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Tryptases represent the most abundant constituent of human mast cells,

involved in extracellular matrix degradation, contributing to wound healing and

metastasis. Moreover, most recently, it has been demonstrated that tryptase is

angiogenic both in vitro and in vivo. Tryptase-positive mast cell number increases

parallelly with increased microvascular density in both solid and hematological

tumors. The objective and the scope of this review article are to emphasize the

important role of tryptase as one of the principal effectors of tumor angiogenesis

mediated by mast cells. In this context, tryptase inhibitors may be considered a

novel therapeutic approach in cancer treatment.
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Introduction

Angiogenesis, forming new blood vessels from pre-existing ones, occurs in various

physiological and pathological conditions, such as embryonic development, wound healing,

the menstrual cycle, and chronic inflammation and tumors. Tumor angiogenesis is linked

to a switch in the equilibrium between positive and negative regulators and mainly depends

on the release by neoplastic cells of growth factors specific to endothelial cells and it can

stimulate the growth of host’s blood vessels (1, 79). Moreover, different classes of proteases,

including matrix metalloproteinases (MMPs) (2), serine proteases (3), aminopeptidases (4),

transmembrane proteases (TPs) (5), type II transmembrane serine proteases (TTSPs) (6),

kallikrein-related peptidases (KLKs) (7), are involved in tumor angiogenesis (8).

Immune cells are also able to synthesize and secrete pro-angiogenic factors that promote

tumor angiogenesis. Among these cells, mast cells exert both anti-tumorigenic and pro-

tumorigenic roles. These cells produce several angiogenic factors, including fibroblast growth

factor-2 (FGF-2), vascular endothelial growth factors (VEGF), and interleukin-8 (IL-8), as well

as proteases, promoting tumor neovascularization. By contrast, mast cells inhibit tumor growth

releasing cytokines and growth factors, including tumor necrosis factor-alpha (TNF-a),
transforming growth factor beta (TGF-b), interferon-alpha (IFN-a), and bioactive

monoamines (9).

An increased number of mast cells have been demonstrated in angiogenesis associated

with vascular tumors, like hemangioma and hemangioblastoma, as well as several

hematological and solid tumors, including lymphomas, multiple myeloma

myelodysplastic syndrome, B-cell chronic lymphocytic leukemia, breast cancer, gastric
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and colorectal cancer, uterine cervix cancer, melanoma, and

pulmonary adenocarcinoma, in which mast cell accumulation

correlate with increased neovascularization, tumor aggressiveness,

and poor prognosis (10). Conversely, mast cells have been

demonstrated to play a protective role in the early stages of

intestinal tumorigenesis (11). In this context, similarly to

neutrophils (N1 and N2 subpopulations), and macrophages (M1

and M2 subpopulations), also mast cells are polarized toward anti-

tumorigenic (MC1) or pro-tumorigenic (MC2) cell types (12).

Mast cells produce different biological mediators, including

histamine, proteoglycans, proteases, cytokines, lipid mediators,

and growth factors. Most proteins synthesized in mast cells are

proteases, stored fully active in a complex with heparin (13). Mast

cells are a reservoir of neutral proteases, packed in large amounts in

the secretory granules, including tryptases, chymases, cathepsin C

and G, and carboxypeptidase A3 (14). The secretion of these

mediators is a consequence of mast cell degranulation and occurs

as a response to physical factors, toxins, venoms, proteins, tissue

proteases, and immune mechanisms, dependent or not dependent

on IgE. Human tryptase is considered specific to mast cells (15),

even if basophils contain and release tryptase (16).

Genetic analysis of tryptases in different species suggests that

these proteases proliferated and changed rapidly during

mammalian evolution, arising from ancestral membrane-

anchored peptidases, which are present in a variety of vertebrate

genomes such as reptiles, amphibians, and fish (17).

Tryptases, a group of 130 kD serine peptidases representing the

most abundant constituent of human mast cells, are involved in

extracellular matrix degradation, contributing to wound healing and

metastasis. In humans, there are five isoforms of mast cell tryptase, a-
, b-, g-, d-, and e-tryptase. (18). Alpha-tryptases are classified in a-I
and a-II tryptases, while b-tryptases are classified in b-I, b-II, and b-
III tryptases (19). Alpha- and b-tryptases are the most abundant and

clinically relevant, with approximately 90% sequence homology

between them. Tryptases cleave fibronectin and type VI collagen,

pro-enzyme forms of MMPs, and urokinase plasminogen activator

(uPA), different bronchial and intestinal neuropeptides, such as

calcitonin gene-related peptide (CGRP) and vasointestinal peptide

(VIP), and IgE molecules, downregulating the allergic response.

bII-tryptase is stored in the secretory granules of mast cells. In

contrast, a-pro-tryptase is secreted constitutively from mast cells as

an inactive proenzyme.

