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Characterizing microbial
communities and their
correlation with genetic
mutations in early-stage lung
adenocarcinoma: implications
for disease progression and
therapeutic targets
Hao-Shuai Yang †, Jin Zhang †, Hong-Xiang Feng, Fei Qi,
Fan-Jia Kong, Wei-Jie Zhu, Chao-Yang Liang*

and Zhen-Rong Zhang*

Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
Background: Lung adenocarcinoma (LUAD), the most prevalent form of lung

cancer. The transition from adenocarcinoma in situ (AIS), and minimally invasive

adenocarcinoma (MIA) to invasive adenocarcinoma (IAC) is not fully understood.

Intratumoral microbiota may play a role in LUAD progression, but comprehensive

stage-wise analysis is lacking.

Methods: Tumor and bronchoalveolar lavage fluid (BALF) samples from patients

with AIS/MIA or IAC were collected for next-generation sequencing to

characterize microbial diversity and composition. DNA extraction involved

lysing samples with nuclease and protease, followed by homogenization and

elution. Sequencing libraries were prepared and sequenced on the Illumina

platform. Whole exome sequencing was performed to identify somatic

mutations and genetic variants. Bioinformatics analysis, including taxonomic

annotation with Kraken2 and de novo assembly with MEGAHIT, was conducted

to process metagenomic data. Correlation analysis was performed to link

microbial species with mutated genes using custom R scripts.

Results: Metagenomic analysis revealed a distinct microbial profile in IAC

compared to AIS/MIA, with increased abundance of Bacteroidetes and

Firmicutes in the IAC group. Bosea sp. and Microbacterium paludicola, were

less abundant in IAC, suggesting a potential protective role in early-stage disease.

Conversely, Mycolicibacterium species were more prevalent in IAC, indicating a

possible contribution to disease progression. Genetic sequencing identified

PTPRZ1 strongly correlating with microbial composition, suggesting a

mechanistic link between microbiota and genetic alterations in LUAD.
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Conclusion: This study characterizes microbial communities in various stages

of LUAD, revealing links betweenmicrobiota and genetic mutations. The unique

microbiota suggests its role in LUAD progression and as a therapeutic target.
KEYWORDS

lung adenocarcinoma, tumor microbiome, PTPRZ1, next-generation sequencing,
therapeutic targets
1 Introduction

Lung cancer is the predominant cause of cancer-related deaths

globally, with lung adenocarcinoma (LUAD) being the most

common subtype (1, 2). It is categorized into stages that reflect its

progression, including adenocarcinoma in situ (AIS), minimally

invasive adenocarcinoma (MIA), and invasive adenocarcinoma

(IAC) (3). AIS and MIA represents an early stage, while IAC

indicate more advanced stages with increased invasiveness and

metastatic potential. Although research has begun to clarify the

differences in pathological features (4), imaging signatures (5), and

tumor microenvironments (TME) (6) between these stages, the

precise mechanisms driving the transition from AIS and MIA to

IAC are still not completely understood.

Intratumoral microbiota, the community of microorganisms

residing within tumor tissues, is gaining attention for its potential

roles in cancer development (7–9). The bacterial load in lung cancer

is at an intermediate level among pan-cancers and is enriched with

metabolic pathways that degrade chemicals in cigarettes (9).

Enteric, potentially pathogenic and pro-inflammatory bacteria

were more frequently found in cancer than healthy tissue (10).

Multiple studies have revealed differences in microbial composition

between lung cancer tissue and non-tumor lung tissue (11). The

microbial diversity in non-malignant lung tissue is higher than in

tumor tissue, with increased relative abundance of Thermus and

decreased relative abundance of Ralstonia in adenocarcinoma tissue

(12). The presence of specific bacteria, such as Fusobacterium, has

been linked to poor prognosis in lung cancer (13).

