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Helicobacter pylori (H. pylori) infection is a typical microbial agent that interferes

with the complex mechanisms of gastric homeostasis by disrupting the balance

between the host gastric microbiota and mucosa-related factors, ultimately

leading to inflammatory changes, dysbiosis, and gastric cancer (GC). We

searched this field on the basis of PubMed, Google Scholar, Web of Science,

and Scopus databases. Most studies show that H. pylori inhibits the colonization

of other bacteria, resulting in a less variety of bacteria in the gastrointestinal (GI)

tract. When comparing the patients with H. pylori–positive and H. pylori–

negative GC, the composition of the gastric microbiome changes with

increasing abundance of H. pylori (where present) in the gastritis stage,

whereas, as the gastric carcinogenesis cascade progresses to GC, oral and

intestinal-type pathogenic microbial strains predominate. H. pylori infection

induces a premalignant milieu of atrophy and intestinal metaplasia, and the

resulting change in gastric microbiota appears to play an important role in gastric

carcinogenesis. The effect ofH. pylori–induced GC on GI microbiota is discussed

in this review.
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1 Introduction

Helicobacter pylori (H. pylori) infection causes chronic gastritis,

which can progress to severe gastroduodenal pathologies, including

peptic ulcer, gastric cancer (GC), and gastric mucosa–associated

lymphoid tissue (MALT) lymphoma (1). H. pylori is usually

transmitted in childhood and persists for life if untreated. The

infection affects around half of the population in the world, but

prevalence varies according to location and sanitation standards (2).

H. pylori has unique properties to colonize gastric epithelium in an

acidic environment. The pathophysiology of H. pylori infection is

dependent on complex bacterial virulence mechanisms and their

interaction with the host immune system and environmental factors,

resulting in distinct gastritis phenotypes that determine possible

progression to different gastroduodenal pathologies (3). The

causative role of H. pylori infection in GC development presents

the opportunity for preventive screen-and-treat strategies (4).

Invasive, endoscopy-based, and non-invasive methods, including

breath, stool, and serological tests, are used in the diagnosis of H.

pylori infection. Their use depends on the specific individual patient

history and local availability (5). H. pylori treatment consists of a

strong acid suppressant in various combinations with antibiotics and/

or bismuth (6). The dramatic increase in resistance to key antibiotics

used inH. pylori eradication demands antibiotic susceptibility testing,

surveillance of resistance, and antibiotic stewardship (7).

GC, which refers to the occurrence of cancer in the stomach cell

line, is one of the leading causes of cancer-related deaths and ranks as

the fifth most common cancer globally, posing a significant global

health challenge (8). GC, being multifactorial cancer, has risk factors

that include a family history of GC in first-degree relatives, dietary

habits, gender, age, race, H. pylori infection, nutritional status, and a

history of invasive diseases such as lymphoma- or gastric-related

procedures (9, 10). Studies have suggested the potential role of H.

pylori and other bacterial genera in the progression of GC (11, 12).H.

pylori, as a destructive member of the gastric microbiota, raises global

health concerns due to its association with GC (13). This bacterium

recruits neutrophils and lymphocytes to the gastric mucus,

stimulating the production of reactive oxygen species (ROS) and

inflammatory cytokines through the action of the CagA (cytotoxin-

associated gene A) protein. This process gradually stimulates cell

proliferation, leading to the development of GC and alterations in the

composition of the gastrointestinal (GI) tract microbiota (14–18).

This review represents, to the best of our knowledge, the first

comprehensive analysis of the interaction between GC and H. pylori,

focusing on their impact on the microbiota. The current study

highlights variations in microbiota alterations among individuals

with GC, with or without H. pylori infection. Investigating the

correlation between the presence of H. pylori and microbiota

changes in patients with GC is crucial for developing more effective
Abbreviations: H. pylori, Helicobacter pylori; GC, Gastric cancer; ROS, Reactive

oxygen species; GI, Gastrointestinal; TNF-a, Tumor necrosis factor–alpha; E. coli

