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Background: Ferroptosis is a cell death mode caused by excessive accumulation

of lipid peroxides caused by disturbance of intracellular metabolic pathway,

which is closely related to iron and cholesterol metabolism homeostasis. Its

regulation within the hypoxic metabolic tumor microenvironment (TME) has the

potential to improve the effectiveness of tumor immunotherapy. The predictive

role of ferroptosis in gastric cancer (GC) hypoxia TME, particularly in relation to

TME immune cell infiltration, has not been fully explained.

Methods: By analyzing the mRNA expression data of ferroptosis and hypoxia-

related genes, a prediction model was constructed to evaluate further the

predictive value of immune cell infiltration, clinical characteristics, and

immunotherapy efficacy of gastric cancer, and the essential genes were validated.

Results: Two distinct molecular states of ferroptosis-hypoxia were identified in

GC. Notably, patients with high ferroptosis-hypoxia risk scores (FHRS) displayed

significant levels of hypoxia and epithelial-mesenchymal transition (EMT), which

were associated with unfavorable prognosis, increased chemoresistance, and

heightened immunosuppression.

Conclusions: This study demonstrates that ferroptosis under hypoxic conditions

significantly affects the modulation of the tumor immune microenvironment.

The FHRS can independently predict prognosis in gastric cancer. Assessing the

molecular status of ferroptosis-hypoxia in individual patients will help in selecting

more suitable immunotherapy regimens by providing a better understanding of

TME characteristics and predicting immunotherapeutic outcomes.
KEYWORDS
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1 Introduction

The latest global cancer statistics report highlights gastric cancer

as one of the top five prevalent malignancies worldwide. The far-

reaching public health impact of gastric cancer underscores the

urgent need for an in-depth study of molecular biological

mechanisms and improved treatment outcomes (1). Although

chemotherapy and molecular targeted therapy have effectively

prolonged the survival of gastric cancer patients, drug resistance

remains a significant challenge. The molecular mechanism of drug

resistance in gastric cancer remains incompletely understood,

resulting in a lack of effective prevention and intervention in

clinical practice (2). The advent of immunotherapy has led to a

notable improvement in the survival rate of patients with advanced

gastric cancer, challenging the dominance of chemotherapy and

targeted therapy. Nevertheless, the efficacy of immune checkpoint

blockade (ICB) therapy is constrained by the complicated tumor

microenvironment and the inactivation of the immune system,

which results in disparate outcomes. Consequently, there is a

pressing necessity to develop more precise markers to assess the

malignant process and forecast treatment response. Identifying

these markers will facilitate the development of personalized

therapeutic approaches, thereby enhancing patient outcomes and

survival rates.

The concept of ferroptosis was initially developed in the context

of tumor research (3). Researchers discovered this particular form

of cell death, searching for a method to selectively induce death in

cancer cells carrying RAS mutations. Recent evidence indicates that

drug-induced ferroptosis can reverse drug resistance, a crucial

tumor suppressor mechanism (4). In addition, ferroptosis

enhances the infiltration and activity of tumor immune cells and

decreases the recruitment and function of immunosuppressive cells,

thereby reducing immunosuppression and promoting tumor

immunosurveillance and immune-mediated tumor clearance. The

study by Li Y et al. proposes a novel strategy to enhance

immunogenic cell death (ICD) and the cascade effect of T-cell

activity through ferroptosis for effective tumor therapy (5, 6).

Although the mechanisms of interaction between ferroptosis and

ICB therapy are still under investigation, current evidence suggests

that the facilitating role of ferroptosis may provide a new strategy

for enhancing the response to ICBs in certain refractory tumors.

Further studies are required to elucidate the specific mechanisms of

these interactions and to validate the efficacy of the combination

strategy of ferroptosis inducers and ICB therapy in clinical trials.

Hypoxia profoundly affects tumor metabolism and

microenvironment, including angiogenesis, cell proliferation,

invasion, and metastasis. These processes reduce apoptosis,

differentiation, and ferroptosis, thereby promoting tumor

immunosuppression and escape (7–9). Ameliorating hypoxia can

reshape the immunosuppressive tumor microenvironment by

reducing the intratumoral invasion of M2-type tumor-associated

macrophages and decreasing PD-L1 expression in tumor cells (10).

Furthermore, hypoxia can induce EMT in cancer cells, which

promotes the stem-like features of cancer cells and leads to tumor

therapy resistance. In human cancer cell lines and organoids, a

highly mesenchymal state unequivocally implies a selective
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susceptibility associated with ferroptosis (3, 11). The central

molecule in the cellular response to hypoxia is the hypoxia-

inducible factor (HIF). The HIF signaling pathway senses

metabolic changes due to cellular hypoxia, regulates cell

proliferation, and induces inflammatory responses (12). It was

found that HIF-1a upregulates SLC1A1 to enhance glutamate-

cystine transport efficiency, thereby driving solid tumor resistance

to ferroptosis (13). Additionally, LDHA-activated lactate

accumulation is promoted by HIF-1a to enhance ferroptosis

resistance (14, 15). Another researcher prepared nanoparticles

(CI@HSA NPs) encapsulating capsaicin (CAP) and the

photosensitizer IR780 to enhance the efficacy of photodynamic

therapy (PDT) on osteosarcoma. The nanoparticles were designed

to release capsaicin, which has been demonstrated to promote

osteosarcoma ferroptosis and improve the hypoxic microenvironment

(16). CombiningHIF-1a inhibitors with ferroptosis inducers represents

a novel strategy for solid tumor therapy. These findings elucidate the

molecularmechanismof hypoxia-induced ferroptosis resistance in solid

tumors and provide new theories and strategies for solid

tumor treatment.

This study integrated genomic and clinical data from gastric

cancer samples from four datasets to identify and comprehensively

evaluate two ferroptosis clusters. Additionally, two hypoxia

molecular subtypes were identified using the same method. Both

molecular types were closely associated with the prognosis and

immune cell infiltration signaling pathway in gastric cancer

patients, suggesting that both ferroptosis and hypoxia play an

integral role in shaping the specific characteristics of the

individual tumor microenvironment. Consequently, these

molecular subtypes were combined into a two-dimensional index,

designated the ferroptosis-hypoxia subtypes. Further analysis

demonstrated that the ferroptosis-hypoxia subtypes were closely

associated with prognosis, tumor immune cell infiltration, and

mesenchymal characteristics of gastric cancer patients. Based on

these findings, we developed a scoring system that quantifies the

ferroptosis-hypoxia status of individual patients. The scoring

system enables the selection of individualized treatment regimens

for patients and the optimization of treatment strategies by

assessing the ferroptosis-hypoxia status.
2 Materials and methods

2.1 Data preparation

The gastric cancer gene expression data and clinical annotations

were acquired from The Cancer Genome Atlas (TCGA) database,

which is publicly accessible at https://portal.gdc.cancer.gov/

repository. Validation cohort data from GSE112302, GSE84437,

and ACRG/GSE62254 were downloaded from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) database.

TCGA-STAD copy number variation (CNV) data were also

extracted from the UCSC Xena database (https://xena.ucsc.edu/).

The anti-pd-1 treatment cohort PRJEB25780 data was obtained

from the Tumor Immune Dysfunction and Exclusion Database

(TIDE, http://tide.dfci.harvard.edu/) (17). The clinical information,
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including microsatellite instability (MSI) status, remission, and

Lauren typing, was extracted from the manuscript of Mayakonda

et al. (18). A total of 1,121 GC patient samples were included in

this study.