Research indicates that the respiratory microbiome potentially

influencing the onset and progression of lung cancer through

various mechanisms, including inflammatory processes, immune

responses, and metabolic regulation (8). The correlation between

the composition of intratumoral microbiota and gene mutations

was also found in lung cancer (14). Despite the growing body

of research, there is a lack of studies focusing on the microbiota

in early-stage lung cancer and its progression through different

stages of LUAD. Further exploration of the distinct tumor

microenvironments at various stages of lung adenocarcinoma is

essential for uncovering novel therapeutic targets and improving

patient outcomes.

This study focus on the heterogeneity of microbiome within

LUAD at various stages to explore the distinct TMEs and uncover
02
new therapeutic targets. To discover candidate bacterial biomarkers

and potential relationship between genetic characteristics and

progression of lung cancer, we performed sequencing analysis

based on tumor and bronchoalveolar lavage fluid (BALF) of

patient with AIS/MIA or IAC. Differential microbiota were

identified for uncovering novel therapeutic targets and improving

patient outcomes.

.

2 Materials and methods

2.1 Sample collection

A total of 18 patients with lung adenocarcinoma were enrolled

from China-Japan Friendship Hospital, and the clinical information

is detailed in Table 1. Half of them were pathologically diagnosed

with AIS or MIA, and other patients were diagnosed with IAC.

Formalin-fixed paraffin-embedded (FFPE) samples of tumor tissues

and paired adjacent normal tissues from all 18 patients were

collected for whole exome sequencing (WES). Tumor tissues and

BALF were obtained from 17 patients for metagenomic next-

generation sequencing (mNGS). Among these, two tumor tissues

and corresponding BALF samples were sequenced for 3 patients

with multiple primary nodules. One patient had only BALF sample

collected for mNGS sequencing.

Lung cancer patients with different degrees of pathological

infiltration underwent surgical resection. During the surgery,

tumor tissue, adjacent non-cancerous tissue, and BALF samples

were collected. All specimens were stored at −80°C.
2.2 DNA extraction

We transferred 2 ml BALF into a centrifuge tube, followed by

the addition of lysis reagent and nuclease. The sample was

incubated in a constant-temperature metal bath at 37°C for 30

minutes, then at 65°C for 10 minutes. Each fresh tumor tissue

sample, approximately the size of a soybean, was placed into a

centrifuge tube, and DTT and protease were added. The tube was

incubated at 56°C to digest the tissue cells, followed by the addition

of lysis reagent and nuclease, with a final incubation at 65°C. Both
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the alveolar lavage and tissue samples were transferred to lysis

tubes. After adding zirconia beads, the tubes were homogenized for

30 minutes utilizing a homogenizer. DNA was eluted with 35 mL of

elution buffer, and the quality of extracted DNA was assessed on

Qubit® 4.0 fluorometer (Thermo Scientific, Waltham, MA, USA).
2.3 Metagenomic next
generation sequencing

The construction and sequencing of the DNA library were

carried out following the manufacturer’s instructions (Illumina).

Extracted DNA was fragmented utilizing a Covaris ultrasonic

disruptor to produce fragments of approximately 200 bp.

Fragment ends were repaired and A-tailed, followed by ligation
Frontiers in Oncology 03
with adapters containing barcodes. Subsequently, PCR

