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and Ge Zhang1,6*

1Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of
Science and Technology, Wuhan, China, 2Medical College, Wuhan University of Science and
Technology, Wuhan, China, 3Department of Electrical and Electronic Engineering, Hubei University of
Technology, Wuhan, China, 4Department of Medical Ultrasound, Hubei Cancer Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China, 5Department of
Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research
Center for Breast Cancer, Wuhan, China, 6Department of Cardiovascular Medicine, Wuhan Asia Heart
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Objectives: Shear-wave elastography (SWE) provides valuable stiffness within

breast masses, making it a useful supplement to conventional ultrasound

imaging. Super-resolution ultrasound (SRUS) imaging enhances microvascular

visualization, aiding in the differential diagnosis of breast masses. Current clinical

ultrasound diagnosis of breast cancer primarily relies on gray-scale ultrasound.

The combined diagnostic potential of tissue stiffness and microvascular

characteristics, two critical tumor biomarkers, remains insufficiently explored.

This study aims to evaluate the correlation between the elastic modulus,

assessed using SWE, and microvascular characteristics captured through SRUS,

in order to evaluate the effectiveness of combining these techniques in

distinguishing between benign and malignant breast masses.

Materials and methods: In this single-center prospective study, 97 patients

underwent SWE to obtain parameters including maximum elasticity (Emax),

minimum elasticity (Emin), mean elasticity (Emean), standard deviation of

elasticity (Esd), and elasticity ratio. SRUS was used to calculate the

microvascular flow rate and microvessel density (MVD) within the breast

masses. Spearman correlation analysis was used to explore correlations

between Emax and MVD. Receiver operating characteristic curves and

nomogram were employed to assess the diagnostic efficacy of combining

SRUS with SWE, using pathological results as the gold standard.

Results: Emax, Emean, Esd, and MVD were significantly higher in malignant

breast masses compared to benign ones (p < 0.001), while Emin was significantly

lower in malignant masses (p < 0.05). In Spearman correlation analysis, Emax was

significantly positively correlated with MVD (p < 0.01). The area under the curve

for SRUS combined with SWE (0.924) was significantly higher than that for SWE
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(0.883) or SRUS (0.830) alone (p < 0.001), thus indicating improved diagnostic

accuracy. The decision curve analysis of the nomogram indicated that SWE

combined with SRUS model had a higher net benefit in predicting breast cancer.

Conclusions: TheMVD of the breast mass shows a significant positive correlation

with Emax. By integrating SRUS with SWE, this study proposes a novel diagnostic

approach designed to improve specificity and accuracy in breast cancer

detection, surpassing the limitations of current ultrasound-based methods.

This approach shows promise for early breast cancer detection, with the

potential to reduce the need for unnecessary biopsies and improve

patient outcomes.
KEYWORDS

breast masses, ultrasound imaging, super-resolution ultrasound, shear-wave
elastography, differential diagnosis
1 Introduction

Breast cancer is a significant global health concern, recently

surpassing lung cancer as the most commonly diagnosed cancer

worldwide (1). It poses a severe threat to the health of women and

remains a critical public health challenge. The current gold standard

for diagnosing breast cancer involves invasive procedures, which

carry the risk of complications and can damage healthy tissues (2).

Conventional ultrasound imaging is a widely used method for

diagnosing breast masses (3, 4), However, its ability to distinguish

between benign and malignant masses is limited (5). B-mode

ultrasound can provide information about the size, shape,

boundary, and internal characteristics of breast masses but is

insufficient for detecting blood flow within these masses (6). To

supplement B-mode ultrasound, color Doppler flow imaging

(CDFI) is used to visualize blood flow distribution within breast

masses. However, the overlapping imaging features of benign and

malignant masses often necessitate further follow-up and biopsies.

CDFI can only show the diameter of >0.2mm vessels and relatively

high blood flow rates (>1cm/s) (7, 8). Due to the physical diffraction

limit, the spatial resolution of conventional ultrasound imaging,

including contrast-enhanced ultrasound (CEUS), which is widely

used in clinical practice, is limited by the ultrasound wavelength,

and cannot distinguish targets smaller than half a wavelength (8–
Doppler flow imaging ;

um elasticity; Emin,
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PV, Positive predictive

gion of interest; SWE,
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02
11). Although it is possible to reduce the wavelength and thus

improve the spatial resolution by increasing the ultrasound

frequency, the increase in attenuation inevitably induces a

decrease in penetration depth, which makes balancing resolution

and depth challenging.