Escherichia coli; B. fragilis, Bacteroides fragilis; HpNGC,H. pylori–negative gastric

cancer; Dys, Dysplasia; IM, Intestinal metaplasia; MALT, Mucosa-associated

lymphoid tissue; PPIs, Proton pump inhibitors; OAC, Omeprazole, amoxicillin,

and clarithromycin; RCT, Randomized clinical trial.
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therapies for H. pylori infection in individuals with GC who are H.

pylori–positive. Distinct differences exist between individuals with

GC who harbor H. pylori and those who do not. Through multi-

omics studies that analyze changes in microbial profiles and

metabolite alterations, a diverse range of compositions in the GI

tract microbiota has been observed in patients with GC depending on

the presence or absence of H. pylori. In fact, individuals with H.

pylori–positive GC exhibit very low variation in gastric microbiota

and significant changes in GC microbiota, including Firmicutes,

Proteobacteria, Bacteroides, Streptococcus, Lactobacillus, Escherichia,

and Shigella. Eradicating H. pylori eventually restores the disrupted

microbiota in patients with GC (19). Conversely, patients with GC

without H. pylori are closely linked to high microbial diversity in the

gastric microbiota, a significant increase in Haemophilus and

Streptococcus, and an elevation in the abundance of metabolites

(20–23). All these changes may be due to the inhibitory effects of

H. pylori on the colonization of other microorganisms (24, 25). In

addition, the four most dominant strains of gut microbiota in

individuals with GC with H. pylori strains, including Enterococcus,

Escherichia-Shigella, Bacteroides, and Lactobacillus, contribute to the

progression of GC by increasing damage to cancerous tissue (26–28),

the levels of tumor necrosis factor–alpha (TNF-a) (29), and

unfavorable metabolites (30). Although the relationship between

microbiota and metabolites in individuals with GC with H. pylori

has not been thoroughly described, it is evident that the secondary

metabolites produced by H. pylori elevate the metabolism of citric

acid and carbohydrates in the gastric tissue of patients with GC (31),

exacerbate inflammation in the gastric tissue by stimulating the

activation of C-type lectin receptors (32), and inhibit the

interferon-alpha (IFN-a) signaling pathway to evade the immune

system (33). The importance of analyzing the differences in metabolic

activity between GC cases with and without H. pylori reflects their

potential to serve as candidate markers for distinguishing which

patients with GC harbor H. pylori or not (20). In addition to

alterations in microbiota and metabolic changes, studies indicate

histopathological changes such as peptic ulcers and epithelial changes

in the gastric mucosa of patients with GC with H. pylori. As

mentioned regarding the metabolic changes, these histopathological

changes are suitable indicators to determine the presence of H. pylori

in GC cases. These histopathological changes were not present in the

gastric tissue of patients with GCwho were not colonized byH. pylori

(34). The primary aim of this study was to review the effect of H.

pylori–induced GC on GI microbiota.
2 Search strategy

We collected original and review articles in this field by

searching through PubMed, Google Scholar, Web of Science, and

Scopus databases for English language literature published up to

2024. The search was conducted on the basis of “Gastric or stomach

cancer,” “Helicobacter pylori–induced gastric cancer,” “H. pylori

eradication” AND “Gut microbiota,” or “Microbiome” as keywords.

Studies that reported the role of H. pylori–induced GC on GI

microbiota and changes in gastric microbiota following successful

H. pylori eradication were enrolled.
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3 Gastrointestinal microbiota in
patients with gastric cancer

Microbial diversity and composition change in GC (35). Studies

suggest that the diversity and composition of the gastric microbiota

differ among patients at different histological stages of GC (11, 36).