The “ComBat” function provided by the R package “sva”

removed the batch effect. “ComBat” is a classical Bayesian-based

analysis that utilizes known batch information for the correction of

high-throughput data, ensuring that the comparisons across

datasets are accurate and meaningful (19, 20).

Ferroptosis-related genes (FRGs) were obtained from the

FerrDb website (http://www.zhounan.org/ferrdb), which is the

first database of ferroptosis regulatory factors, biomarkers, and

ferroptosis disease associations (21). We removed duplicate genes

and obtained 380 FRGs for subsequent analyses (Supplementary

Table 1). Hypoxia-related genes (HRGs) were obtained from the

Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb) (22). HIF-1 pathway target genes were

downloaded from the Kyoto Encyclopedia of Genes and Genomes

database (KEGG, https://www.kegg.jp/; ID:map04066), including

genes associated with “increasing oxygen delivery” and “decreasing

oxygen consumption”. The negative and positive regulator genes of

ferroptosis were downloaded from the Gene Ontology database

(GO, https://geneontology.org/; GO: 0160020, GO: 0110076).

All data in TCGA, GEO, TIDE, FerrDb, KEGG, GO, and

MSigDB are publicly available and adhere to the data access and

release policies of the respective databases.
2.2 Detection of ferroptosis molecular
subtypes and hypoxia molecular subtypes

The FPKM values of the RNA sequencing data from the TCGA-

STAD dataset were transformed into TPM using the R package

“TCGAbiolinks” (23). The differentially expressed FRGs and HRGs

(FDR<0.01, |logFC|>1) were analyzed and screened from gastric

cancer and para-carcinoma samples utilizing the R package

“limma” (24). Unsupervised cluster analysis was performed with

the “ConsensusClusterPlus” package to identify ferroptosis and

hypoxia molecular subtypes based on the mRNA expression

profiles of the differentially expressed genes (DEGs) (25). A

consensus clustering algorithm was used to determine cluster

number and stability. The analysis was repeated 1000 times to

ensure classification stability. Subsequently, patients from the

TCGA-STAD, GSE84437, GSE62254, GSE112302, and

PRJEB25780 cohorts were categorized for subsequent analysis.
2.3 Tumor microenvironment
characterization and functional
enrichment analysis

To further enhance comprehension of how ferroptosis impacts

the tumor immunological microenvironment, we applied the

CIBERSORT analysis (http://cibersort.stanford.edu/) (26). The

publication of CIBERSORT was released in the scientific journal

Nature Methods in 2015. It is the most commonly referenced
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instrument for estimating and analyzing the infiltration of

immune cells. We utilized CIBERSORT computations to conduct

analyses on immune cell infiltration to identify the properties of the

immunological microenvironment.

The ESTIMATE algorithm, which estimates the level of

infiltrating stromal and immune cells in malignant tumor tissues,

employs expression data to generate scores. These scores are used to

calculate the level of infiltrating stromal cells and immune cells, as

well as tumor purity.

GO and KEGG analyses were conducted on DEGs (FDR<0.05)

using the “clusterProfiler” R package (27). To investigate the

biological processes, we downloaded the gene set “c2.cp.kegg.

v7.4” from the MSigDB database to perform Gene Set Variation

Analysis (GSVA) enrichment analysis. GSVA is an unsupervised

approach for quantifying alterations in biological pathways and

processes within expression dataset samples. A collection of

signaling pathways was examined to investigate the matrix state

within the tumor microenvironment, including TGF-EMT, MAPK,

NOTCH, KRAS, HALLMARK HYPOXIA, and HIF-1 (28).

Subsequently, we employed single-sample Gene Set Enrichment

Analysis (ssGSEA) to investigate the mechanisms underlying the

generation of TME features (29). We acquired a collection of genes

associated with EMT markers from Mariathasan et al., including

EMT1, EMT2, EMT3, angiogenic signature, TGF-b response

signature of pan-fibroblasts (Pan-FTBRS), and WNT targets (30).
2.4 Identification of characteristic
molecular subtypes of ferroptosis-hypoxia

We proceeded to combine the above ferroptosis and hypoxia

status into a two-dimensional index. The patients were classified

into three groups: the ferroptosis-hypoxia (F-H) molecular subtypes

A, B, and Mix. Patients belonging to both the ferroptosis cluster A

and the hypoxia cluster A were identified as F-H subtype A, patients

belonging to both the ferroptosis cluster B and the hypoxia cluster B

were classified as F-H subtype B, and the remaining patients were

classified as F-H subtype Mix. The F-H subtype expression profiles

in groups A and B were compared to identify DEGs(FDR<0.001,

|log FC|>1). Unsupervised clustering analysis was performed on the

DEGs mentioned above to construct gene subtypes related to the

F-H molecular subtypes.

The DEGs were overlaid with FRGs and HRGs and subjected to

univariate Cox analysis. The ferroptosis-hypoxia-related prognostic

DEGs were identified for further analysis (p<0.05). In order to

reduce overfitting, we constructed a prognostic model utilizing

Lasso-penalized Cox regression analysis (31). The Lasso algorithm

was employed for variable selection and shrinkage, and the R

package “glmnet” was utilized to filter out variables with less

information. The model was constructed using the TCGA dataset

as the training set and the GSE62254 dataset as the independent test

set to obtain the optimal combination of variables. The regression

model used the normalized expression matrix of candidate

prognostic DEGs as independent factors. Meanwhile, OS and

patient status in the TCGA were considered response variables.

The penalty parameter (l) of the model was chosen using tenfold
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cross-validation according to the minimal criteria, which

corresponds to the value of l that minimizes the partial

likelihood deviation. Risk scores for patients were computed by

utilizing the normalized expression levels of each gene and their

related regression coefficients. The formula is as follows: score =

esum (each gene’s expression × its corresponding coefficient). Subsequently,

patients were divided into high-risk and low-risk groups based on

the median risk score. Time-dependent ROC curve analysis of

subjects at 1, 3, and 5 years was performed using the “timeROC”

R package to assess the predictive power of the gene signature.

Additionally, the AUC values of survival ROC curves were

calculated to assess the performance of prognostic prediction

models. Regression models were constructed by integrating risk

scores and other clinical factors. Nomogram plots were employed to

visually represent the relationship between variables in the

prediction model. These plots were displayed on the same plane

and at a specific scale. Prognostic calibration plots were used to

analyze the fit of the model to the actual situation, with the objective

of testing the consistency of the nomogram survival probability

prediction with the actual observation.
2.5 Assessment of the correlation between
clinical characteristics and predictive
risk scores

The Kruskal-Wallis test assessed the disparities between clinical

characteristics and risk scores generated by multiple data analyses.

Spearman correlation analysis was employed to determine the

correlation between risk scores. Furthermore, a Kaplan-Meier

survival analysis (log-rank test) was conducted to evaluate the

impact of patients on overall survival.
2.6 Analysis of the association between
somatic mutations and risk scores

The WES data, obtained from the TCGA portal and analyzed

using VarScan2, included single nucleotide variants (SNVs),

insertions (INS), single nucleotide polymorphisms (SNPs), and

deletions (DEL). The somatic mutation data were displayed

employing the “maftools” software package, which is capable of

processing Mutation Annotation Format (MAF) files (18). The

calculation method for the tumor mutation burden (TMB) of

each patient is as follows: the total number of variants was

divided by the total exon length.
2.7 Therapeutic strategies based on
ferroptosis-hypoxia risk scores

Jiang et al. established the Tumor Immune Dysfunction and

Exclusion (TIDE) to mimic tumor immune escape mechanisms,

including T-cell dysfunction and T-cell rejection (32).