The emergence of super-resolution ultrasound (SRUS) imaging

technology has revolutionized breast cancer diagnostics. SRUS

breaks the acoustic diffraction limit to improve spatial resolution,

visualize microvascular, and detect low-speed blood flow (12, 13). It

can achieve up to ten-fold improvement in spatial resolution

compared to conventional ultrasound imaging in theory (14). By

locating individual microbubbles at the sub-wavelength level and

tracking their displacement (11, 15), SRUS creates super-resolution

velocity maps (SRVM) to observe more microvascular details in

breast masses. This technique has been successfully performed on

humans (16–19). Moreover, based on microvessel density (MVD)

and microvascular flow rate (MFR), it offers valuable information

for medical diagnosis of breast cancer (20–22).

Tissue elastic modulus, determined by tumor-associated matrix

and collagen, plays a crucial role in the diagnosis and prognosis of

tumor aggressiveness (23). Shear-wave elastography (SWE) is a

technique that quantitatively measures tissue elastic modulus value

and provides a potentially valuable tool to help differentiate benign

from malignant breast masses (24).While SWE has demonstrated

effectiveness in differentiating masses based on stiffness, it does not

capture the microvascular characteristics critical for understanding

tumor behavior (25, 26).

By combining SRUS’s microvascular visualization with SWE’s

quantitative stiffness measurements, our approach addresses the

limitations of single ultrasound modalities that provide incomplete

diagnostic information. Previous studies have explored the

combination of B-mode ultrasound with SWE (5), SWE with

CEUS (27), and B-mode ultrasound with CEUS (28) in breast

cancer diagnosis. However, the combination of the tissue elasticity
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assessment of SWE and the microvascular imaging capabilities of

SRUS are not well studied for breast cancer diagnosis, which

distinguishes our study from prior work. Our study aims to

develop a novel approach for the early diagnosis of breast cancer

by integrating the microvascular and stiffness characteristics of

breast masses. We also aim to investigate the correlation between

Emax and MVD, and to assess the differential diagnosis efficacy of

the combination of SRUS and SWE in benign and malignant breast

masses, providing a more comprehensive diagnostic method and

represents a meaningful contribution to the field.
2 Methods

2.1 Patient population

This prospective study was approved by the Institutional

Review Board of China Resources & Wisco General Hospital. All

the patients signed an informed consent form prior to the

examination. 97 female patients (aged > 18 years) with breast

masses were included in this study between October 2022 and

May 2024. In cases where patients had more than one suspicious

mass, the most suspicious-appearing mass was selected. Patients

were excluded if they had contraindications to ultrasound contrast

agents, a history of previous treatment, mental disorders, or any

severe cardiovascular or cerebrovascular conditions. Additionally,

those with hepatic or renal disease, or who were pregnant, were also

excluded from the study. B-mode ultrasound, CEUS, and SWE

examinations were performed for all patients. A SonoVue

microbubble contrast agent (Bracco, Milan, Italy) was used.

Furthermore, all patients underwent surgical excisions to obtain

histopathologic results. Figure 1 illustrates the processes of patient

registration and data processing.
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2.2 Clinical data acquisition

The ultrasound examinations were conducted by a specific

radiologist with over 15 years of experience. For real-time

ultrasound image monitoring and data collection, a commercial

ultrasound system (Resona R9T; Mindray Biomedical Electronics

Co., Ltd., Shenzhen, China) and an L11-3U linear array probe with

3.0–10.0 MHz bandwidth were employed. Patients were provided

with instructions to assume a supine position, raise their arms, and

perform abduction movements during the scanning procedure to

ensure comprehensive exposure of the breast and axilla.

Furthermore, patients were instructed to maintain a state of quiet

respiration during the examination.