The activation of bII-pro-tryptase involves two proteolytic

steps. The most common mutations of the tryptase gene lead to

loss of membrane anchoring, defective zymogen activation, or loss

of catalytic function, thereby giving rise to changes in specificity

(20). Extra copy numbers of tryptase a1 (TPSAB1) reflecting

hereditary a-tryptasemia (HaT), a common genetic trait with

increased copy numbers of the a-tryptase encoding gene, that

correlates with mast cell activation-related events. In patients with

mastocytosis, the presence of a HaT was associated with high serum

tryptase independent of the clonal mast cell burden (21).

Tryptase plays a crucial role in mast cell ontogeny (22). The first

source of mast cells is the extraembryonic yolk sac, on embryonic

day 7. Mast cell progenitors circulate and enter peripheral tissues

where they complete their differentiation, and embryonic mast cell
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populations are gradually replaced by definitive stem cell-derived

progenitor cells. Transcriptome analysis of mast cells derived from

human umbilical cord blood and peripheral blood, revealed a series

of mast cell-specific genes, including tryptase a1 and b1, L-histidine
decarboxylase, cathepsin G, and carboxypeptidase A (23).

In humans, mast cells containing tryptase only are designated as

MCsT or “immune cells associated” mast cells predominantly

located in the respiratory and intestinal mucosa, where they co-

localize with T cells. Instead, mast cells that contain both tryptase

and chymase referred to as MCsTC, are predominantly found in the

skin, submucosa of the stomach and intestine, breast parenchyma,

myocardium, lymph nodes, conjunctiva, and synovium (24, 78).

Secretion of tryptase from mast cells triggers the release of more

tryptase from neighboring mast cells (25). Tryptase stimulates the

proliferation of airway muscle cells (26), fibroblast migration and

proliferation (27), and induces the synthesis and release of collagen

from fibroblasts in vitro (28). In breast cancer, mast cell tryptase

promotes myofibroblast differentiation in the tumor stroma (29).

Moreover, tryptase stimulates vascular permeability and chemotaxis

of neutrophils and eosinophils.

Tryptase levels in biological fluids reflect the number of mast

cells (30). In healthy individuals, serum baseline tryptase levels are

very stable over time, ranging between 1 and 15 ng/ml, while altered

levels indicate the risk of severe allergic manifestations (31). The

predominant indication for tryptase measurement is to document

systemic mast cell activation conditions during anaphylaxis or

episodes of mast cell activation syndromes. Serum tryptase has

been described as a circulating predictive surrogate marker in

colorectal cancer and in breast cancer before and after surgical

resection when tryptase levels significantly decrease (32, 33).

This review article’s objective and scope are to emphasize the

important role of tryptase as one of the principal effectors of tumor

angiogenesis mediated by mast cells. In this context, tryptase inhibitors

may be considered a novel therapeutic approach in cancer treatment.
Tryptase and tumor angiogenesis

Paul Ehrlich discussed the possible connection of mast cells

with tumor growth and progression early in 1878 (34). Indeed, most

tumors contain inflammatory cell infiltrates, which often include

mast cells. Thus, the importance of a potential functional link

between chronic inflammation and cancer has long been

recognized and the question of the possible contribution of mast

cells to tumor development has progressively emerged. It was

Rudolf Virchow in 1863, who critically recognized the presence of

inflammatory cells infiltrating neoplastic tissues and first

established a causative connection between the “lymphoreticular

infiltrate” at sites of chronic inflammation and cancer (35).

There is evidence that different cell types of the innate immune

system, including mast cells and macrophages play a critical role in

enhancing tumor angiogenesis, either directly through the release of

angiogenic cytokines and proteolytic enzymes, or indirectly through

paracrine signals.

It is still not completely known and clarified the role of tryptase

as another pro-angiogenic factor released by mast cells. Tryptase-
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positive mast cells are among the first immune cells recruited to

tumor sites in response to the chemotactic stimuli and are increased

in solid tumors, at the boundary between malignant and healthy

tissues (29, 36). The main chemoattractant factor produced by

tumor cells is stem cell factor (SCF), the ligand for the tyrosine

kinase receptor kit (CD 117) expressed by mast cells and considered

the most important factor involved in the regulation of mast cell

number in physiological conditions (37, 38).

Blair et al. (39) for the first time investigated in vitro the

angiogenic potential of tryptase demonstrating that tryptase

added to microvascular endothelial cells cultured on Matrigel

causes an increase in capillary growth in a dose-dependent

fashion, and specific tryptase inhibitors suppressed this effect.

Tryptase stimulates endothelial cell release of IL-1, IL-6, IL-8,

SCF, TNF-a, and other inflammatory mediators (40). Moreover,

tryptase promotes chemotaxis of neutrophils and macrophages,

which induces the new formation of capillaries, and activates MMP-

9, which favors the release of angiogenic factors stored in the

extracellular matrix (41).

We have demonstrated an angiogenic activity of human

recombinant tryptase with a grade of purity of 95% in vivo in the

chick embryo chorioallantoic membrane (CAM) assay (Figure 1),

comparable to the angiogenic response induced by a well-known

angiogenic cytokine, namely VEGF (42). Tryptase contributes to

atherosclerotic plaque angiogenesis and hemorrhage by regulating

VEGF, PA inhibitor (PAI), and tissue PA (tPA) expression (43).

