC ) (17)

Fisher X+1j,k = Fisher Xc,j,k + n2

� (Center c − Fisher Xc,k) + 1 −
2� EFe
MaxEFe

� �2

�n3 (18)

The c consists of three or four people whose places have not been

changed. The red-orange point of the group has Centerc as its target

point. Fisher X+1j,k and FisherXc,j,k indicate the state of the j
th
fisherman
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in group c in the k-dimension after the (X + 1)th and Xth updates.

The fisherman's speed as he reaches the center n2 is a variable that

differs from individual to individual and can range between (0, 1).

The move offset n3 has a value range of (-1, 1), a value range of (-1, 1)

that decreases with an increase in the number of EFs.

b) Phase of exploitation (EFs/MaxEFs ≥ 0.5): Some fish escape

capture during the search phase, but fishermen employ an effective

tactic that attracts stray and hidden fish to a focal point, eventually

surrounding them. Fishermen are dispersed with the greatest

density in the center and the lowest density at the edges. This

arrangement guarantees that those in the center capture the

majority of the fish population while those in the edges grab

escaping fish, hence enhancing capture rates through tactical

cooperation. The positions are updated using the Gaussian

distribution as follows:

h =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 −

EFe
MaxEFe

� �
= 1 −

2  �EFe
MaxEFe

� �2� �s
      (19)

FisherX+1j,k = Gbest

+ GD 0,
n4 � h �mean (Fisher) − Gbest

3

� �
(20)
• Among these, the Gaussian distribution function or GD has

an overall mean of μ at 0 and an overall variance or h that

grows with an increase in evaluations and approaches 0

from 1, the position of the jth fisherman after the (X + 1)th

update. The mean(Fisher)   is the fishermen's center matrix,

which shows the average value of each dimension. A

random integer n4  , having a value of 1,  2,  or 3, is used to

disperse fishermen into three ranges with Gbest

representing the global optimal location.
Step 4: If the termination condition is not satisfied, repeat steps

2–4. In step 5, the final fitness and optimal positions are obtained.

The local region is explored by encircling, and the independent

inquiry is converted according to the catch rate into group capture,

making the global exploration thorough and effective. To enable the

CFO algorithm to identify the optimal solution with good

robustness and efficacy, the optimal position is continually refined

using group capture. The final selected features are passed to the

shallow wide neural network classifier for the final AD prediction,

as shown in Figure 6. The shallow neural network has an advantage

as it requires less computational power, and it is easier to perform

classification compared to machine learning and traditional multi-

layered perception (MLP). This simplicity often results in faster

processing times, which is crucial for timely diagnoses. The shallow

neural network of this work consists of an input layer that accepts

best features as input, a single hidden layer that is fully connected,

and an output layer for the final classification.
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4 Results and discussions

4.1 Experimental setup and
performance measures

This section presents the experimental setup for the presented

framework. There are two publicly available datasets, such as ADNI

and MRI Alzheimer, that have been employed for the validation of

the proposed framework. There is a 70:30 split between training and

testing data, as mentioned in the section on the training of the

proposed architecture. In the training phase, the initial learning rate

was initialized through CFO algorithm that is 0.00014, momentum

value of 0.7002, and batch size of 64. All of the experiments were

carried out using 10-fold cross-validation. Cross-validation is

performed at 10 k-folds in order to balance the computational

bias and variance. Also, it increases the generalizability of

performance estimates. The classifiers are chosen based on hidden

layers, including neural networks such as narrow neural network

(NNN), medium neural network (MNN), bi-layered neural network

(BNN), SWNN, and tri-layered neural network (TNN),

respectively. Each classifier performance is computed using

several performance measures such as sensitivity, precision, F1-

score, accuracy, and false negative rate (FNR). The simulation was

run on a workstation with a 12-GB RTX 3000 graphics card and 256

GB of RAM, and all experiments were conducted using

MATLAB 2023b.
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4.2 Proposed framework results using
ADNI dataset

The proposed DenseIncepS115 classification results for the

Alzheimer's ADNI dataset are presented in this subsection.

Features are extracted from the depth-wise concatenation layer

and passed to the several classifiers including the base classifier

SWNN. Table 2 discusses the results of this experiment, whereas

the maximum obtained accuracy is 99.2% for the SWNN classifier.

The precision and sensitivity rate of this classifier is also 99.2%. In

addition to that, the F1-score is also computed to be of the value

99.22%. The rest of the listed classifiers in this table also obtained

an accuracy rate of 98.4%, 85.6%, 99.1%, and 98.5%, respectively.