The probe was adjusted to show the maximum diameter of the

breast mass and ensure that the surrounding tissues were clearly

visible. After examining the sonographic characteristics of the

breast mass with B-mode ultrasound, the probe was held

perpendicular to the examination location, stabilized, and then

switched to SWE mode. The whole mass and surrounding breast

tissue were selected as two regions of interest (ROI) respectively,

and the default values covered the range of 0–180 kPa. The Elasto

function key was pressed on the control panel. The quality control

badge in the upper right corner of the screen, which showed four

stars or more, indicated satisfactory image quality. The image was

frozen, and the mass contour was sketched manually along

the sliding trackball by the radiologist. Each elastic modulus

within the region was automatically calculated by the system,

which stored the results as the maximum elasticity (Emax),

minimum elasticity (Emin), mean elasticity (Emean), standard

deviation of elasticity (Esd), and elasticity ratio (Eratio).

The SRUS image dataset was obtained from CEUS dynamic

images after offline processing (see section 2.3 for details). An

intravenous injection of a 0.5mL microbubble contrast agent was
FIGURE 1

Patient enrollment and data processing pipeline.
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administered using a 19-gauge needle. The average frame rate was

about 80 Hz. A mechanical index (MI) of 0.08 was used to avoid

microbubble destruction during the CEUS examinations. The

microbubble signal within the breast mass was observed and

tracked using B-mode and CEUS dual-mode imaging. During

imaging, patients were asked to hold their breath. Then CEUS

images were gathered, and additional SRUS processing was

performed on the CEUS images to facilitate the calculation of

MVD and MFR as follows.
2.3 Ultrasound image processing

SRUS image offline analysis was carried out using MATLAB

software (MathWorks Inc., Natick, MA, USA). SRUS technology

used ultrafast ultrasonic plane wave coherent composite imaging

mode to collect the acoustic state of ultrasound microbubbles in

microvessels continuously, established two-stage motion correction

to correct tissue motion. Then, the post-processing of the SRUS

algorithm was carried out.

SRUS used the acoustic response of the microbubble contrast

agent to visualize the microvascular system. In this study, locating

isolated microbubble signals first required singular value

decomposition (SVD) to separate tissue and blood flow signals.

The SVD method was first used to transmit and collect many pulse-

echo signals and then carried out SVD to remove the tissue signals

with large singular values to realize the extraction of microbubble

signals. The spatial coordinates of the centroids of the microbubbles

were extracted one by one by deconvolution of each source from the

predicted Gaussian point spread function. The centroid location

was to find the center of the microbubbles by calculating the

intensity-weighted centroids of each extracted microbubble signal.

With the superposition of multiple frames, SRUS rendering

was realized.

MVD was defined as tracked microbubble area divided by the

ROI area of mass. ROI was manually constructed on MATLAB

based on breast mass contours on B-mode and SRUS images. To

calculate the MFR, the tracking method calculated the best

correlation bubble signal in the search window between adjacent

images. Each microbubble detected in frame F and each

microbubble in frame F+1 should be recorded in the search

window. The study set the frame rate to 80 Hz and 700 microns

as the maximum search window. For each signal in frame F, if the

maximum normalized cross-correlation value in frame F+1 was

higher than a determined threshold of 0.9, the pairing signal in

frame F+1 was identified.
2.4 Statistical analysis

The Statistical Package for the Social Sciences version 26.0

(SPSS Inc., Chicago, IL, USA), the R Software (version 4.2.1; R

Foundation for Statistical Computing, Vienna, Austria), and

GraphPad Prism version 10.1.2 (GraphPad, Inc., San Diego, CA)

were used to perform statistical analyses. T-tests, chi-square tests,

and Mann-Whitney U tests were employed to compare statistical
Frontiers in Oncology 04
differences between the benign and malignant groups. Independent

variables were screened, confounding factors were eliminated, and

the remaining parameters were analyzed using multivariate binary

logistic regression. Correlation analysis was conducted within this

regression model, selecting variables significant in univariate

analysis as independent variables to construct the binary logistic

regression equation and determine the cutoff values. Receiver

operating characteristic (ROC) curves and area under the curve

(AUC) analyses were used to assess the diagnostic efficacy of SWE,

SRUS, and their combined application for differentiating benign

from malignant breast masses. Sensitivity, specificity, accuracy,

positive predictive value (PPV), and negative predictive value

(NPV) of the quantitative parameters were obtained via ROC

analysis. The dataset was randomly divided into training and

validation cohorts at a 7:3 ratio. The training cohort was used for

binary logistic regression analysis to identify variables included in

the nomogram, while the validation cohort was used for result

validation. Nomograms and calibration plots were generated using

the rms package. The rms package in R provides tools for building

and validating regression models with an emphasis on survival

analysis, logistic regression, and other predictive modeling

techniques, as well as generating calibration plots and

nomograms. The Hosmer-Lemeshow test was used to assess the

model’s goodness-of-fit, and decision curve analysis (DCA),

conducted with the rmda package, evaluated net benefits within

the threshold probability range. The rmda package supports DCA, a

method to evaluate the clinical utility of prediction models by

calculating net benefits across a range of threshold probabilities.