This issue emphasizes that the imbalance of the gastric microbiota is

dynamic. The GC microbiome appears to improve with oral and

intestinal bacterial taxa (37). Bacterial genera such as Lactococcus,

Bacillus, Prevotella, Veillonella, Leptotrichia (38), Achromobacter,

Citrobacter, Rhodococcus, Phyllobacterium (11), Peptostreptococcus,

Parvimonas, Slackia, and Dialister (39), which commonly colonize

the oral cavity, are enriched in the GC microbiota. Reports indicate

diverse geographic regions where bacterial species of intestinal

commensals, including Lactobacillus (11, 38, 39), Streptococcaceae

(39, 40), Staphylococcus (38, 41), Clostridium (11, 38), and

Fusobacterium (38, 39), are consistently enriched in GC. There are

controversial results regarding the abundance of Streptococcus and

Prevotella between GC and non-cancer patients. Studies indicate that

they are both increased (38, 42) and decreased (11, 43) in the GC

microbiota. The depletion of Neisseria, Comamonadaceae,

Acinetobacter (39), Vogesella, and Helicobacter (11, 40) was

identified in the GC microbiota. Neisseria (11) was a genus that

showed a decrease in the microbiota of patients with GC from regions

with low GC risk. However, Veillonella and Leptotrichia increased in

relative abundance in the microbiota of patients with GC from areas

with high GC risk (11, 44). Gunathilake et al. showed enrichment of

H. pylori, Propionibacterium acnes, and Prevotella copri and a

decrease in the abundance Lactococcus lactis in the gastric

microbiota of patients with GC (45). In a study from Portugal,

Ferreira et al. demonstrated that there was a significant decrease in

Helicobacter, Neisseria, Streptococcus, and Prevotella and an increase

in abundance Lactobacillus, Citrobacter, Clostridium, Achromobacter,

and Rhodococcus in cancer versus non-cancer. The profile of the

GC mucosal microbiota obtained from the 16S rRNA gene has

shown metabolic activities and biochemistry such as carbohydrate

metabolism, carbohydrate digestion, absorption (11, 38, 39),

membrane transport (11, 43), and nucleotide/purine metabolism

(39, 43) to be significantly increased in GC by enhancing the

counts of nitrate-reducing bacteria. Consequently, the functions of

nitrate reductase (NR) and nitrite reductase (NiR) are significantly

enriched in the microbiota of GC subjects, aligning with Correa’s

hypothesis (11, 43, 46).
4 Role of H. pylori–induced gastric
cancer on gastrointestinal microbiota

During the different stages of GC, the diversity and composition

of the bacterial microbiome vary significantly. The microbial

complex shows a strong correlation with precancerous lesion

stages such as atrophic gastritis (AG) and dysplasia. GC and

precancerous les ions can be ident ified by harboring

distinguishable bacterial taxa. Furthermore, the microbial
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structure changes on the basis of the site in patients with GC; for

example, Proteobacteria are abundant in the gastric mucosa,

whereas Firmicutes have been found abundantly in gastric juice

(36). The reduction in gastric mucosal microbiota diversity, due to

the widespread colonization of H. pylori, must be considered a

determining factor in the association between gastric precancerous

lesions and the gastric microbiota. A microbial model derived from

H. pylori–positive gastric biopsies and stool samples serves as a

critical predictor of precancerous lesions. This is supported by

reports of lower bacterial taxa diversity in gastric biopsies from

H. pylori–infected individuals compared to those from H. pylori–

negative participants. Among H. pylori–infected individuals, there

was an increased abundance (from 0.91% to 68.22%) of

Epsilonbacteraeota (the fifth validly described class of the phylum

Proteobacteria) and decreased levels of Firmicutes (27.55% to

8.18%) and Proteobacteria (36.53% to 13.97%). Moreover, the

ratio of Epsilonbacteraeota remained unchanged in stool and

gastric juice samples from the H. pylori–positive groups.

Consequently, H. pylori is associated with differences in gastric

mucosal bacterial diversity between H. pylori–positive and H.

pylori–negative samples, underscoring the role of GI bacteria in

the development of gastric precancerous lesions (47).

Exploring the potential mechanisms and dysbiosis of GI

microbial composition GC involving H. pylori infection has

revealed that richness indexes increase after the eradication of H.

pylori infection, with approximately 18 microbial taxa altered in the

gastric tract sample groups. Additionally, the dysbiotic microbiota

in gastric mucosal biopsies correlate with advanced AG, intestinal

metaplasia (IM), and dysplasia, and this dysbiosis may be reversed

by eradicating H. pylori. Notably, a study observed the coexistence

of Helicobacter, Fusobacterial, Neisseria, Prevotella, Veillonella, and

Rothia in cases where H. pylori was absent in healthy superficial

gastritis. It can be concluded that dysbiosis of microbial diversity

contributes to carcinogenesis (19).