amplification was performed. The library quality was assessed on

Agilent Bioanalyzer 2100 system and quantified on Qubit 4.0

fluorometer (Thermo Scientific, Waltham, MA, USA). The library

was sequenced using Nextseq550DX platform in Repugene

Technology Co., Ltd (Hangzhou, China).
2.4 Whole exome sequencing

Genomic DNA extracted from formalin-fixed paraffin-

embedded samples was fragmented into 150-300 bp, with paired

tumor and normal tissues. After end-repair of the fragmented DNA

and addition of an A-tail, adapters are ligated to both ends of the

DNA fragments to construct the DNA library. Libraries with

specific indices were pooled and subjected to liquid-phase

hybridization using biotin-labeled probes. Exome capture was

performed using Agilent SureSelect Human All ExonV6 Kit

(Agilent Technologies, Santa Clara, CA, USA). The captured

libraries were then linearly amplified by PCR, followed by quality

control. DNA sequencing was performed on Illumina NovaSeq

6000 platform (Illumina Inc., San Diego, CA, USA) in Repugene

Technology Co., Ltd. (Hangzhou, China), generating 150-bp

paired-end reads with mean coverage of 200× for tumor tissue

and 100× for adjacent non-cancerous tissue.
2.5 Bioinformatics analysis

For the raw data of WES, clean reads were obtained following

data filtering and alignment to the human reference genome

(GRCh38). Singlenucleotide variants (SNVs) and insertions/

deletions were identified using GATK (version 4.4). Additionally,

MuTect2 (version 4.1) was employed to detect somatic mutations.

To identify structural variants, gene fusion detection was performed

using LUMPY (version 0.2.13), and copy number variation (CNV)

was detected using CNVkit (version 0.9.9) (15).

For the metagenomic data, Kraken2 (version2.0.7) was

employed for unique non-human sequence alignment to annotate

microbial species, and count values for all species were normalized

as relative abundance. MEGAHIT (version1.2.9) was used for de

novo assembly of host-filtered sequences, and assembly results were

statistically summarized, including final contig sequence lengths

and other assembly statistics. MetaGeneMark (version3.38) was

utilized for gene prediction on contig sequences from each sample

using the MetaGeneMark_v1.mod model. MMseq2 (version2-

13.45111) was utilized to cluster homologous genes.

Gene abundances were quantified using Salmon (version1.10.2).

For diversity analysis, the vegan package (version 2.6.4) in R was

used to compute a-diversity indices, such as Shannon and Simpson

indices which reflect the richness and evenness of microbial

communities within each sample, and a principal coordinates

analysis (PCoA) to provide insights into microbial community

differences between groups. Differential abundances of microbiota

between groups were analyzed using rank-sum tests. To explore
TABLE 1 Clinical characteristics of the patients.

Characteristics All patients (N=18)

Age, years 62.5 (57.0-67.0)

Tumor infiltration

AIS/MIA 9 (50.0%)

IAC 9 (50.0%)

Sex

Male 9 (50.0%)

Female 9 (50.0%)

Smoking status

Never smoker 14 (77.8%)

Former smoker 3 (16.7%)

NA 1 (5.6%)

Basic lung disease

Yes 2 (11.1%)

No 16 (88.9%)

Nodules

GGN 17 (94.4%)

Mixed 1 (5.6%)

Previous antibiotic therapy

Yes 6 (33.3%)

No 12 (66.7%)

Previous hormone therapy

Yes 1 (5.6%)

No 17 (97.4%)

Disease stage

TIS 4 (22.2%)

1A1 5 (27.8%)

1A2 9 (50.0%)
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correlations between differential microbiota, Pearson correlations

were calculated using the psych package (version 2.3.6). The

metacoder package (version 0.3.6) was utilized to visualize the

evolutionary relationships of microbial species. Based on the

known relationships, taxonomy sets enrichment analysis (TSEA)

was employed to explore associations between the microbiota taxa

we identified and specific disease. Custom R functions were

developed for dimensionality reduction and differential analysis of

KEGG Orthology (KO) gene matrices (16). The KEGG KO library

was curated, and differential KO genes were analyzed for KEGG

enrichment using custom R functions. Spearman correlations

between microbiota abundances and KO genes were calculated

using the psych package (version2.3.6). Spearman correlations

between microbiota abundance and mutation frequencies of genes

were assessed using the psych package (version2.3.6).