A scatter plot assessed the correlation between Emax and MVD.

Statistical significance was defined as p < 0.05, with significance

levels noted at 0.05 (*) and 0.01 (**) (two-tailed).
3 Results

3.1 Ultrasound images of breast masses

The benign and malignant pathological spectra of the breast

cases are shown in Figure 2. Figures 3, 4 showed B-mode, SWE,

SRUS, and SRVM images of a patient with a benign and a malignant

breast mass, respectively. The image below (e-h) corresponds to the

local magnification in the box of the ultrasound image described

above (a-d). SRUS demonstrated improved temporal and spatial

resolutions while maintaining adequate penetration depth and

visual field, enabling observation of microvascular at the micron

scale. In the SRVM, red and blue indicated opposite directions and

relatively high flow velocity, respectively, while yellow showed

relatively low flow velocity, providing additional microvascular

velocity information.
3.2 Comparison of clinical information and
quantitative parameters

According to the data presented in Table 1, the findings of this

study demonstrated the presence of statistically significant
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variations in age, size, position, Emax, Emin, Emean, Esd, andMVD

between benign and malignant masses (p < 0.05), with malignant

masses having greater values of Emax, Emean, Esd, andMVD, while

benign masses had greater values of Emin. To further evaluate the

diagnostic potential of these quantitative parameters, the study

performed binary logistic regression analyses, and the results were

presented in Table 2. Only Emax and MVD showed statistical

differences. The higher OR value of MVD compared with Emax

indicated that MVD was more relevant in the differential diagnosis

of breast masses.
3.3 Relationship between Emax and MVD

This research employed a scatter plot to assess the association

between Emax and MVD. The scatter plot and fitting curve of
Frontiers in Oncology 05
correlation between Emax and MVD are shown in Figure 5, and the

result showed that Emax and MVD were significantly positively

correlated, with a correlation coefficient of approximately 0.27 (p

< 0.01).
3.4 Diagnostic performance of SWE and
SRUS combination

ROC analysis evaluated the diagnostic efficacy of SWE, SRUS,

and the combination of SWE and SRUS in differentiating benign

from malignant breast masses, including parameters such as

sensitivity, specificity, accuracy, PPV, NPV, cutoff values, and

AUC. Binary logistic regression analysis yielded regression

equations for the SWE and SRUS groups as follows: for the SWE

group, logit(p) = -1.857 + 0.036Emax - 0.225Emin; for the SRUS
FIGURE 3

Ultrasound images of benign breast masses. (A) B-mode; (B) shear-wave elastography; (C) super-resolution ultrasound imaging; (D) super-resolution
velocity map. (E–H) were the details of the breast mass between (A) B-mode, (B) shear-wave elastography, (C) super-resolution ultrasound imaging,
and (D) super-resolution velocity map, as shown in the yellow box in the figure.
FIGURE 2

Pie charts depicting the pathological spectra of breast masses: (A) Benign pathological spectrum, (B) Malignant pathological spectrum.
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group, logit(p) = -1.112 + 0.454MVD, with cutoff values of 0.639

and 0.375, respectively. The regression equation and cutoff value for

the combined SWE and SRUS group were logit(p) = -3.608 +

0.442MVD + 0.035Emax and 0.714, respectively. As presented in

Table 3, the SWE group demonstrated an AUC of 0.883 (95% CI:

0.815-0.952; p < 0.001), while the SRUS group had an AUC of 0.830
Frontiers in Oncology 06
(95% CI: 0.745-0.914; p < 0.001). Notably, the combined SWE and

SRUS approach yielded the highest AUC at 0.924 (95% CI: 0.875-

0.973; p < 0.001), outperforming the use of SWE or SRUS alone.

Consequently, the combined SWE and SRUS approach achieved an

accuracy of 83.5%, sensitivity of 76.7%, and specificity of 94.6%.