In addition to the remarkable diversification and increased

interaction of GI bacterial composition following infection with

resistant H. pylori, consideration must be given to the metabolic

pathways and enrichment of infectious diseases. This aligns with the

findings of the study by Liu et al. (2022), wherein energy

metabolism, bacterial secretion systems, lipopolysaccharide

synthesis, protein folding, and associated processing are enriched

in H. pylori–positive groups. Furthermore, the imbalance in gastric

mucosal microbiota manifests in the inhibition of beneficial

bacterial growth, such as Lactobacillus. Patients with refractory H.

pylori infections may be at higher risk of developing GC compared

to other groups (48).

Conversely, virulent H. pylori strains may be crucial for gastric

colonization, but not sufficient for the development of GC and

ulcers. Distinct microbial communities exist not only in the lower

GI tract of H. pylori–infected patients but also that in non-infected

individuals. Bacteroides and Bifidobacterium colonize the gut tract

of H. pylori–positive patients with lower frequency. Notably, H.

pylori–infected patients experiencing stomachache exhibit a lower

abundance of Bifidobacterium species, which may be directly

associated with gastric ulcers and cancer (49).
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The gastric microbial composition profile of patients provides

insight into the dysbiotic cancer-associated microbiota. Typically,

gastric carcinoma is triggered by H. pylori infection, which reduces

acid secretion, allowing for the growth of a gastric microbiome with

a different composition. This diversification exacerbates the

invasion of bacteria into the gastric mucosa and leads to

malignancy. By measuring alpha-diversity (a-diversity) using the

Shannon index, it has been found that H. pylori influences patients

with gastric carcinoma by decreasing the microbial population and

enhancing the composition of other bacterial genera, especially

intestinal commensals, in comparison to chronic cases. Overall, the

gastric microbiota is dominated by five phyla: Proteobacteria,

Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria.

However, whereas the mentioned phyla colonize both GC and

chronic gastritis, patients with gastric carcinoma exhibit an over-

presentation of Actinobacteria and Firmicutes, along with a lower

abundance of Bacteroidetes and Fusobacteria (11). H. pylori alters

the overall structure and composition of the microbiota in the

specific stomach microenvironment of GC. In patients with both

histopathologically H. pylori–positive and H. pylori–negative
Frontiers in Oncology 04
statuses, there is a tendency for microbial diversity reduction

(lower in H. pylori–positive and higher in H. pylori–negative

cases). Dominant phyla in the gastric microbiota of H. pylori–

positive groups in normal and peri-tumoral tissues are

Proteobacteria and Firmicutes in high proportions. Bacterial

composition decreases in the peritumoral and tumoral

microhabitats (12). It is noteworthy that certain known oral

microbiomes, such as Parvimonas micra, Parvimonas stomatis,

Fusobacterium nucleatum, and Gemella, are likely associated with

colorectal cancer and may contribute to GC. Reports indicate an

abundance of oral microbiomes in GC. The differences in bacterial

composition and interactions play a pivotal role in determining the

total microbiota assemblage at each stage of gastric carcinoma.

Significant changes in microbial diversity are observed in the

richness of microbiota between GC, superficial gastritis, and IM,

validating the presence of microbial dysbiosis in gastric carcinoma.

The lack of compatibility may stem from various background

factors, such as gender, age, ethnicity, and the involvement of H.

pylori. Consequently, there are fewer interactions among gastric

microbes at all stages, with notably more interactions between
TABLE 1 Composition of gastric microbiota in patients with GC infected with H. pylori.