Mutation-related analysis was conducted using cBioPortal (17)

(https://www.cbioportal.org/), a comprehensive open web platform

that integrates multiple datasets and offers a range of functions

including data mining, data integration, and visualization. For key

mutations associated with microorganisms, databases such as

CPTAC, OncoSG, and TCGA were jointly applied to explore

their mutational characteristics and clinical relevance. The specific

analysis steps are displayed in the workflow.
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2.6 Statistical analysis

Wilcoxon rank sum test was used for microbiota statistical

comparison between two groups. The fisher test was performed for

mutated genes statistical comparison between two groups. The

hypergeometric test was used to assess statistical significance of

KO genes enrichment. All statistical analyses were carried out by R

(version 4.4.1). Statistical significance was defined as an adjusted P-

value < 0.05.
3 Results

3.1 Tumor mutation profiles and
correlation with microbiota

Compared to AIS/MIA group, IAC tumors exhibited higher

oncogenic mutation frequencies, indicating a heavier tumor

mutation burden (Figure 1A). For each group, we calculated the

proportion of samples with gene mutations out of the total number

of samples. Top 15 genes with the highest mutation frequencies in

the IAC group was visualized, and these mutations were not

detected in AIS/MIA group (Figure 1B). The heatmap generated
FIGURE 1

The correlation between mutant landscape and microbiota (A) Mutation landscape of the most frequently mutated genes across all samples. (B) Top
commonly mutated genes in the IAC group. (C) Heatmap showing the microbial abundance in AIS/MIA and IAC groups. (D) Correlations between a-
diversity indices and genes with significantly different mutation frequencies in two clinical groups.(* p < 0.05).
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from metagenomic data illustrated different distribution patterns

between the groups. Several species, such as Bosea sp. AS-1, Bosea

sp. PAMC 26642 , Bosea sp. RAC05 , Bosea vaviloviae,

Microbacterium paludicola, Rhodopseudomonas palustris, and

Stenotrophomonas maltophilia, displayed decreased abundance in

IAC group compared with AIS/MIA group (Figure 1C).

Additionally, genes with differential mutation frequencies between

IAC and AIS/MIA groups were selected for downstream analysis.

Significant associations between a-diversity indices and mutation

frequencies of specific genes suggested a potential link between the

microbial community and genetic alternations (Figure 1D).
3.2 Microbiome variations in IAC and AIS/
MIA tumor samples

We identified six predominant microbial phylum in the tumor

microenvironment, including Actinobacteria, Bacteroidetes,

Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria.

Increased proportions of Bacteroidetes and Firmicutes were

observed in IAC group rather than AIS/MIA group (Figure 2A). At

the genus level, 130 and 46 unique genera were identified in IAC and

AIS/MIA groups, respectively, with 528 genera shared between the

two groups. At the species level, 517 and 192 unique species were

identified in IAC and AIS/MIA groups, respectively, and 1327 species

were shared by the two groups (Figure 2B). Subsequently, a-diversity
analysis revealed that IAC group was characterized by higher

Shannon diversity and Simpson diversity scores than AIS/MIA

group, despite with no significant difference (Figure 2C).

Additionally, PCoA plot showed significant differences in tumor

microbiota between IAC and AIS/MIA groups (P = 0.004)
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(Figure 2D). Several microbial genera detected in this study have

previously been reported to be involved in lung cancer development,

as revealed TSEA analysis, such as Blastomonas, Gemmatimonas,

Mesorhizobium, Microbacterium, Mycobacterium, Mycoplasma,

Parvimonas, Porphyromonas, Sphingomonas, Staphylococcus, and

Veillonella (Figure 2E). Additionally, KO genes with increased

abundance in the AIS/MIA group were significantly enriched in

signaling transduction pathways, such as ABC transporters and

bacterial chemotaxis, and metabolic pathways (Figure 2F).

Subsequently, we explored interactions between microbes with

significantly different abundance and genes with significantly

different mutation frequencies. As a result, the interaction network

uncovered the extensively positive correlations between specific

microbes and KO genes, including Bosea sp. PAMC 26642 with

K01432 and K02035, and Bosea sp. RAC05 with K01438 (Figure 2G).
3.3 Microbiome variations in IAC and AIS/
MIA BALF samples

Five predominant microbial phylum in the BALF

microenvironment were detected, including Actinobacteria,

Bacteroidetes, Firmicutes, Proteobacteria, and Fusobacteria.