Consequently, TIDE can be employed to forecast the efficacy of
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phenotype in the tumor and a poorer response to ICBs.

The Immunophenoscore (IPS) was obtained from The Cancer

Immunome Atlas (TCIA, https://tcia.at/home). As a molecular

marker of the immune response, the IPS provides an excellent

indication of the immune landscape within the tumor. It was

determined that a scoring scheme could be created by identifying

genes related to the immune system. A higher IPS score is indicative

of higher immunogenicity levels. In this context, IPS can be

employed to assess immunotherapy efficacy in GC patients.

The Genomics of Drug Sensitivity in Cancer (GDSC) database

was utilized to evaluate the susceptibility of ferroptosis-hypoxia

states to chemotherapeutic drugs. The IC50 is calculated based on

the “pRRophetic” software and represents the concentration at

which the inhibitory effect reaches half the maximum value (33, 34).
2.8 Pan-cancer analysis

We further systematically summarized the clinical relevance

and immunological characteristics of risk scores in pan-cancer to

externally validate the general applicability of risk scores. Gene

expression and associated clinical information for 33 tumors were

downloaded from the TCGA database.
2.9 Quality control and standardization of
scRNA-seq data

Download the six samples of the GSE112302 dataset from the

GEO website, which includes scRNA-seq data from 402 GC cells.

Then, create a “Seurat” object containing basic information about

the single-cell dataset using the “CreateSeuratObject” function in

the “Seurat” R package. Subsequently, data quality control was

conducted. The scRNA-seq data underwent normalization applying

the “LogNormalize”method, and a variance analysis was performed

to identify the top 1500 genes with highly variable characteristics.

Subsequently, the dimensionality of the data was reduced through

the application of principal component analysis (PCA). The

dimensions exhibiting significant separation were subjected to

PCA at a false discovery rate (FDR) of less than 0.05, and the first

15 principal components (PCs) were subsequently downscaled by

the t-distributed stochastic neighbor embedding (tSNE) algorithm

to yield principal component clusters. The marker genes in each

cluster were identified using the criteria of log2 [fold change (FC)]

>0.5 and FDR<0.05. The clusters were annotated using the marker

gene-based “Single” R package.
2.10 Immunohistochemical analysis of
clinical validation cohort

A total of 30 surgical specimens of GC, along with 25 matched

paracancerous tissues, were collected from Qingdao People’s Hospital

Group (Jiaozhou) (hereafter referred to as our hospital). In order to
frontiersin.org
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evaluate the levels of expression of central genes (SDC2, RGS4,

SERPINE1, DUSP1, and CAV1), immunohistochemistry (IHC) was

conducted using GTVisionTM III Detection System. According to the

instructions from the manufacturer, the following antibodies were used

for immunohistochemical staining: 67088-1-Ig, 14530-1-AP, 66261-1-

Ig, T56588S, and 16447-1-AP. Two pathologists, unaware of the

patient’s clinical information, evaluated the immunohistochemical

staining. In case of a discrepancy in the assessments, a third

pathologist conducted an independent review. Ten optical fields were

examined in each diseased region using a high-power lens (×400).

The IHC staining score was used as the definitive criterion for judging

the staining. The IHC staining score is calculated by multiplying the

staining area score by the staining intensity score. The score for the

staining area was assessed on a scale ranging from 0 to 4, with 0

representing a staining area of ≤10%, 1 representing a staining area of

11 to 25%, 2 representing a staining area of 26 to 50%, 3 representing a

staining area of 51 to 75%, and 4 representing a staining area of >75%.

The staining intensity score was categorized as 0: negative, 1: weak, 2:

moderate, or 3: strong. The IHC staining scores were dichotomized as

follows: scores below six were defined as low expression, while scores

above six were defined as high expression.
2.11 Statistical analysis

A student t-test was employed to assess differential gene

expression between tumor and adjacent non-tumor tissues.

Comparisons between the two groups were conducted via the

Wilcoxon rank-sum test. Additionally, multiple comparisons were

performed by the Kruskal-Wallis test. Cut-off points for each

subgroup were determined using the “survminer” R software

package. The Kaplan-Meier method was employed to analyze

overall survival (OS) between subgroups, with the log-rank test

used to assess the significance of the results. The chi-squared test
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multivariate Cox regression analyses were performed to

determine the independent factors that predict OS.
3 Results

3.1 Identification of molecularly
characterized subtypes of ferroptosis and
hypoxia in GC

The flow chart shows our research procedure (Figure 1). In the

TCGA-STAD cohort, we have found 59 FRGs that are expressed

differently across tumor tissues and adjacent non-tumor tissues

(FDR<0.001, |logFC|>1; Supplementary Figure 1A, Supplementary

Table2)using the “limma”Rpackage. InKEGGandGOanalysis, these

DEGs were found to be enriched in several pathways, including

positive regulation of MAP kinase (MAPK) activity, response to

TGF-b, enhancement of cell-cell adhesion, and promotion of T-cell

activation, activation of immune response, fibroblast proliferation,

platinum resistance, apoptotic process of inflammatory cells,

oxidoreductase complex, p53 signaling pathway, HIF-1 signaling

pathway, and many other oncology-related pathways (Figure 2A).

The same identification method was employed to screen for 26 HRGs

that exhibited differential expression between gastric cancer tumors

andnormal tissues (FDR<0.001, |log FC|>1; Supplementary Figure 1B,

Supplementary Table 2). These HRGs were enriched in many

biological functions related to angiogenesis, modulation of

extracellular matrix components, modulation of cell adhesion,

chemotaxis of immune cells, and a variety of oncogenesis-related

pathways (MAPK, Ras, Rap1, insulin-like growth factor receptor,

p53, HIF-1) (Figure 2B).

It is reasonable to hypothesize that ferroptosis and hypoxia play

a significant role in tumor progression. Subsequently, a consensus
FIGURE 1

Flow chart of our study.
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clustering approach was used to identify characteristic molecular

subtypes of ferroptosis in gastric cancer. Based on the mRNA

expression profiles of 59 FRGs, GC patients from 4 cohorts were

clustered into two ferroptosis clusters, A and B (A: n=332, B: n=789;

Supplementary Figure 1C). PCA confirmed that these two subtypes

could be altogether distinguished (Supplementary Figure 1D).

Prognostic analysis showed a significant survival advantage for

ferroptosis cluster A compared to subtype B (p<0.001; Figure 2C).

Following the same approach, we classified the gastric cancer

samples from the four cohorts into two hypoxia molecular
Frontiers in Oncology 06
subtypes, A and B (A: n=863, B: n=258; Supplementary

Figure 1E). PCA confirmed that these two subtypes could be fully

distinguished (Supplementary Figure 1F). Similarly, prognostic

analyses showed that hypoxia cluster A exhibited a notable

survival benefit (p<0.001; Figure 2D).