Author Study group Method Microbiota composition H. pylori
positive

or negative

Sample
site

Reference

Sun et al.
(2022)

134 HPN-GC cases:56
SG, 9 AG, 27 IM, 29
Dys, and 13 GC

16s
rRNA
sequencing

Gastric carcinogenesis stages
IM and Dys: Ralstonia and Rhodococcus
HPN-GC: Streptococcaceae andLactobacillaceae
AG to Dys: Burkholderiaceae

Negative Gastric mucus
Gastric Juice

(36)

Liu et al.
(2021)

148 GC cases
or gastric
precancerous lesions

16S
rRNA
sequencing

AG: Prevotella and Sphingomonas
IM: Dorea, Caulobacter, and Bacteroides
IN: Bradyrhizobium, Sphingomonas, Curvibacter,
and Acinetobacter

Negative
Positive

Gastric biopsy
Gastric Juice
Stool sample

(47)

Guo et al.
(2019)

1) 57 subjects (failed
H. pylori treatment)
2) 58 successful H.
pylori treatment

16S
rRNA
sequencing

AG, IM, Dys: Helicobacter, Fusobacterial, Neisseria,
Prevotella, Veillonella, and Rothia

1) All positive
2) 49 negative

Gastric mucus
Gastric biopsy

(19)

Ferreira et al.
(2017)

81 patients with chronic
gastritis (CG)
54 patients with GC

16S r RNA
sequencing
NGS

CG: Abundant Helicobacter, Streptococcus, Neisseria,
and Prevotella
GC: Citrobacter, Clostridium, Lactobacillus,
Achromobacter, and Rhodoccocus

Positive Gastric biopsy
Gastric juice

(11)

Liu et al.
(2018)

276 patients with GC 16S
rRNA
sequencing

Tumoral microhabitat: Prevotella melaninogenica,
Streptococcus anginosus, Fusobacterium, Selenomonas,
and Propionibacterium acnes
Peritumoral microhabitat: Helicobacter, Halomonas,
and
Shewanella

Positive Gastric
tumor tissue

(12)

Coker et al.
(2017)

205 GC,
21 SG, 23 AG, 17 IM,
and 20 GC

16s
rRNA
sequencing

GC: Peptostreptoccus, Streptococcus anginosus,
Slackia, Gemella, and Fusobacterium
IM: Pseudomonas, Dyella, and Acinetobacter
SG: Comamonadaceae and Bacteriodes

Positive
or

Negative

Gastric biopsy
Gastric mucus

(39)

Wang et al.
(2016)

212 patients with CG
103 patients with GC

16s
rRNA
sequencing

GC: Lactobacillus, Escherichia,
Shigella, Nitrospirae, and Burkholderia fungorum

Positive Gastric biopsy (51)

Park et al.
(2018)

138 patients
48 HPN-CSG
9 HPN-IM
23 HPN-GC, 14 HPP-
CSG, and 12 HPP-GC

16S
rRNA
sequencing

HPN-CSG: Firmicutes and Cyanobacteria
HPN-IM: Rhizobiales
HPN-GC: Xanthomonadaceae, Streptococcaceae,
Moraxellaceae, and Pseudomonadaceae

Positive
and

Negative

Gastric biopsy
from
gastric
antrum

(52)
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gastric microbes in H. pylori–negative samples than in H. pylori–

positive groups. The interactions of H. pylori with gastric microbes

are studied as co-occurring interactions with Methylobacillus,

Prevotella, and Arthrobacter, along with co-excluding interactions

with Firmicutes (Ruminococcus, Bacillales, and Lactobacillus) (39).

Gastric mucosa–associated lymphoid tissue (MALT)

lymphoma is correlated with both the presence and absence of H.

pylori. Additionally, the microbiota in patients with MALT

lymphoma is observed even in the absence of H. pylori. The

microbial composition in the gastric mucosal flora of patients

with H. pylori–negative MALT lymphoma significantly decreases.

This might suggest that the balance of bacteria in the gastric mucosa

is disrupted in patients with MALT lymphoma without the presence

of H. pylori. The genera Burkholderia and Sphingomonas are

identified abundantly in patients with MALT lymphoma

compared to those in control groups. Therefore, Burkholderia and

Sphingomonas genera may contribute to the progression of MALT

lymphoma. In contrast, the enrichment of Prevotella and Veillonella

is lower (50). The weighted principal coordinate analysis

demonstrates that the colonization of H. pylori increasingly alters

the structure of five genera of microbiota (Proteobacteria,

Bacteroides, Fusobacteria, Actinobacteria, and Firmicutes);

however, it has little impact on the proportion of other members.