Figure 6 illustrates the ROC curves for SWE, SRUS, and their
TABLE 1 Summary of clinical information from examined patients and the corresponding ultrasound characterizations of breast masse.

Parameters Benign Malignant t//c²/z p

Number of masses 37 60

Age 45.08 ± 10.69 52.62 ± 10.81 -3.348 0.001

Size (cm) 1.62 (1.21, 2.74) 2.71 (1.96, 4.01) -3.869 <0.001

Position -2.027 0.038

Right 21 (56.7) 26 (43.3)

Left 16 (43.2) 34 (56.7)

Emax (kPa) 81.66 (52.26, 103.24) 189.58 (97.59, 267.88) -5.667 <0.001

Emin (kPa) 4.05 (2.06, 7.61) 1.76 (0.10, 5.40) -2.700 <0.05

Emean (kPa) 21.75 (14.69, 31.29) 32.22 (23.91, 51.09) -3.721 <0.001

Eratio 1.42 (0.98, 2.14) 1.69 (1.23, 2.63) -1.597 >0.05

Esd (kPa) 10.10 (6.78, 16.36) 21.75 (13.04, 32.32) -4.969 <0.001

MVD (%) 1.01 (0.27, 3.44) 5.15 (2.52, 8.23) -5.433 <0.001

MFR (mm/s) 10.25 (8.46, 12.92) 11.38 (10.24, 12.75) -1.764 >0.05
FIGURE 4

Ultrasound images of malignant breast masses. (A) B-mode; (B) shear-wave elastography; (C) super-resolution ultrasound imaging; (D) super-
resolution velocity map. (E–H) were the details of the breast mass between (A) B-mode, (B) shear-wave elastography, (C) super-resolution
ultrasound imaging, and (D) super-resolution velocity map, as shown in the yellow box in the figure.
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combined application, highlighting the superior diagnostic

performance of the combined SWE and SRUS group with the

largest AUC.
3.5 Nomogram construction of SWE and
SRUS combination

A multiparameter prediction model combining SWE and SRUS

was developed and visualized as a nomogram to estimate breast

cancer risk, as shown in Figure 7A. For example, consider a patient

with the following parameter values: an Emax of 80.0 kPa

(equivalent to 18 points on the nomogram), an Emin of 5.0 kPa

(45 points), an Emean of 25.0 kPa (13 points), an Esd of 8.0 kPa (62

points), and an MVD of 1.5% (8 points). The cumulative score for

this patient is 146 points. According to the nomogram, a total score

of 146 points corresponds to an estimated breast cancer risk of 22%.

Figure 7B The calibration curve for the nomogram demonstrated

good agreement between the model’s predictions and actual

observations. In both the training and validation cohorts, the

Hosmer-Lemeshow test yielded p-values greater than 0.05 (p =

0.853 and p = 0.439), indicating a good fit of the nomogram to the

data. The DCA of the nomogram is shown in Figure 7C. The results

indicated that the SWE combined with SRUS model provided a

higher net benefit in predicting breast cancer than either a treat-all-

patients or treat-none approach across nearly all threshold

probabilities in both the training and validation cohorts.
Frontiers in Oncology 07
4 Discussion

The study involved 97 female patients with breast masses who

underwent B-mode ultrasound, SWE, and CEUS examinations. The

study included five distinct types of benign lesions and four distinct

types of malignant lesions, categorized based on pathological

subtypes. In our study, we evaluated the significance of the

quantity parameters between SWE and SRUS, and explored the

correlation between Emax andMVD. The results demonstrated that

MVD exhibited the highest differential diagnostic value among the

parameters evaluated, with a significant positive correlation to the

Emax of the breast mass. Furthermore, we combined microvascular

imaging quantification from SRUS with quantitative stiffness

measurements from SWE to assess breast cancer and evaluated

the diagnostic performance of this integrated approach. To evaluate

the diagnostic accuracy, ROC curves, a nomogram, and DCA were

utilized, highlighting the importance of these modalities in

improving the diagnosis of breast masses and guiding clinical

decision-making. The ROC analysis revealed that the diagnostic

efficacy of the combined SWE and SRUS approach surpassed that of

either modality alone. Additionally, DCA demonstrated that the

SWE-SRUS combination model offered a higher net benefit in

predicting breast cancer. Our integrated approach, combining

SWE and SRUS, provides a more comprehensive diagnostic

evaluation compared to conventional ultrasound methods.