As illustrated in Figure 2E, ferroptosis cluster A was

significantly enriched in the pentose phosphate pathway, alanine

aspartate and glutamate metabolism, DNA repair, and p53

signaling pathway. Subtype B was significantly enriched in the

influence of the intestinal immune network for IgA production,
FIGURE 2

Identification of molecularly characterized subtypes of ferroptosis and hypoxia in GC. (A, B) GO and KEGG analysis based on FRGs (A) and HRGs (B).
(C, D) Kaplan-Meier curves of GC patients for ferroptosis molecular subtypes (C) and hypoxia molecular subtypes (D). (E, F) GSVA analysis revealed
distinct activations of biological pathways in ferroptosis clusters (E) and hypoxia clusters (F). Blue represented the inhibition pathway, and red
represented the activation pathway.
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cell adhesion molecules (CAMs), and Extracellular matrix and

(ECM) receptor interaction. According to Figure 2F, hypoxia

cluster B was significantly enriched in the stromal activation and

oncogenic pathways (ECM receptor interaction, CAMs, TGF-b
s igna l ing pathway, MAPK signal ing pathway , WNT

signaling pathway).
3.2 Identification of molecular subtypes for
combined ferroptosis-hypoxia

The preceding analysis demonstrated that both the ferroptosis

and hypoxia molecular subtypes exhibit favorable prognostic value

and distinctive tumor-related biological characteristics. Therefore,

based on the above ferroptosis and hypoxia status, we further

combined them into a two-dimensional metric and categorized

patients into ferroptosis-hypoxia (F-H) subtypes A, B, and mix (A:

n=309, B: n=235, mix: n=577; Figure 3A). The survival analysis

revealed that patients with F-H subtype A exhibited the highest

survival rate, while those with F-H subtype B exhibited the poorest

prognosis (p<0.001; Figure 3B).

The heatmap demonstrated the ESTIMATE score of F-H

subtypes and the enrichment of multiple biological pathways

(Figure 3C). Notably, we found that the NOTCH signaling

pathway, MAPK signaling pathway, hypoxia, and activation of

TGF-EMT signaling pathway were highly expressed in F-H

subtype B, while TGF-EMT signaling down regulation were

highly expressed in F-H subtype A. In 2018, Oh et al. conducted

an analysis of genomic and proteomic data to distinguish between

two separate categories of gastric cancer: mesenchymal phenotype

(MP) and epithelial phenotype (EP) (35). These two subtypes

showed markedly different survival and chemotherapy sensitivity.

Based on their study, we found that the interstitial features of F-H

subtype B were more prominent (Figure 3D). The EMT analysis was

conducted using the single sample Gene Set Enrichment Analysis

(ssGSEA) method, demonstrating significantly enhanced stromal

activity in F-H subtype B. This was evidenced by the enrichment of

EMT, pan-fibroblast TGF-b response signature (Pan-F-TBRS), and

angiogenic pathways, which supported our hypothesis (Figure 3E).

CIBERSORT analysis revealed a significant enrichment of immune-

activated cells in F-H subtype A, including CD8+ T cells, M1

macrophages, and CD4+ T cells. The immunosuppressive cells,

such as M2 macrophages, are abundant in subtype B (Figure 3F).

We further compared the expression profiles of F-H subtype A

and F-H subtype B. A total of 520 DEGs were identified

(FDR<0.001, |log FC|>1; Supplementary Figure 1G). In order to

further verify this regulatory mechanism, an unsupervised

clustering was performed on the basis of these DEGs. The

patients were categorized into two F-H genomic patterns, referred

to as gene clusters A and B (A: n=342; B: n=201). The prognosis for

gene cluster A was demonstrably superior to that of gene cluster B

(Figure 3G). We overlapped 520 DEGs with FRGs and HRGs to

identify 25 ferroptosis-hypoxia (F-H) marker genes (Supplementary

Figure 1H). Univariate Cox analysis was performed to select 14 F-H

prognostic genes (p<0.05; Figure 3H). The heatmap demonstrated

that the gene clusters were similar to the F-H molecular subtypes.
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Furthermore, the expression of the 14 prognostic DEGs was found

to be significantly upregulated in gene cluster B and F-H subtype

B (Figure 3I).
3.3 Construction and validation of a
prognostic model based on ferroptosis-
hypoxia genes

Considering the heterogeneity and complexity of individual

gastric cancer patients, analyses based on patient groups alone are

insufficient for accurately predicting the prognosis of individual GC

patients. Therefore, we established a prognostic model by Lasso-

Cox regression analysis using the expression profiles of the above 14

genes. A signature consisting of five genes was identified utilizing

the optimum value of l (Figures 4A, B). The risk score was

computed employing the following methodology: e (0.0029 *
expression level of CAV1 + 0.2445 * expression level of SDC2 +

0.0168 * expression level of RGS4 + 0.0485 * expression level of

DUSP1 + 0.1873 * expression level of SERPINE1). Patients in

TCGA (training cohort) were divided into high-risk (n=159) and

low-risk (n=159) groups. Kaplan-Meier curves demonstrated that

patients in the high-risk group exhibited a notably lower OS than

patients in the low-risk group (Figure 4C). Time-dependent ROC

curves further confirmed the excellent sensitivity and specificity of

the risk score in predicting GC survival outcomes (1-year

AUC=0.631, 3-year AUC=0.670, 5-year AUC=0.736; Figure 4D).

The above conclusions were also validated in the GSE62254 cohort

(Supplementary Figures 2A, B). The prognosis calibration chart was

employed to assess the alignment between the model and the actual

situation, with calibration curves for 1-, 3-, and 5-year OS analyzed.

Figures 4E, F demonstrated that the risk score in the TCGA and

GSE62254 cohorts had a predictive effect on the outcome of gastric

cancer patients aligned with the actual situation. Subsequently,

univariate and multivariate Cox analysis demonstrated the

independent prognostic value of the risk score (p<0.001;

Figure 4G). Nomograms were employed to visualize the risk score

in conjunction with other clinical risk factors (grade, gender, age,

stage) to construct a predictive multivariate regression model

(Figure 4H). Figures 4I, J illustrated the calibration curves and

time-dependent ROC curves for 1-year, 3-year, and 5-year OS.

These figures demonstrate that the risk score has excellent

predictive efficacy for the outcome of gastric cancer patients. This

conclusion was similarly validated in the GSE62254 cohort

(Supplementary Figures 2C–H).
3.4 The landscape of genetic variation of
ferroptosis-hypoxia risk scores

The study of copy number variation (CNV) demonstrated that

CNV was prevalent among the 25 ferroptosis-hypoxia genes, with a

significant number concentrated on copy number amplification

(Figure 5A). Figure 5B depicts the chromosomal location of CNV in

ferroptosis-hypoxia genes. The somatic mutation data indicated

that both the ferroptosis cluster A and the hypoxia cluster A
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FIGURE 3

Identification of molecular subtypes for combined ferroptosis-hypoxia. (A) The upSet diagram shows the composition of ferroptosis-hypoxia
subtypes. (B) Kaplan-Meier curves of GC patients for ferroptosis-hypoxia subtypes. (C) Heat map illustrating the relationship between ferroptosis-
hypoxia subtypes, ESTIMATE score, and biological pathways. (D) Differences in ferroptosis-hypoxia subtypes for EMT typing. (E) Box plot showing
ssGSEA analysis of EMT differences between ferroptosis-hypoxia subtypes. (F) Box plots of immune infiltration levels in ferroptosis-hypoxia subtypes.
ns, not significant; *p<0.05; **p<0.01; ***p<0.001. (G) Kaplan-Meier curves for the gene clusters of GC patients. (H) Forest plots illustrating the
Univariate Cox regression analysis of ferroptosis-hypoxia marker genes. (I) Heat map illustrating the relationship between ferroptosis-hypoxia
subtypes associated gene expression, ferroptosis-hypoxia clusters, and various clinicopathological features.
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FIGURE 4