Thus, alterations in the GC microbiota by increasing bacterial
Frontiers in Oncology 05
quantity and diversifying the microbial population could promote

cancer-related activities (51). The composition of the gastric

microbiota in patients with GC infected with H. pylori is shown

in Table 1.
5 Impact of H. pylori eradication on
gastrointestinal microbiota

5.1 Impact of H. pylori eradication on the
gastric microbiome

For many years, H. pylori eradication has been utilized;

however, the impact of this eradication on the normal stomach

microbiota remains unknown. EradicatingH. pylori reduces the risk

of GC, with this effect becoming more pronounced with age.

Currently, eradication is targeted at preventing the development

of GC (53). The acid-suppressive effects of proton pump inhibitors

(PPIs) and the bactericidal activity of antibiotics form the basis ofH.

pylori eradication therapy. Antibiotics directly and powerfully affect

all bacteria in the stomach (54). The strong acid-inhibitory action of

PPIs can rapidly raise the stomach’s pH, limiting the influence of

gastric acid on eradicating transient bacteria, which is not
FIGURE 1

Significant perturbation of the diversity and composition of gut microbiota develops soon after H. pylori eradication. The microbial diversity recovers
during the follow-up, but there is not yet sufficient data to confirm the changes in alpha-diversity that occur at the long-term follow-up. There is a
reduction in Actinobacteria, relative to baseline, throughout the follow-up. Proteobacteria have a higher relative abundance at the short-term
follow-up, which then returns to normal. Only during the long-term follow-up, a reduction in Bacteroidetes and a rise in Firmicutes were evident.
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conducive to digestion and results in various fluctuations in

substrate levels (55). Sung et al. reported that a 1-week combined

treatment of omeprazole, amoxicillin, and clarithromycin (OAC)

effectively eliminated H. pylori, leading to a significant increase in

stomach bacterial diversity after 1 year. In the absence of H. pylori,

there was a notable shift in bacterial co-occurrence, along with a

distinct cluster of oral microorganisms. Levels of Haemophilus,

Neisseria, and Actinobacillus were significantly reduced following

OAC therapy (56). Additionally, according to Mao et al., stomach

microflora diversity and relative quantities were greatly reduced

following H. pylori infection. However, after successful eradication,

the stomach microbiota might be partially restored to an H. pylori–

negative state (57). Mao et al. also noted that, after H. pylori

infection, there was a significant decrease in the diversity and
Frontiers in Oncology 06
relative quantity of stomach microflora. However, following

successful eradication, the stomach microbiota may be partially

restored to an H. pylori–negative condition (58).

H. pylori exhibits an inverse relationship with the diversity of

stomach microbiota. Following successful eradication of H. pylori,

the phylum and genus composition of stomach flora can be restored

to levels comparable to those of H. pylori–negative patients, leading

to an increase in the bacterial diversity index (59). H. pylori has an

inverse relationship with the diversity of stomach microbiota.

Following successful H. pylori eradication, the phylum and genus

composition of the stomach flora can be restored to levels

equivalent to H. pylori–negative patients, and the bacterial

diversity index rises (60). Research conducted in China and Hong

Kong revealed that only H. pylori–related taxa were significantly
FIGURE 2

The interplay between Helicobacter pylori and gastrointestinal microbiota. (A) Case-control and epidemiology studies demonstrated that H. pylori
infection is inversely associated with Barrett’s esophagus and esophageal adenocarcinoma. (B) Schematic plot presentation of the influence of H.
pylori on gastric and colonic microbiota. (C) In chronic H. pylori infections, the H. pylori–experienced dendritic cells retain a semi-
mature phenotype.
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decreased following eradication. After eradication, Firmicutes,