Previous studies have explored the combined diagnostic efficacy

of various ultrasound modalities, such as B-mode ultrasound with

CEUS (28), B-mode ultrasound with SWE (5), and CEUS with SWE

(27). The integration of different ultrasound techniques has been

shown to improve diagnostic accuracy. However, the potential

benefits of combining tissue stiffness assessment through SWE

with microvascular imaging from SRUS for breast cancer

diagnosis remain unclear. Therefore, this study aims to evaluate

the clinical applicability and potential of combining SWE and SRUS

in the diagnosis of breast cancer.

SWE has been widely used to access breast masses based on tissue

elastic modulus, with previous studies confirming its effectiveness in

distinguishing between benign and malignant masses (29–31). In this

study, the Emax, Emean, and Esd values of malignant breast masses

were higher than those of benign masses, while Emin values were

lower, consistent with earlier findings (32–34). This may be due to the

presence of more elastic fibers and interstitial components inmalignant

masses, which are densely arranged. In contrast, benign masses often

have a looser arrangement of fibrous stroma and glands, a higher

mucopolysaccharide content, and a softer texture. For the

microvascular quantification within breast masses, SRUS provides
FIGURE 5

The scatter plot of the correlation coefficient between Emax
and MVD.
TABLE 2 Binary logistic regression analysis results of quantitative parameters in diagnosing benign and malignant breast masses.

Parameters b S. E Wald p OR
95% C.I. for OR

Lower Upper

Emax 0.035 0.013 6.951 0.008 1.036 1.009 1.063

MVD 0.442 0.140 9.919 0.002 1.555 1.182 2.047

Constant -3.608 0.991 13.258 0.001 0.027
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high resolution, and considerable depth, and surpasses the diffraction

limit in structural imaging, making it applicable for differentiating

benign from malignant breast masses. In this study, the quantitative

analysis of SRUS parameters revealed that MVD was significantly

higher in malignant breast masses compared to benign ones, while

MFR did not differ significantly between the two groups. This may be

due to malignant masses producing more growth factors,

promoting angiogenesis, which increases MVD values. However,

neovascularization in malignant tumors is often structurally and

functionally abnormal, leading to vessel collapse and blood flow

stagnation, which affects the flow rate (35).

The value of MVD affects the biological behavior of breast

cancer to some extent, and the biological behavior often determines

the physical changes of the tumor, and the change of elastic

modulus is also one of the physical changes of the tumor (36, 37).

Therefore, the elastic modulus may have some correlation with

MVD, which is one of the primary purposes of this study. Because

malignant masses usually have high heterogeneity, they exhibit

significant regional differences in elastic modulus. And therefore

Emax is a quantitative parameter which could better capture this
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heterogeneity, outperforming other elastic modulus values (38, 39).

This study primarily explores the correlation between Emax and

MVD. This study found that Emax has a significant positive

correlation with MVD, consistent with the conclusions of Jamin

et al. and Jugé et al. (40, 41). This may be because increased elastic

modulus further activates signaling pathways related to tumor cell

proliferation and invasion, thus, angiogenesis and vascular

permeability are increased. MVD as a quantitative criterion of

angiogenesis in breast tumors will increase accordingly (42–45).

Our study showed that the AUC of SRUS combined with SWE

was as high as 0.924, significantly higher than that of SRUS (0.830) or

SWE (0.883). And it is worth noting that the combined group has

higher specificity. These findings highlight that the combination of

SRUS and SWE significantly improves diagnostic performance. ROC

analysis showed that the AUC value of the SRUS group was slightly

lower than that of the SWE group, which may be related to the

selection of four statistically significant parameters Emax, Emin,

Emean, and Esd in the SWE group. Only MVD was selected as a

statistically significant parameter in the SRUS group. At the same

time, the higher specificity of the combined group suggests that it can

reduce false-positive cases and accurately exclude benign masses,

which is of great value in reducing unnecessary biopsies. Lee et al.

showed that combining quantitative parameters of SWE and superb

microvascular imaging with B-mode significantly improved the

diagnostic efficacy in differentiating benign from malignant breast

masses, with an AUC of the combination of 0.849 (46). Chen et al.

constructed a predictive model for breast cancer diagnosis using

relevant parameters from SWE and CEUS. ROC curve analysis

showed that the AUC reached 0.857, with significantly higher

accuracy compared to conventional ultrasound (47). Our studies

were consistent with the results of previous studies. This highlights

the potential of this combined technique as an assessment of benign

and malignant breast masses, thereby informing clinical decision-

making and improving patient outcomes.