Construction and validation of a prognostic model based on ferroptosis-hypoxia genes. (A) The log value of the independent variable lambda (the
abscissa represents the confidence interval of each lambda, and the ordinate represents errors in cross-validation). (B) The changing trajectory of
each independent variable (the abscissa represents the corrected lambda, and the ordinate represents the coefficient of the independent variable).
(C) The K-M curve of the five-gene signature-based stratification in TCGA training cohort. (D) The 1-, 3-, and 5-year ROC curve is based on five-
gene signature stratification. (E, F) The calibration plot evaluates the fit analysis of the model to the actual situation in TCGA (E) and GSE62254 (F).
(G) Univariate and multivariate Cox analysis of risk score. (H) Nomogram plot of the prognostic multivariate regression model. (I) Prognostic
Calibration plot evaluating the fit analysis of the model to the actual situation. (J) The 1-, 3-, and 5-year ROC curve is based on the prognostic
multivariate regression model.
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FIGURE 5

The landscape of genetic variation of ferroptosis-hypoxia risk scores. (A) The frequency of CNV variation of 25 ferroptosis-hypoxia genes. The height
of the column represented alteration frequency. Green dots indicate deletions; red dots indicate amplifications. (B) CNV alteration locations for 25
ferroptosis-hypoxia genes. (C–H) Waterfall plots of tumor somatic mutations in patients with low ferroptosis subtypes A (C), ferroptosis subtypes B
(D), hypoxia subtypes A (E), hypoxia subtypes B (F), low-risk group (G), high-risk group (H). Each column represents one patient. The top bar
indicates the degree of tumor mutation. The numbers on the right indicate the frequency of mutations in each gene. The bars on the right show the
proportion of different types of mutations. Stacked bar graphs show the conversion rate for each sample. (I) Boxplots illustrating the difference in
tumor mutation burden between risk score groups. (J) Kaplan-Meier curve for tumor mutation burden groupings. (K) Kaplan-Meier curve for risk
score and tumor mutation burden.
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exhibited higher mutation frequencies than cluster B. Furthermore,

when applying the risk score for grouping, the difference in

mutation frequency between the low and high groups became

more significant (Figures 5C–H). The quantification analysis of

TMB demonstrated that, among patients with gastric cancer, those

with a low-risk score exhibited a relatively higher TMB, and a

higher TMB was associated with improved survival, which is

consistent with our results (Figures 5I–J). In light of the possible

synergistic impact of TMB and risk score on evaluating prognosis

for patients, we proceed with performing stratified prognostic

analysis. A significant survival advantage was observed in patients

with low-risk scores and high TMB (p<0.001; Figure 5K). These

data suggest that the combination of risk scores and TMB can

further enhance the prognostic value for patients.
3.5 Association of ferroptosis-hypoxia risk
score with clinical characteristics and other
classical gastric cancer
classification features

We proceeded to investigate the correlation between gastric

cancer risk scores and clinical characteristics. The Kruskal-Wallis

test demonstrated that risk scores exhibited a statistically significant

difference between the F-H subtypes (p<0.05; Figure 6A). The results

were consistent with the prediction, with F-H subtype B exhibiting

the highest median risk score and the most unfavorable prognosis,

whereas the opposite was true for the A subtype. Patients with a more

favorable prognosis exhibited recognized clinical characteristics,

including stage I-II and grade 1-2. These patients exhibited

relatively low-risk scores (Figures 6B, C). Furthermore, risk scores

were found to be significantly higher in patients with recurrent gastric

cancer (Figure 6D). Patients in the diffuse category of the Lauren

pathology classification exhibited relatively high-risk scores

(Figure 6E). Subsequently, the relationship between other molecular

features used to classify GC and the risk scores was examined. The

TCGA study categorized primary gastric cancer into four distinct

subtypes: Epstein-Barr virus (EBV) infection, microsatellite instability

(MSI), chromosomal instability (CIN), and genomic stability (GS). In

our analysis, patients with the GS type exhibited the highest risk

score, while those with the EBV type exhibited the lowest risk score,

in accordance with our anticipated results (Figure 6F). Figure 6G

demonstrated that risk scores exhibited a statistically significant

difference between EMT and other ACRG subtypes (p<0.001).

Similarly, the MP subtype exhibited a markedly elevated risk score

compared to the EP subtype (p<0.001; Figure 6H).
3.6 Tumor immune microenvironment
associated with the ferroptosis-hypoxia
risk score

The immune score, stromal score, and ESTIMATE score of the

GC samples were calculated using the ESTIMATE algorithm to

facilitate the assessment of the immune and stromal components of
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the TME. Higher ESTIMATE scores represent lower tumor purity,

which means higher tumor progression and worse prognosis. The

high-risk scoring group exhibited notably elevated levels of the

stromal score, immune score, and ESTIMATE score (Figure 6I). As

anticipated, subsequent ssGSEA analysis revealed that the high-risk

score group was associated with stromal activation-related signaling

pathways and hypoxia-associated pathways (TGF-EMT, MAPK,

NOTCH, Hallmark hypoxia, and HIF-1). In contrast, the low-risk

group was enriched in the negative regulation of ferroptosis

(Figure 6J). Pathologically activated neutrophils (PMNs), called

myeloid-derived suppressor cells (PMN-MDSCs), are major

negative regulators of anti-tumor immunity. Figure 6K showed

the significant enrichment of PMN-MDSCs in high-risk group

samples (p=0.01). Subsequently, we conducted correlation

analyses between the risk score and immune cell infiltration

(Figure 6L). The risk score was found to be positively correlated

with macrophage M2 infiltration and negatively correlated with T

cells follicular helper, macrophages M1 infiltration. Moreover, the

expression of the five key genes was also positively correlated with

many immunogenic genes, especially macrophage M2 (Figure 6M).

These data suggested that the ferroptosis-hypoxia risk score may

influence tumor growth and progression by regulating immune cells

and matrix activation within the tumor microenvironment.
3.7 Therapeutic strategies based on
ferroptosis-hypoxia risk scores

The IPS immunotherapy prediction analysis demonstrated that

the low-risk group exhibited favorable therapeutic outcomes in both

anti-CTLA-4 and anti-PD-1 immune checkpoint treatment

(p<0.01; Figure 7A). Considering the pivotal role of

immunotherapy in cancer treatment, we further investigated the

relationship between the risk score and ICBs response by using

cl inica l data from TCGA-STAD and PRJEB25780 (a

pembrolizumab-treated clinical trial cohort with metastatic gastric

cancer). The risk score in the ICBs treatment response group was

demonstrably lower than that in the non-response group (p<0.01;

Figure 7B). Moreover, the TIDE algorithm assessed patients in the

PRJEB25780 cohort, and it was found that the risk score was

positively correlated with the TIDE score (p <0.01; Figure 7C).

This finding was also validated in the TCGA-STAD cohort

(p<0.01; Figure 7D).