Compared to AIS/MIA group, IAC group showed increased

Actinobacteria but declined Proteobacteria (Figure 3A). At the

genus level, 47 and 122 unique genera were identified in IAC and

AIS/MIA groups, respectively, with 320 genera shared between the

two groups. At the species level, 217 and 337 unique species were

identified in IAC and AIS/MIA groups, respectively, and 800 species

were shared by the two groups (Figure 3B). Although there was no

significant difference, we obtained higher Shannon diversity and
FIGURE 2

Microbiota characteristics in tumor samples. (A) Proportions of microbial phylum in AIS/MIA and IAC groups. (B) UpSet diagram showing the
microbes detected in AIS/MIA and IAC groups at the genus and species level. (C) Scores of a-diversity indices and (D) PCoA results in AIS/MIA and
IAC groups. (E) TSEA visualizing specific microbes associated with diseases, including lung neoplasms. (F) Pathways significantly enriched by
upregulated or declined KO genes in AIS/MIA group. (G) The interaction network showing the correlations between microbes with significantly
different abundance and genes with significantly different mutation frequencies in two groups.
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Simpson diversity scores in AIS/MIA group rather than IAC group

(Figure 3C). Slight difference between IAC and AIS/MIA groups

was revealed by PCoA plot, and statistically significance did not

reached (Figure 3D).

Based on the known relationships between microbes and specific

diseases, we performed TSEA analysis, which suggested the

involvement of some genus in lung cancer development, such as

Achromobacter, Acinetobacter, Porphyromonas, Propionibacterium,

and Veillonella (Figure 3E). KO genes with increased abundance in

the IAC group were significantly enriched inmore pathways associated

with metabolism and signaling transduction, such as carbon

metabolism, two-component system, and biosynthesis of cofactors

(Figure 3F). Subsequently, we explored the interactions between

microbes with significantly different abundance and genes with

significantly different mutation frequencies. The interaction network

uncovered the extensively positive correlations between specific

microbes and KO genes, such as Bosea sp. PAMC 26642 with

K03418 and K00449, and Bosea sp. RAC05 with K02031 (Figure 3G).
3.4 Key microbial identification and
functional speculation

For the microbes with significantly different abundances between

IAC and AIS/MIA groups, we visualized their profiles in two types of

samples: tumor and BALF (Figure 4A). A total of 23 microbes

exhibited consistent upregulation or downregulation in IAC group

across both sample types (Supplementary Table S1). Specifically, five
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microbes increased in IAC group, including Mycobacteroides

abscessus, Mycolicibacterium aurum, Mycolicibacterium rhodesiae,

Finegoldia magna, and Acinetobacter wuhouensis, while the

remaining 18 microbes exhibited decreased abundance in IAC

group (Figure 4B). The correlations among these 23 microbes

were subsequently investigated. As expected, negative correlations

were observed between upregulated and downregulated microbes,

indicating potential antagonistic relationships. Of note,

Mycobacteroides abscessus, which was upregulated in IAC group,

displayed negative associations with all 18 declined microbes,

suggesting its powerful influence (Figure 4C). The phylogenetic tree

generated from the taxonomy analysis indicated that these 23

microbes primarily belonged to Proteobacteria, Alphaproteobacteria,

and Rhizobiales taxa (Figure 4D). Among the five upregulated

microbes in IAC group, two of them belonged to Mycolicibacterium

genus, including Mycolicibacterium rhodesiae and Mycolicibacterium

aurum. To further characterize their roles, we performed correlation

analysis among microbes, KO genes, and KO pathways, and revealed

the axes among Mycolicibacterium rhodesiae/Mycolicibacterium

aurum KO0624 gene-KO04146 pathway, suggesting the potentially

regulatory roles (Figure 4E).
3.5 PTPRZ1 is a key mutation associated
with microorganisms