Bacteroidetes, Actinobacteria, Cyanobacteria, and Fusobacteria

emerged as the most abundant taxa. These observations indicate

that H. pylori serves as the primary disruptor of stomach

commensal homoeostasis (19, 60). Notably, a significant increase

in the relative abundance of Anaerofustis was observed 6 months

after eradication, potentially due to the anti-inflammatory and

antimicrobial properties of butyrate-producing bacteria. This

increase may contribute to restoring the delicate balance between

the human host and the perturbed microbiome (61). The long-term

study underscores the potential role of stomach bacteria in the

formation and maintenance of precancerous gastric lesions in the

absence of H. pylori. These findings suggest that they could serve as

therapeutic targets for the prevention of gastric carcinogenesis.
5.2 Impact of H. pylori eradication on the
gut microbiome

The literature on the changes in the gut microbiota caused by H.

pylori eradication is best categorized as those that investigate

immediate, short-term, and long-term impacts. The term

“immediate effects” refers to those observed within 2 weeks after the
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treatment’s completion (62). In a study of 70 patients who underwent

bismuth-based triple treatment for 14 days, it was discovered that, on

day 14, a-diversity had reduced, and the Bacteroides-to-Firmicutes

ratio had fallen from 0.98 to 0.3417 (63). The short-term effects of

eradication treatment are those measured within 2–3 months of

therapy completion (62). Short-term trials investigated triple therapy

with PPI, amoxicillin, and clarithromycin, as well as bismuth-based

quadruple therapy for 7 days. Three months following eradication

treatment, bacterial diversity was consistently changed. Firmicutes

were less common in individuals who had triple treatment, but

Proteobacteria were more prevalent. Proteobacteria relative

abundance rose in bismuth-treated individuals, but Bacteroidetes

and Actinobacteria relative abundance decreased (63–65). Jakobsson

et al. revealed that short-term antibiotic treatment for H. pylori

eradication delivered a profound insult to the GI flora and resulted

in a perturbed oral and colonic microbiome observed one week after

treatment and persisting up to four years later. Short-term and long-

term changes in gut microbiota afterH. pylori eradication are reviewed

in Figure 1 (65).

The findings of a study, which indicated that the diversity of

microbiota tends to decrease in the short term following eradication

before returning to baseline, were consistent with the results of other

investigations (63, 66, 67). Long-term studies focus on assessing the
FIGURE 3

Alpha-diversity shifts in gastric microbiota and Alpha-diversity shifts in gut microbiota.
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TABLE 2 Characteristics of randomized controlled trials of H. pylori eradication on individuals with asymptomatic infected gastric cancers and undergone endoscopic resection of early gastric cancers.
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Proactively eliminating H. pylori following the
endoscopic removal of early gastric cancer is
recommended to prevent the occurrence of
metachronous gastric carcinoma.

(77)

Eradicating H. pylori notably decreases the
occurrence of MGC after endoscopic resection of
gastric tumors, and it should be contemplated
for H. pylori–positive gastric tumor patients
undergoing ER.

(78)

Individuals with early gastric cancer who
underwent H. pylori treatment exhibited reduced
rates of MGC and greater enhancement in the
degree of gastric corpus atrophy compared to
those who received a placebo.

(79)

People infected with H. pylori and precancerous
gastric lesions may gain advantages from
eradication, especially individuals with atrophic
gastritis lacking intestinal metaplasia.

(80–83)

Eliminating H. pylori helps protect against the
advancement of premalignant gastric lesions.

(84–86)

In a subgroup of individuals carrying H. pylori
without precancerous lesions, eradicating H.
pylori significantly reduced the occurrence of
gastric cancer.

(87)

H. pylori eradication reduced premalignant
gastric lesions

(88)
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Individuals with undergone endoscopic resection of early gastric cancers

Fukase et al. (2008) Japan 9/272 vs.
24/272

69 (20–
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Histological examination of
and rapid urease testing
using gastric biopsies
obtained at upper
gastrointestinal endoscopy

Lansoprazole at 30 mg,
amoxicillin at 750 mg,
and clarithromycin at
200 mg
Twice a day (b.i.d.) for
7 days

75%/5% 3

Choi et al. (2018a) Korea 18/437 vs.
36/440

60 (20–75)/67.7% Histological examination of
and rapid urease testing
using gastric biopsies
obtained at upper
gastrointestinal endoscopy

Omeprazole at 20 mg,
amoxicillin at 1 g, and
clarithromycin at 500
mg b.i.d. for 7 days.

