The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Oncol.
Sec. Radiation Oncology
Volume 14 - 2024 |
doi: 10.3389/fonc.2024.1497351
Understanding the PULSAR Effect in Combined Radiotherapy and Immunotherapy through Attention Mechanisms with a Transformer Model: A Preliminary Study
Provisionally accepted- University of Texas Southwestern Medical Center, Dallas, United States
PULSAR (personalized, ultra-fractionated stereotactic adaptive radiotherapy) is the adaptation of stereotactic ablative radiotherapy towards personalized cancer management. It has potential to harness the synergy between radiation therapy and immunotherapy, such as immune checkpoint inhibitors to amplify the anti-tumor immune response. For the first time, we applied a transformerbased attention mechanism to investigate the underlying interactions between combined PULSAR and PD-L1 blockade immunotherapy, based on the preliminary experimental results of a murine cancer model (Lewis Lung Carcinoma, LLC). The radiation and administration of α-PD-L1 were viewed as two external stimulation signals occurring in a temporal sequence. Our study demonstrates the utility of a transformer model in 1) predicting tumor changes in response to specific treatment schemes, and 2) generating self-attention and cross-attention maps. The crossattention maps serve as a biological representation of the semantic similarity between source and target sentences in neural translation, offering insights into the causal relationships of the PULSAR effect. Our model offers a unique perspective with the potential to enhance the understanding of the temporal dependencies of the PULSAR effect on time, dose, and T cell dynamics. In a broader context, our proposed framework offers the potential to explore varying intervals and doses for subsequent treatments while monitoring the biological parameters impacted by these perturbations. This approach can lead to more personalized and rational radiation or drug interactions.
Keywords: AI, transformer, pulsar, Immunotherapy, Radiotherapy
Received: 16 Sep 2024; Accepted: 31 Oct 2024.
Copyright: © 2024 PENG, Moore, Saha, Jiang and Timmerman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
HAO PENG, University of Texas Southwestern Medical Center, Dallas, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.