To investigate the dysregulated characteristics within tumor

microenvironment, we performed a correlation analysis between
FIGURE 3

Microbiota characteristics in BALF samples. (A) Proportions of microbial phylum in AIS/MIA and IAC groups. (B) UpSet diagram showing the microbes
detected in AIS/MIA and IAC groups at the genus and species level. (C) Scores of a-diversity indices and (D) PCoA results in AIS/MIA and IAC groups.
(E) TSEA visualizing specific microbes associated with diseases, including lung neoplasms. (F) Pathways significantly enriched by upregulated or
declined KO genes in AIS/MIA group. (G) The interaction network showing the correlations between microbes with significantly different abundance
and genes with significantly different mutation frequencies in two groups.
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mutated genes and 23 significant microbes. Significant correlation

values were widely observed between key microbes and mutated

genes (Figure 5A). Of note, the strong correlations of TYW1,

PTPRZ1, and GCNA genes with more than 20 different

microorganisms suggested that these genes may play an crucial

regulatory role in the microbial community of the lung. Among

them, previous studies have found that PTPRZ1 is closely related to

the occurrence and development of lung cancer. Through the joint

analysis of multiple databases, the mutation situation of PTPRZ1 in

lung adenocarcinoma is shown in Figure 5B. Mutations in the

PTPRZ1 protein are closely related to TMB, Aneuploidy score, and

Buffa hypoxia score (Figures 5C-E).
Frontiers in Oncology 07
4 Discussion

The intricate relationship between the lung microbiome and

LUAD has been a subject of increasing interest in cancer research

(7, 18, 19). Our study builds upon previous work by examining the

heterogeneity of microbiota within LUAD at various stages,

focusing on the transition from AIS/MIA to IAC. This

progression is characterized by a shift in the microbiota

composition, which may reflect alterations in the tumor

microenvironment (TME) that facilitate tumor growth.

Research has consistently highlighted that the development of

lung cancer is a complex process, influenced by a multitude of factors
FIGURE 4

Identification of key microorganisms in tumors and BALF (A) Microbial species with significantly altered relative abundance in the IAC group compared to
the AIS group in tumor or BALF samples. (B) Heatmap showing the abundance of microbes that are significantly upregulated or downregulated in both
tumor and BALF samples of IAC group. The correlation matrix (C) and evolutionary tree (D) of the 23 microbes that exhibited consistent upregulation or
downregulation in IAC group across both sample types. (E) The potentially regulatory axis of Mycolicibacterium. (* p < 0.05; ** p < 0.01; *** p < 0.001).
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including tobacco smoking, immune responses, viral infections, and

more (20). Prior studies have indicated that the microbiome plays a

significant role in the intricate dance of lung cancer progression (21),

contributing in various specific manners to this multifaceted disease.

Our findings are in line with prior research that has identified specific

microbial signatures associated with LUAD. For instance, studies have

reported an increase in the abundance of Proteobacteria (22) and

Firmicutes (23) in lung cancer tissues compared to non-cancerous

lung tissues. Similarly, our results show an increase in Bacteroidetes

(24) and Firmicutes in IAC, suggesting these phyla may be associated

with a more aggressive tumor phenotype. Research has found that

Firmicutes may promote the proliferation and angiogenesis of lung

cancer cells through the action of Th17 cells (25). The decrease in

certain bacterial species such as Bosea sp. and Microbacterium

paludicola in IAC, as observed in our study, aligns with research

indicating these microbes may have tumor-suppressive properties or

are outcompeted in a more aggressive TME.
Frontiers in Oncology 08
Our study also highlights the potential of microbiota as a

therapeutic target in LUAD. The differential abundance of

microbes in IAC versus AIS/MIA suggests that certain microbial

species may promote or inhibit tumor progression. Through joint

analysis of tumor tissue and BALF, we have identified that

Mycolicibacteria species are key differential strains between IAC

and MIA/AIS, and may play an important role in the evolution of

lung cancer. The increased abundance of Mycolicibacterium (26)