A review of the clinical data on GC patients revealed that those

with MSI-H had a lower risk score (p=0.04; Figure 7E). The MSI

MANTIS score is positively correlated with MSI-H status

probability (36, 37). By utilizing standard tumor-normal paired

sequencing data, the MSI Sensor provides accurate MSI status

determination (38). As anticipated, the MSI scores were found to

be higher in the low-risk score group (p<0.01; Figures 7F, G). In

conclusion, the evidence presented collectively provides strong

support for the predictive efficacy of the risk score in relation to

immunotherapy outcomes.

Furthermore, we sought to ascertain the relationship between

the IC50 of chemotherapeutic agents and risk scores. The findings
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revealed a significant positive correlation between the IC50 of

several agents, including 5-fluorouracil, cetuximab, doxorubicin,

gefitinib, tipifarnib, and veliparib, and the risk scores. Conversely,

the IC50 of Cytarabine and Sunitinib demonstrated a strong inverse

relationship with the risk score (Figure 7H).
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3.8 Pan-cancer analysis

Forest plots from univariate Cox analysis demonstrated that

when the clinical outcome was OS, risk scores were predictive of

survival for nine cancer types (p<0.05; Figure 8A). However, when
FIGURE 6

Association of Risk Score with Clinical Characteristics, Other Classification, and Tumor Immune Microenvironment. (A) Differences in risk scores
between the ferroptosis-hypoxia subtypes (B–E) Relationship between risk scores and clinical features such as Stage (B), Grade (C), recurrence (D),
and Lauren classification (E). (F) Differences in risk scores for TCGA types. (G) Differences in risk scores between ACRG types. (H) Differences in risk
scores for EMT types. (I) Differences in ESTIMATE score between risk score groups. (J) Differences in biological pathways enrichment between risk
score groups. (K) Differences in PMN-MDSCs enrichment between risk score groups. (L) Heat map of the correlation between risk score and
immune cell infiltration; *p<0.05; **p<0.01. (M) Heat map of the correlation between five hub genes and immune cell infiltration t; *p<0.05;
**p<0.01; ***p<0.001.
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the clinical outcome was disease-free survival (DFS), the risk score

was only predictive of 4 cancer types (p<0.05; Figure 8B).

In addition, Spearman rank correlation analysis between risk

score and tumor mutational load (TMB) for 33 cancers showed

that risk score was positively correlated with TMB in 3 cancers and

negatively correlated with TMB in 11 cancers (p<0.05; Figure 8C).

The correlation between risk score and MSI was positive in 2

cancers and negative in 6 cancers (p<0.05; Figure 8D). We found

that risk scores were associated with immune cells in the majority of

cancer types (Figure 8E). Additionally, ESTIMATE analysis

revealed a strong correlation between risk scores and stromal and

immune scores (Figure 8F).
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3.9 Validation of ferroptosis-hypoxia
related genes expression using scRNA-
seq data

The study collected 402 cells from 6 GC samples sourced from

GSE112302. After undergoing quality control and normalization,

two cells that did not meet the required standards were removed

from the study. There was no observed link between the depth of

sequencing and the sequences of mitochondrial genes. However,

sequencing depth showed a significant positive correlation with

total intracellular sequences (R=0.38, Supplementary Figure 3A).

Analysis of 16,288 genes revealed that 1,500 had substantial
FIGURE 7

Therapeutic strategies based on risk scores. (A) Boxplot showing differences in IPS scores between risk score groups. (B) Differences in risk scores
between the ICB treatment response and non-response groups in the PRJEB25780 cohort. (C) Differences in TIDE scores between the risk score
groups from the PRJEB25780 cohort. (D) Differences in risk scores between the ICB treatment response and non-response groups from the TCGA
cohort. (E) Differences in risk scores between MSI states. (F, G) Differences in risk score groups between MSI MANTIS score (F) and MSIsensor score
(G). (H) Correlation of risk scores with chemotherapeutic drug sensitivity.
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intercel lular variat ion and 14,788 had low variat ion

(Supplementary Figure 3B).

PCA downscaling results showed no significant separation

between GC cells (Supplementary Figure 3C). The top 15

principal components (PCs) with substantial distinctions were

chosen for further research (Supplementary Figure 3D). The 400

GC cells were clustered into 6 clusters according to the tSNE

algorithm (Supplementary Figure 3E). The 6 clusters were

categorized based on marker genes. Clusters 0, 1, 2, 3, and 4

consisted of cancer cells, whereas cluster 5 was linked to

macrophages (Supplementary Figure 3F). Figures 9A, B illustrated

the expression levels of five ferroptosis-hypoxia-related genes across

the 6 clusters. CAV1 increased in cluster 0, while SERPINE1 and
Frontiers in Oncology 14
RGS4 demonstrated an increase in cluster 1. Conversely, DUSP1

and SDC2 exhibited an increase in cluster 5.
3.10 Clinical cohort verification

An immunohistochemical (IHC) investigation assessed the

expression levels of hub genes (SDC2, RGS4, SERPINE1, DUSP1,

and CAV1) in gastric cancer. The majority of specimens from the

validation cohort at our hospital exhibited positive expression of

SDC2, RGS4, SERPINE1, DUSP1, and CAV1. Among the

aforementioned genes, CAV1 was strongly stained in 13 (43.3%)

specimens, SDC2 in 25 (83.3%) specimens, SERPINE1 in 27
FIGURE 8

Pan-cancer analysis. (A, B) Univariate Cox analysis of risk score when the clinical outcome was OS (A) and DFS (B). (C, D) Lollipop charts of the
Spearman’s Rank Correlation between risk score and TMB (C) and MSI (D). (E) Pan-cancer landscape associated with risk score and immune cell
infiltration. *p<0.05; ***p<0.01. (F) Lollipop charts describe the correlation of the risk score in pan-cancer with the ESTIMATE score.
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(90.0%) specimens, DUSP1 in 28 (93.3%) specimens, and RGS4 in

23 (76.7%) specimens (Figure 10). Furthermore, IHC results of

candidate genes expression in gastric cancer tissues were found in

the HPA database (Supplementary Figure 4).
4 Discussion

During the development of gastric cancer, metabolic

reprograming, genomic instability and differences in the tumor

microenvironment can result in the formation of cell clones with

entirely different biological behaviors. These cell subsets exhibit

notable heterogeneity in proliferation rate, invasion, and metastasis

ability and also display varying sensitivities to drugs. The

advancement of molecular analysis reveals that even under the

same histological diagnosis, there are different genomic changes

among patients (39). In recent years, with the advancement of
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immunotherapy and the identification of novel targets in gastric

cancer, considerable progress has been made in treating gastric

cancer (40, 41). With the diversification of systemic treatment

options for advanced gastric cancer, the accurate selection of

composite target inhibitors and personalized immunotherapy

regimens has become a research priority. In the future, the

exploration direction of advanced gastric cancer is to subclassify

patients, identify personalized and efficient whole-course treatment

strategies based on molecular typing, and accurately identify the

population that may profit from immunotherapy to enhance long-

term survival.

In this study, we initially identified genes related to ferroptosis

and hypoxia that exhibited differential expression between gastric

cancer and normal tissues. The identified DEGs were enriched in

immune activation, p53 signaling pathway, HIF-1, angiogenesis

regulation, extracellular matrix component regulation, and various

tumor-related pathways. By unsupervised cluster analysis of these
FIGURE 9

scRNA-seq data analysis. (A) The expression levels of five ferroptosis-hypoxia-related genes across the 6 clusters. (B) The t-SNE diagrams display
expression levels of ferroptosis-hypoxia-related genes.
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DEGs, we classified gastric cancer patients into ferroptosis and

hypoxia subtypes that differed significantly in prognostic and

biological characteristics. The preceding analysis indicates that

both the ferroptosis and hypoxia molecular subtypes exhibit

favorable prognostic value and possess distinctive tumor-related

biological characteristics. Given the close association between

ferroptosis and hypoxia, we proceeded to combine the above

ferroptosis and hypoxia status into a two-dimensional index

classifying patients into three ferroptosis-hypoxia (F-H) subtypes.