The obtained precision rates for these classifiers are 98.4%,

85.94%, 99.12%, and 98.52%, respectively. Hence, it is noted that

the NNN, SWNN, and TNN classifiers obtained better precision

rates. Time is also noted during the final classification process, as

mentioned in this table. The minimum required time is 14.05 (s)

for SWNN classifier, whereas the maximum consumed time is

22.03 (s) by TNN. The SWNN classifier performance can be

further verified through a confusion matrix, as shown in

Figure 7. From this figure, it can be observed that the AD class

predicted 100% correctly, whereas the CN class' correct prediction

is at 96.3%.

The obtained accuracy and computational time are further

optimized by employing a CFO algorithm that selects the best
TABLE 2 Classification results of the proposed fused network DenseIncepS115 on ADNI dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) FNR (%) Time (s)

NNN 98.4 98.34 98.4 98.36 1.6 14.54

MNN 85.6 85.56 85.94 85.74 14.4 17.84

BNN 99.1 99.08 99.12 99.1 0.9 20.55

SWNN 99.2 99.2 99.22 99.21 0.8 14.05

TNN 98.5 98.54 98.52 98.53 1.4 22.03
Bold denotes the highest accuracy.
FIGURE 7

Confusion matrices of SWNN classifier for ADNI dataset.
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features. The results are presented in Table 3, showing the best

accuracy of 99.5% for the SWNN classifier, whereas the time is

reduced to 5.422 (s). The precision rate of this classifier is improved

to 99.5% after the optimization process. In addition, the other

classifiers, precision rates are 99.48%, 99.24%, 98.52%, and 97.36%,

respectively. The precision rates are significantly improved for all of

the classifiers after the optimization process. Moreover, time is also

reduced after employing the optimization process as mentioned in

this table, such as 6.623, 7.801, 8.218, and 9.503 (s), respectively.

Figure 7 (DenseIncepS115 with CFO on ADNI dataset) illustrates

the confusion matrix of SWNN classifier and shows the improved

prediction accuracy. Overall, the SWNN classifier performed better

for this dataset using both experiments.
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4.3 Proposed results using the Alzheimer
MRI dataset

The prediction results for the Alzheimer MRI dataset using the

proposed DenseIncepS115 architecture are presented in Table 4.

Features are extracted from the depth concatenation layer and

passed to the optimization algorithm for the selection of best

features. In the first experiment, the results are computed and

listed in Table 4 for the originally deep extracted feature vector. The

SWNN classifier obtained the highest accuracy of 98.1%, followed

by the F1-score of 98.26%, recall rate of 98.62%, and precision rate

of 97.92%, respectively. The values of these obtained measures can

be confirmed by a confusion matrix, as shown in Figure 8
TABLE 3 Classification results of the proposed fused network after employing Catch Fish Optimization Algorithm on the ADNI dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) FNR (%) Time (s)

NNN 99.5 99.48 99.48 99.4 0.5 6.623

MNN 99.2 99.2 99.24 99.2 0.8 7.801

SWNN 99.5 99.54 99.5 99.5 0.4 5.422

BNN 98.5 99.48 98.52 99.9 1.5 8.218

TNN 97.3 97.28 97.36 97.2 2.7 9.503
Bold denotes the highest accuracy.
TABLE 4 Classification results of the proposed fused network DenseIncepS115 on the Alzheimer MRI dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) FNR (%) Time (s)

NNN 96.9 97.72 96.67 97.19 3.1 23.71

SWNN 98.1 98.62 97.92 98.26 1.9 10.2

MNN 97.1 97.95 97.27 97.60 2.9 11.8

BNN 96.8 97.82 96.85 97.33 3.2 18.9

TNN 96.7 97.65 96.8 97.22 3.3 28.7
Bold denotes the highest accuracy.
FIGURE 8

Confusion matrices of SWNN classifier for Alzheimer MRI dataset.
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(DenseIncepS115 on Alzheimer MRI dataset). The rest of the

classifiers' precision rates are 96.67%, 97.27%, 96.85%, and 96.80%,

respectively. Time is also noted for this experiment during the

prediction process, and the minimum noted time is 10.2 (s) for

the SWNN classifier, whereas the maximum consumed time is 28.7

(s) for the TNN classifier. To improve the prediction rate and reduce

the computational time, we employed the CFO algorithm, and the

results are presented in Table 5. The SWNN classifier had the highest

accuracy of 98.7%, whereas the noted F1-score of 98.2% was
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improved compared with experiment 1 for this dataset. The recall

rate is 98.6%, and the precision rate is 98.2%, respectively. These

measures can be confirmed by a confusion matrix (illustrated in

Figure 8). In this figure, it is observed that the correct prediction rate

of each class has been improved after employing the optimization

algorithm. Time is also noted for each classifier during the prediction

step, and SWNN classifier executed the fastest with an execution

time of 7.654 (s). Overall, the precision rate is improved, and the time

is reduced after employing the optimization algorithm.
TABLE 5 Classification results of the proposed fused network after employing Catch Fish Optimization Algorithm on the Alzheimer MRI dataset.