species in IAC could indicate a role in creating a pro-tumorigenic

environment, as previously suggested for other cancers, such as

pancreatic cancer and melanoma (9, 27). The functional speculation

based on key microbial identification points towards a complex

interplay between the microbiota and LUAD pathogenesis. The

upregulation of Mycolicibacterium species in IAC may indicate a

role in promoting a pro-tumorigenic environment, where these

microbes have been associated with inflammation and immune

evasion, chronic infections associated with Mycobacteria may
FIGURE 5

Microbial related mutations and clinical correlation analysis. (A) Correlations between the 23 microbes and genes with significantly different mutation
frequencies in IAC compared to AIS/MIA group. (B) Mutation landscape of PTPRZ1 in multiple lung adenocarcinoma databases. (C) Correlation
analysis between PTPRZ1 and tumor mutation burden. (D) Correlation analysis between PTPRZ1 and aneuploidy score. (E) Correlation analysis
between PTPRZ1 and buffa hypoxia score. (* p < 0.05; ** p < 0.01; *** p < 0.001).
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increase the risk of lung cancer (28). The negative correlations

observed between Mycobacteroides abscessus and other microbes

suggest a potential competitive interaction within the TME,

which could be pivotal in LUAD progression. Targeting these

microbes or their metabolic pathways could offer a novel

therapeutic strategy.

The microbiome, through its metabolic activities, can produce

compounds that may affect gene expression and contribute to

genomic instability, thus potentially impacting cancer development

(29). The correlation between PTPRZ1 mutations and microbial

species is a novel finding that warrants further exploration.

PTPRZ1, also known as receptor-type tyrosine-protein phosphatase,

is a transmembrane protein that plays a crucial role in cell adhesion,

migration, and signal transduction (30, 31). It has been implicated in

various cellular processes, including cell growth regulation and the

maintenance of tissue integrity in glioblastoma (32). In the context of

LUAD, PTPRZ1 has been suggested to be involved in the modulation

of cell adhesion and migration, which are critical steps in tumor

progression and metastasis (33). Our recent data indicate that

mutations in PTPRZ1 may be correlated with the presence of

specific microbial communities within the lung environment. This

correlation is particularly intriguing as it suggests a potential

interaction between genetic mutations and the microbiome, which

could influence the development and progression of LUAD. The

presence of certain microbial species, such as Mycobacteroides may

create a microenvironment that either promotes or suppresses the

effects of PTPRZ1 mutations. For instance, microbial metabolites

could interact with PTPRZ1, altering its function and thereby

affecting cellular processes such as cell adhesion and migration (34).

This interaction could lead to a more aggressive phenotype in LUAD,

characterized by increased invasiveness and metastasis.

It is important to acknowledge the limitations of our study. The

cross-sectional design limits our ability to infer causality and the

temporal dynamics of microbial changes during LUAD

progression. Additionally, the microbial taxa identified require

further validation in larger and longitudinal samples to track their

changes over the cancer progression to confirm their role in LUAD

development. The use of BALF and tumor tissue samples provides a

snapshot of the microbiota but may not capture the full complexity

of microbial communities in the lung. This study is a single center

study with a small sample size, potentially limiting the ability to

detect effects and possibly affecting the statistical power of the

results. Caution is exercised in interpreting the findings, with an

emphasis on the need for more data to support the conclusions. The

results are considered preliminary and require further validation

through larger-scale studies.
5 Conclusion

This study reveals distinct microbial profiles associated with the

progression of lung adenocarcinoma, with potential implications
Frontiers in Oncology 09
for disease prognosis and therapy. The findings suggest that specific

microbial species may promote or inhibit tumor progression, and a

correlation between genetic mutations, such as in PTPRZ1, and

microbial composition offers a novel perspective on LUAD

pathogenesis. These insights could lead to new diagnostic and

therapeutic strategies targeting the tumor microbiome.
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