Our findings indicate that multiple oncogenic classical pathways are

activated in the F-H subtype B. Furthermore, F-H subtypes B have

increased matrix activity and more notable interstitial features

(MP). This indicates that the F-H subtype B may be closely

related to the EMT. These mechanisms are thought to suppress

the activity of immune cells, and subsequent analysis of immune

infiltration also verified the enrichment of immunosuppressive cells

in subtype B. In addition, F-H subtype A exhibited increased

immune activation, including elevated concentrations of CD8+ T

cells, macrophages M1, and CD4+ T cells. The negative regulation

of ferroptosis and downregulation of the TGF-EMT signaling

pathway were highly expressed in the F-H subtype A. This

suggests that two distinct ferroptosis-hypoxia subtypes may

profoundly affect the biological behavior and immune

microenvironment of GC.
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Two gene clusters were identified based on the characteristic

DEGs associated with the ferroptosis-hypoxia subtypes. Our

findings indicate that the genomic pattern largely correlates with

the molecular pattern associated with ferroptosis and hypoxia.

Consequently, an extensive evaluation of the molecular

characteristics of ferroptosis-hypoxia is crucial for gaining a deep

comprehension of GC. Given the heterogeneity of GC, we employed

Lasso-Cox regression analysis to identify five characteristic genes

based on the expression profiles of the aforementioned genes. This

analysis established a prognostic model and risk score, which were

subsequently used to divide GC patients into high- and low-risk

groups. There was a notable difference in OS between patients in the

high-risk group and those in the low-risk group, suggesting that risk

score demonstrated favorable predictive efficacy in prognosticating

the outcomes of patients with gastric cancer.

As a crucial indicator of ICB efficacy, TMB represents the

immunogenicity of the tumor itself. In patients with gastric

cancer, higher TMB is associated with improved survival (42).

The low-risk group exhibited relatively higher TMB, which is

consistent with the results of our study. Furthermore, the

correlation between risk scores and clinical features was

investigated. Patients with a more favorable prognosis tend to

exhibit recognized clinical features, including stage I-II, grade 1-2,

and non-recurrent. These patients tend to have relatively low-risk
FIGURE 10

Comparison of SDC2, RGS4, SERPINE1, DUSP1, and CAV1 IHC expression in GC tissues and adjacent tissues.
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scores. Combined with several previous large-scale classical

molecular typing studies of gastric cancer, we found that higher

risk scores were significantly associated with diffuse of the Lauren

category, GS subtype, EMT subtype, and MP subtype. All of these

subtypes represent poorer prognosis and aggressive biological

behaviors. The correlation between risk score and EMT

phenotype also indicates that a higher risk score may be

indicative of stromal activation. In addition, the high-risk score

group was associated with lower tumor purity, matrix activation-

related signaling pathways, hypoxia-related pathways, and

abundant infiltration of M2 macrophages and PMN-MDSCs. Kim

et al. proposed that hypoxia-mediated ferroptosis in tumor PMN-

MDSCs is a unique targeted immunosuppressive mechanism in the

tumor microenvironment. Inhibition of ferroptosis by using genes

and drugs can eliminate the inhibitory activity of PMN-MDSCs,

slow down tumor progression, and synergize with immune

checkpoint blocking to increase the sensitivity of immunotherapy,

thereby inhibiting tumor growth (43). The data manifest that the

ferroptosis-hypoxia risk score may influence tumor growth and

progression by modulating immune cell and matrix activation in

the tumor microenvironment. It is, therefore, postulated that risk

scores may be helpful for the prediction of immunotherapy.

Therefore, we subsequently performed immunotherapy prediction

analyses by multiple routes.

Pabolizumab has received approval for treating solid cancers

characterized by high microsatellite instability (MSI-H) or

mismatch repair defects (dMMR), making it the first ICBs to

receive full approval as “pan-cancer” treatments (44, 45). A

higher response rate to ICBs has been observed in patients with

MSI-high (MSI-H) tumors compared with patients with

microsatellite instability low (MSI-L) cancers (46). Among the

numerous molecular markers for predicting the efficacy of

immunotherapy, the clinical value of MSI has been consistently

demonstrated in various clinical studies of gastric cancer (47). A

review of the clinical data of GC patients revealed that MSI-H

patients exhibited a lower risk score. Furthermore, the low-risk

group exhibited higher MSI MANTIS and MSIsensor scores. The

IPS analysis demonstrated that the low-risk group exhibited a

favorable therapeutic response to both anti-CTLA-4 and anti-PD-

1 immune checkpoint therapy. The predictive role of risk scores on

immunotherapy response was validated in the TCGA-STAD and

PRJEB25780 cohorts. The risk score of the ICB treatment response

group was found to be significantly lower than that of the non-

response group using multiple methods.

The results of the drug sensitivity analysis indicated a clear

positive correlation between the IC50 and the risk score of various

gastric cancer treatments, including 5-fluorouracil, cetuximab,

doxorubicin, and gefitinib. One potential avenue for future

research is the stratification of patients based on risk-scoring

systems, the screening of immunotherapy-sensitive patients, and

the identification of novel strategies to overcome chemotherapy

resistance. These endeavors could provide invaluable insights for

the advancement of more efficacious treatment modalities.

Moreover, the risk score was extended to a pan-cancer analysis.
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The risk score exhibited varying degrees of sensitivity across

different cancers. This provides a foundation for further research.

Finally, the expression of the five critical genes identified through

the screening process was verified. Batch RNA sequencing (RNA-

Seq) techniques provide transcriptional profiles of cell populations or

average expression levels of tissues but lack the capacity to identify

gene expression patterns in individual cells (48, 49). The advent of

single-cell RNA sequencing (scRNA-seq) has enabled researchers to

provide a comprehensive characterization of genetic complexity at

the cellular level, thereby contributing to a more profound

comprehension of cellular heterogeneity (50). Single-cell

sequencing analysis revealed that the expression of these five genes

was significantly enriched in cancer cells. In addition, DUSP1 and

SDC2 exhibited an increase in macrophages in the tumor

microenvironment. In clinical gastric cancer (GC) specimens

without chemotherapy or targeted therapy, the expression of these

five genes was significantly higher in cancerous tissues than in

paracancerous tissues.

To improve the reliability and generalization of our study, we

utilized gene expression files from 1121 samples across four

datasets. We employed the ComBat method to eliminate the

batch effect of gene expression data. The accuracy of the dataset

is contingent upon the quality and availability of the original data.

Additionally, some studies had limitations in the number of marker

genes utilized, excluding some meaningful molecular targets in

gastric cancer, such as Claudin18.2. Consequently, it is imperative

to continuously enhance research methods and broaden the scope

of research to improve model accuracy and effectiveness. Our

current work consists of preliminary validation experiments, and

the experimental results require validation in a large multicenter

GC cohort. Moreover, further functional and mechanistic studies

are necessary to elucidate hypoxic-ferroptosis interactions and

potential cancer pathogenesis. Despite these limitations, this

study’s results may still offer new treatment strategies for GC.