Classifiers Accuracy (%) Sensitivity (%) Precision (%) F1 score (%) FNR (%) Time (s)

NNN 97.6 98.3 97.95 97.9 1.7 9.121

MNN 97.4 98.2 97.8 97.2 1.8 8.622

SWNN 98.7 98.6 98.2 98.2 1.4 7.654

BNN 97.6 98.3 97.4 97.9 1.7 9.732

TNN 96.7 97.7 96.6 97.1 2.3 12.977
Bold denotes the highest accuracy.
TABLE 6 Precision-based analysis of the proposed architecture performance using the ADNI dataset.

Classifier
Deep learning model

Performance
measure

Proposed
InceptionSA module

Proposed
DenseSA module

Network fusion Optimization Precision Rate (%)

NNN classifier ✔ 92.46

✔ 93.50

✔ 98.40

✔ 99.48

MNN classifier ✔ 90.20

✔ 91.04

✔ 85.74

✔ 99.24

BNN classifier ✔ 93.62

✔ 94.24

✔ 99.10

✔ 99.50

Shallow
WNN classifier

✔ 95.20

✔ 96.16

✔ 99.21

✔ 98.52

TNN classifier ✔ 93.06

✔ 94.26

✔ 98.53

✔ 97.36
Bold denotes the highest accuracy.
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4.4 Discussion

Adetailed discussion of the proposed architecture is described in

this section in terms of ablation studies and comparison with state-

of-the-art (SOTA) techniques. The proposed AD prediction

framework that consists of two phases—training phase and testing

phase—is illustrated in Figure 2. The proposed architecture is trained

on AD MRI image datasets such as ADNI and Alzheimer MRI. The

hyperparameters of the proposed architecture are initialized using

the BO algorithm instead of manual selection. In the testing phase,

features are extracted in the first phase and passed to the classifiers,

and the results are noted in Tables 2, 4. In order to improve the

precision rate and reduce the computational time, theCFOalgorithm

has been employed, and the results are given in Tables 3, 5. The

SWNN classifier shows the improved performance that can be

confirmed through confusion matrices, as illustrated in Figures 7,

8. To further validate the proposed architecture, we performed

several ablation studies as follows:

Ablation study 1: In the first ablation study, we performed four

experiments for each dataset. In the first experiment, features are

extracted from the self-attention layer of the Proposed InceptionSA

Module and passed to classifiers. In the second experiment, the
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Proposed DenseSA Module is opted, and self-attention layer

features that are fused at the network level in the third

experiment are extracted. In the last experiment, optimization is

performed on the fused network. Tables 6, 7 present the precision

values of these experiments for the selected datasets—ADNI and

Alzheimer MRI. In Table 6, the ADNI dataset precision values are

presented for each experiment. For the Proposed InceptionSA

Module, the highest precision value is 95.20% which was achieved

by the SWNN classifier. The precision rate is improved by the

Proposed DenseSAModule to 96.16%, which is further improved in

the network-level fusion step (99.21%). In the optimization, the

precision rate is a little decreased, but, overall, the SWNN classifier

performed well and the fusion process shows strength.

Table 7 presents the obtained precision rates for each

experiment using the Alzheimer MRI dataset. In this table, the

Proposed InceptionSA Module obtained the highest precision rate of

93.60%, whereas the Proposed DenseSA Module improved the

precision value to 94.76%. The precision rate of this experiment is

further improved in the fusion step to 97.92%, which is a significant

strength of this experiment. After the optimization process

(experiment 4), the highest obtained precision rate is 98.20% by the

SWNN classifier. Hence, the SWNN classifier shows the improved
TABLE 7 Precision-based analysis of the proposed architecture performance using the Alzheimer MRI dataset.

Classifier Deep learning model Performance
measure

Proposed
InceptionSA module

Proposed
DenseSA module

Network fusion Optimization Precision rate (%)

NNN classifier ✔ 91.60

✔ 92.80

✔ 96.67

✔ 97.95

MNN classifier ✔ 91.04

✔ 92.30

✔ 97.27

✔ 97.80

BNN classifier ✔ 92.50

✔ 93.50

✔ 96.85

✔ 97.40

Shallow
WNN classifier

✔ 93.60

✔ 94.76

✔ 97.92

✔ 98.20

TNN classifier ✔ 92.10

✔ 93.16

✔ 96.80

✔ 96.60
Bold denotes the highest accuracy.
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precision rate for the proposed fused network architecture and

optimization algorithm.

Ablation study 2: In the second ablation study, we compared the

proposed fused network with several pre-trained deep learning

architecture including Alexnet, GoogleNet, Resnet, and InceptionV3.