Tryptase is documented to play a role in tumor angiogenesis

(Table 1). Elevation of different angiogenic factors, including VEGF,

FGF-2, and platelet-derived growth factor (PDGF) in response to

tryptase plays a key role in tumor angiogenesis (10). Tryptase acts

on the proteinase-activated receptor-2 (PAR-2), stimulating tumor

angiogenesis (44), and induces PAR-2. Tryptase induces PAR-2

proliferative effects on a human colon carcinoma cell line (45).

PAR-2 leads to the release of IL-6 and granulocyte-macrophage
Frontiers in Oncology 03
colony-stimulating factor (GM-CSF), acting as angiogenic

factors (46).

Tryptase-positive mast cell number increases parallelly with

increased microvascular density in solid tumors, including

malignant melanoma (47, 48), endometrial carcinoma (49, 53, 54),

breast cancer (50, 56, 57), uterine leiomyomas (51), gastric cancer (52,

55, 58), colorectal cancer (61, 62), pancreatic ductal adenocarcinoma

(59, 60, 63). In hematological tumors tryptase-positive mast cell

count correlates with angiogenesis in multiple myeloma (64), in B

cell non-Hodgkin’s lymphomas (65), in myelodysplastic syndrome

(66) and B cell chronic lymphocytic leukemia (67, 68).
Therapeutic implications

Reducing mast cell number is a therapeutic approach in

mastocytosis, characterized by mast cell accumulation in the skin

(Figure 2) and other tissues, and other diseases characterized by an

increase in mast cell number. Different pharmacological agents such

as omalizumab, imatinib, disodium cromoglycate, H1 receptors

antagonists, steroids, and non-steroidal anti-inflammatory drugs

have been developed to modulate the functions of mast cells. The

interplay between mast cells and tumor angiogenesis suggests
FIGURE 1

Tryptase is angiogenic in vivo in the CAM assay. Macroscopic picture
of a CAM at day 12 of incubation treated with tryptase. Note the
presence of numerous blood vessels converging toward the implant
(arrow) (Modified from 42).
FIGURE 2

Tryptase-positive mast cells (arrows) in red in a bioptic specimen of
human skin mastocytosis.
TABLE 1 Different roles of tryptase in tumor angiogenesis.

Increased levels of different angiogenic factors (10)

Activation of PAR-2 (44, 45)

Release of IL-6 and GM-CSF (46)

Increased microvascular density in different solid human cancers (32, 47–55,
56–63).

Increased microvascular density in different hematological human cancers
(64–68).
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considering the therapeutic use of inhibitors, which specifically

target the angiogenic activity of tryptase. Cromolyn, an inhibitor of

mast cell degranulation, reduces the expansion and survival of

pancreatic cancer and endothelial cells (69). The combination of

cromolyn with anti-angiogenic therapy increases the therapeutic

efficacy (70). Tryptase inhibitors such as gabexate mesilate and

nafamostat mesilate, two inhibitors of trypsin-like serine proteases

(71–73) might be used as anti-angiogenic-agents through tryptase

inhibition in combination with chemotherapy in the treatment of

cancer (Table 2). Anti-angiogenic activity of gabexate mesilate in

colon and pancreatic cancer may be due to a selective inhibition of

mast cell tryptase (73–75). Nafamostat mesilate inhibits the

tryptase-induced proliferation of tumor cells (45). Nafamostat

exerts anti-angiogenic activity in pancreatic cancer through

blockade of nuclear factor kappa-B (NF-kB) activation, which is

mediated by tryptase through PAR-2 (76). Pancreatic cancer cell

lines injected into nude mice with tryptase induced the formation of

tumors larger than those developed in non-treated mice and

nafamostat suppressed the tumorigenic effect of tryptase (77).

Finally, different anti-cancer agents including sorafenib, sunitinib,

pazopanib, axitinib, and masitinib, are all targeted against c-KitR,

whose activation leads to the release of tryptase by mast cells.
Concluding remarks

It is well established that mast cell accumulation accompanies

most malignancies. However, the knowledge of how mast cells

functionally impact tumors is still under investigation. Mast cells

modulate the biological activity of immune and non-immune

components of the tumor microenvironment through the release of

a plethora of mediators, including tryptase. In this context, despite the

critical role of tryptase in tumor growth and angiogenesis, the
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development of effective inhibitors has been a complex challenge,

mainly due to the intricate mechanisms governing its activation and

regulation. Although numerous tryptase inhibitors have been

previously reported, it is important to note that these are largely in

investigational stages and have not yet received FDA approval. It is

conceivable that tryptase inhibitors might be combined with other

novel anticancer approaches, such as anti-PD-1/PDL-1 therapy. The

blockade of the PD-1/PD-L1 interaction has been suggested as a

useful and novel therapeutic approach in the treatment of tumors in

which mast cells are involved.
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