The challenges of chemotherapy resistance and immunotherapy

insensitivity in treating gastric cancer are pressing issues.

Researchers have been working on developing new therapies

based on hypoxic-ferroptosis and have shown promising results

in preclinical studies. It is believed that delving into hypoxic-

ferroptosis in the tumor immune microenvironment will offer a

new treatment strategy for advanced gastric cancer patients.
5 Conclusions

This study conducted a comprehensive assessment of the

molecular patterns of ferroptosis-hypoxia in GC. To assess the

ferroptosis-hypoxia condition of each patient, we have also

furthermore developed a risk score. According to the results, risk

scores could effectively assess the geneticmutation landscapeof cancer,

tumor microenvironment, survival prognosis, and immunotherapy

response. In light of thesefindings, wemight consider applying the risk

score as abasis for categorizingGC.This couldhelp in thedevelopment

of targeted medicines and designed clinical trials.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1499580
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1499580
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by The

Institutional Review Board of Qingdao People’s Hospital Group

(Jiaozhou). The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

XX: Conceptualization, Data curation, Formal analysis,

Investigation, Software, Validation, Writing – original draft. LF:

Conceptualization, Investigation, Project administration, Writing –

review & editing. XS: Investigation, Methodology, Supervision,

Writing – review & editing. FY: Data curation, Software,

Supervision, Writing – review & editing. YL: Conceptualization,

Data curation, Investigation, Writing – review & editing. JS:

Conceptualization, Investigation, Methodology, Writing – review

& editing. YZ: Conceptualization, Data curation, Funding

acquisition, Investigation, Writing – review & editing. JD:

Investigation, Methodology, Writing – review & editing.
Frontiers in Oncology 18
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. Funding for

this research was provided by the Qingdao Medical and Health

Research Project (2024-WJKY104).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1499580/

full#supplementary-material
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

2. Cao T, Zhang W, Wang Q, Wang C, Ma W, Zhang C, et al. Cancer slc6a6-
mediated taurine uptake transactivates immune checkpoint genes and induces
exhaustion in cd8(+) T cells. Cell. (2024) 187:2288–304.e27. doi: 10.1016/
j.cell.2024.03.011

3. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis
in cancer. Nat Rev Clin Oncol. (2021) 18:280–96. doi: 10.1038/s41571-020-00462-0

4. Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J, et al. Overcoming cancer
chemotherapy resistance by the induction of ferroptosis. Drug Resist Update. (2023)
66:100916. doi: 10.1016/j.drup.2022.100916

5. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and transcriptomic features of response to anti-pd-1 therapy in metastatic
melanoma. Cell. (2016) 165:35–44. doi: 10.1016/j.cell.2016.02.065

6. Li Y, Cao Y, Ma K, Ma R, Zhang M, Guo Y, et al. A triple-responsive polymeric
prodrug nanoplatform with extracellular ros consumption and intracellular H(2) O(2)
self-generation for imaging-guided tumor chemo-ferroptosis-immunotherapy. Adv
Healthc Mater. (2024) 13(16):e2303568. doi: 10.1002/adhm.202303568

7. Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer.
(2002) 2:38–47. doi: 10.1038/nrc704

8. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers
of tumour metastasis. Nat Rev Cancer. (2014) 14:430–9. doi: 10.1038/nrc3726

9. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. Amechanism of hypoxia-
mediated escape from adaptive immunity in cancer cells. Cancer Res. (2014) 74:665–74.
doi: 10.1158/0008-5472.Can-13-0992

10. He M, Zhang M, Xu T, Xue S, Li D, Zhao Y, et al. Enhancing photodynamic
immunotherapy by reprograming the immunosuppressive tumor microenvironment
with hypoxia relief. J Control Release. (2024) 368:233–50. doi: 10.1016/
j.jconrel.2024.02.030
11. Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B. Hypoxia inhibits
ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox
Biol. (2020) 36:101670. doi: 10.1016/j.redox.2020.101670

12. Jayaprakash P, Vignali PDA, Delgoffe GM, Curran MA. Hypoxia reduction
sensitizes refractory cancers to immunotherapy. Annu Rev Med. (2022) 73:251–65.
doi: 10.1146/annurev-med-060619-022830

13. Yang Z, Su W, Wei X, Qu S, Zhao D, Zhou J, et al. Hif-1a Drives resistance to
ferroptosis in solid tumors by promoting lactate production and activating slc1a1. Cell
Rep. (2023) 42:112945. doi: 10.1016/j.celrep.2023.112945

14. Pan T, Sun S, Chen Y, Tian R, Chen E, Tan R, et al. Immune effects of pi3k/akt/
hif-1a-regulated glycolysis in polymorphonuclear neutrophils during sepsis. Crit Care.
(2022) 26:29. doi: 10.1186/s13054-022-03893-6

15. Chen M, Cen K, Song Y, Zhang X, Liou YC, Liu P, et al. Nusap1-ldha-glycolysis-
lactate feedforward loop promotes warburg effect and metastasis in pancreatic ductal
adenocarcinoma. Cancer Lett. (2023) 567:216285. doi: 10.1016/j.canlet.2023.216285

16. Wang Y, Zhou X, Yao L, Hu Q, Liu H, Zhao G, et al. Capsaicin enhanced the
efficacy of photodynamic therapy against osteosarcoma via a pro-death strategy by
inducing ferroptosis and alleviating hypoxia. Small. (2024) 20(26):e2306916.
doi: 10.1002/smll.202306916

17. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

18. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28
(11):1747–56. doi: 10.1101/gr.239244.118

19. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics. (2012) 28:882–3. doi: 10.1093/bioinformatics/bts034

20. Zindler T, Frieling H, Neyazi A, Bleich S, Friedel E. Simulating combat: how
batch correction can lead to the systematic introduction of false positive results in DNA
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1499580/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1499580/full#supplementary-material
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/j.cell.2024.03.011
https://doi.org/10.1016/j.cell.2024.03.011
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1016/j.drup.2022.100916
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1002/adhm.202303568
https://doi.org/10.1038/nrc704
https://doi.org/10.1038/nrc3726
https://doi.org/10.1158/0008-5472.Can-13-0992
https://doi.org/10.1016/j.jconrel.2024.02.030
https://doi.org/10.1016/j.jconrel.2024.02.030
https://doi.org/10.1016/j.redox.2020.101670
https://doi.org/10.1146/annurev-med-060619-022830
https://doi.org/10.1016/j.celrep.2023.112945
https://doi.org/10.1186/s13054-022-03893-6
https://doi.org/10.1016/j.canlet.2023.216285
https://doi.org/10.1002/smll.202306916
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.3389/fonc.2024.1499580
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1499580
methylation microarray studies. BMC Bioinf. (2020) 21(1):271. doi: 10.1186/s12859-
020-03559-6

21. Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao J, et al. Ferrdb V2: update of the
manually curated database of ferroptosis regulators and ferroptosis-disease
associations. Nucleic Acids Res. (2023) 51:D571–d82. doi: 10.1093/nar/gkac935

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

23. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
Tcgabiolinks: an R/bioconductor package for integrative analysis of tcga data.
Nucleic Acids Res. (2016) 44:e71. doi: 10.1093/nar/gkv1507

24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for rna-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

25. Wilkerson MD, Hayes DN. Consensusclusterplus: A class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

26. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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