Figures 9, 10 illustrate the detailed comparison of several pre-trained

models with the proposed architecture based on the precision value. In

Figure 9, the comparison is conducted in two different experiments for

ADNI dataset: (i) precision value obtained on the original deep

architectures and (ii) precision value is computed after employing the

optimization algorithm on features extracted from these deep models.

The proposed architecture obtained an improved precision rate of

99.21% and 98.52%, respectively, for both experiments. Figure 10 shows

the precision-based analysis for Alzheimer MRI dataset. In this figure,

the proposed architecture obtained an improved accuracy of 97.92%

and 98.2%, respectively, for both experiments performed.
4.5 Comparison with SOTA

A detailed comparison is conducted in this section with recent

state-of-the-art (SOTA) techniques. The recent SOTA techniques'
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accuracy value is mentioned in Table 8. In this table, it is observed

that the obtained accuracy by Odusami et al. (42) is 73.90%, which

was later improved by Raza et al. (43) and El-Assy et al. (21) to

97.84% and 99.1%, respectively. The proposed architecture obtained

improved an accuracy rate of 99.5%. For the Alzheimer's Kaggle

MRI dataset, Gupta et al. (44) obtained an accuracy rate of 93.7%,
FIGURE 10

Analysis in the base of accuracy for the proposed architecture and state-of-the-art pre-trained models using the Alzheimer MRI dataset.
TABLE 8 Comparison with SOTA techniques based on the selected MRI
dataset of AD prediction.

S. no. Authors/reference Dataset Accuracy (%)

1. Odusami et al. (42) ADNI Kaggle 73.90

2. El-Assy et al. (21) ADNI Kaggle 99.1

3. Raza et al. (43) ADNI Kaggle 97.84

4. Gupta et al. (44) Alzheimer's
Kaggle MRI

93.7

5. Our Proposed
DenseIncepS115 CNN

Alzheimer's
Kaggle MRI

98.7

6. Our Proposed
DenseIncepS115 CNN

ADNI Kaggle 99.5
FIGURE 9

Analysis in the base of accuracy for the proposed architecture and state-of-the-art pre-trained models using ADNI dataset. The results are
computed with and without optimization algorithm.
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whereas our proposed architecture obtained an accuracy rate of

98.7%. Hence, the proposed architecture shows the improved

accuracy and precision rates based on the detailed ablation

studies. The proposed architecture's interpretation is also

presented in Figure 11. In this figure, the LIME explainable AI

technique is employed for the interpretation that shows the insight

strength of our work.

Computational overheads: The proposed architecture is

lightweight based on its number of learnable and number of

hidden layers; however, the training time is almost double after the

augmentation process. The proposed architecture required 253 min

and 45 s; however, we also trained our model on the original images,

and it takes 122 min and 12 s. The accuracy is the main difference that

was noted during the training process among augmented and original

images—99.1% and 99.5% (training accuracy using augmented

datasets such as Alzheimer's Kaggle MRI and ADNI Kaggle) and

93.1% and 95.2% (before augmentation).
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5 Conclusion

Alzheimer's disease (AD) is the most frequent cause of

dementia, affecting millions of people globally. It causes memory

loss, cognitive decline, and breakdown in day-to-day functioning,

which have a major detrimental impact on people and their

families. In this paper, we presented a novel deep learning

architecture for AD prediction from MRI images. Dataset

augmentation has been performed at the initial phase, and then a

novel CNN architecture called DenseIncepS115 that is based on the

fusion of two modules—Proposed InceptionSA Module and

Proposed DenseSA Module—was designed. The hyperparameters

of the proposed architecture are initialized using BO instead of

manual selection. The trained model is later validated in the testing

phase, whereas the depth concatenation layer features are extracted

and optimized using the CFO algorithm. The selected features are

passed to a shallow wide neural network classifier and obtained
FIGURE 11

Interpretation of the proposed architecture using LIME explainable AI technique.
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improved accuracy levels of 98.7% and 99.5%, respectively, for the

selected datasets. Based on the detailed results, analysis, and

ablation studies, we conclude with the following points:
Fron
• Using data argumentation step, we overcome the problems

of small data samples and class imbalance.

• The proposed InceptionSA extracted information from the

multiscales that was further improved in the self-

attention module.

• The proposed DenseSA module improved the weights

information of an image that, in return, improved the

prediction accuracy and reduced the computational time.

• The proposed network-level fused architecture improved the

prediction accuracy that was further optimized using the

CFO algorithm. The CFO algorithm improved the precision

rate and reduced the computational time.

• Model interpretation through LIME and GRAD-CAM

shows how accurately the proposed architecture is trained

on selected datasets for AD prediction.
Hence, the well-being of Alzheimer's disease patients may

benefit from improved AD diagnosis, which is one way in which

this study benefits the scientific community. In terms of accuracy

and prediction, the proposed framework outperforms the current

approaches. In the future, the current work shall be shifted to

vision transformers.
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