We also developed a nomogram that combines SWE and SRUS

to predict breast cancer risk, demonstrating strong performance on

the calibration curve and in DCA. This nomogram shows potential

clinical value by enhancing net benefit in clinical decision-making.

Although this study included five types of common benign

lesions and four types of common malignant lesions, with larger

sample sizes and a broader pathological spectrum, the combined

SWE and SRUS approach could offer valuable insights for

identifying marginal or rare lesions. The approach incurs only the

additional cost of an ultrasound contrast agent compared to

conventional ultrasound, while offering significant potential to
TABLE 3 To evaluate the diagnostic efficacy of SWE, SRUS, and combination in differentiating benign and malignant breast masses.

Group
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
PPV
(%)

NPV
(%)

Cutoff
Value

AUC 95% C.I.

SWE 76.7 89.2 79.4 81.7 75.7 0.639 0.883 0.815-0.952

SRUS 95.0 59.5 72.2 75.0 67.6 0.375 0.830 0.745-0.914

SWE+SRUS 76.7 94.6 83.5 88.3 75.7 0.714 0.924 0.875-0.973
FIGURE 6

The receiver operating characteristic curve was drawn to show the
diagnostic performance of shear-wave elastography, super-
resolution ultrasound imaging, and their combination in
distinguishing benign and malignant breast masses.
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reduce unnecessary biopsies and associated healthcare expenses.

Although a detailed cost analysis was not performed, the improved

specificity of this method could help minimize misdiagnoses and

follow-up interventions, ultimately reducing both patients’

psychological burden and overall healthcare costs.

However, this study has several limitations. The small sample

size, limited range of breast disease types, use of only an internal

validation cohort, and single-center design highlight the demand for

larger sample sizes, a broader pathological spectrum, external
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validation, and multicenter prospective studies. In future research,

we aim to optimize the study design, conduct multicenter prospective

studies, and expand the cohort size to ensure more robust and

generalizable findings, ultimately enhancing the clinical

applicability of our results. Additionally, the two-dimensional (2D)

nature of the ultrasound SRUS and SRVM images does not capture

out-of-plane microvascular. Previous studies have reported three-

dimensional (3D) ultrasound SRUS by acquiring 2D SRUS stacks

using a mechanical scanning system to translate a one-dimensional
frontiersin.or
FIGURE 7

Nomogram, calibration curve, and decision curve analysis for the SWE combined with SRUS model in predicting breast cancer. (A) Nomogram;
(B) Calibration curves for the training and validation cohorts; (C) Decision curve analysis for the training and validation cohorts.
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array transducer (11, 13, 48). Advancements in 3D ultrasound SRUS

might significantly enhance diagnostic accuracy by capturing the full

volumetric context of breast masses, minimizing the risks of sampling

bias inherent to 2D imaging. However, commercially available 3D

super-resolution ultrasound equipment for clinical application has

not yet been developed. To ensure consistency in image acquisition

across different ultrasound modes, the maximum diameter section of

each breast mass was selected for imaging. However, this approach

may introduce potential sampling bias. For instance, local necrosis

within the maximum diameter section could lead to decreased

stiffness or reduced MVD. Notably, recent studies have

demonstrated good repeatability of SRUS across different sections

of breast masses (49), though the repeatability of SWE across various

sections requires further investigation.

In conclusion, the MVD of the breast mass exhibits a significant

positive correlation with Emax. The combination of SRUS and SWE

provides substantial advantages for breast cancer detection. This study

presents an enhanced approach for the differential diagnosis of

common benign and malignant breast masses, improving specificity

and accuracy.Moving forward, we aim to further investigate the impact

of SWE and SRUS on breast cancer histological types, biopsy rates, and

other relevant factors. We believe that with continued research, the

value of SRUS and SWE in the early diagnosis of breast cancer will

become increasingly evident.
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