82.6%/10.5% 6

Choi et al. (2018b) Korea 14/194
vs27/202

59.8 (18–
75)/75.3%

Histological examination of
and rapid urease testing
using gastric biopsies
obtained at upper
gastrointestinal endoscopy

Rabeprazole at 10 mg,
amoxicillin at 1 g, and
clarithromycin at 500
mg b.i.d. for 7 days

80.4%/5.4% 5.9

Asymptomatic infected individuals

Correa et al. (2000),
Mera et al. (2005),
and Mera et al.
(2018); Piazuelo
et al. (2021),

Colombia 3/437 vs. 2/415 51 (29–69)/46.1% Histological examination of
gastric biopsies obtained at
upper
gastrointestinal endoscopy

Bismuth subsalicylate
at 262 mg, amoxicillin
at 500 mg, and
metronidazole at 375
mg b.i.d. for 14 days

58.0% 20

Leung et al. (2004),
Zhou et al. (2003),
and Zhou
et al. (2008)

China 2/276 vs. 7/276 52 (35–75)/48% Histological examination
and rapid urease testing

Lansoprazole at 20 mg,
amoxicillin at 1000 mg,
and clarithromycin at
500 mg
b.i.d. for 7 days

74.5%/9.3% 10

Wong et al. (2004) China 7/817 vs.
11/813

42.2 (35–65)/54.0 Histological examination
and rapid urease testing

Omeprazole at 20 mg,
co-amoxiclav at 750
mg, metronidazole at
400 mg b.i.d. for
14 days

83.7% 7.5

Saito et al. (2005) Japan 2/379 vs. 3/313 NR (20–59)/NA Not reported Lansoprazole at 30 mg,
amoxicillin at 1.5 g,
and clarithromycin at

74.4% ≥4
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TABLE 2 Continued
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significant decrease in the frequency of
gastric cancer.

(89–91)
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amoxicillin at 1 g, and
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mg b.i.d. for 7 days

71.3%/NA 5 Treatment with celecoxib or eradication of H.
pylori alone demonstrated beneficial effects on
the regression of advanced gastric lesions.
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family history of gastric cancer among first-
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lowered the risk of developing gastric cancer.
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effects of eradication therapy on the gut microbiota 6 months or more

after treatment. Descriptive studies have examined the long-term

impacts of eradication treatment on the gut flora. By 1 year, the a-
diversity and b-diversity of the microbiota, along with the relative

abundance of all phyla, had returned to pre-treatment levels;

however, notable alterations were observed at the genus level (61,

65, 68). More than half of the studies on the impact ofH. pylori on the

gut microbiota have entailed sub-analyses of the effects of eradication

therapy on the gut microbiota (63, 66, 69). A recent comprehensive

analysis of 24 studies investigating the influence of H. pylori

eradication on the gut microbiota revealed that the majority of

studies have shown a significant decrease in the a-diversity of the

gut microbiota shortly after eradication, with no further changes

reported beyond 6 months after H. pylori eradication. Additionally,

Proteobacteria abundance increased during short-term follow-ups,

whereas Lactobacillus abundance decreased; Enterobacteriaceae and

Enterococcus abundance increased during short-term and

intermediate follow-ups (70).

Recent research examining the long-term impacts of H. pylori

eradication has revealed that the diversity of the gut microbiota was

restored to a baseline state over the 2 years following eradication,

with minimal differences in the relative abundances of microbial

species at the genus level before and after eradication. However,

there were slight variations in taxonomic diversity before and after

eradication (71). The interaction between H. pylori and the GI

microbiota is depicted in Figure 2. Additionally, according to Tao

et al., the model of a-diversity shifts during H. pylori infection, and
eradication therapy is illustrated in Figure 3 (72). Future research

should focus on investigating the microbiome over time, from pre-

eradication to post-eradication and during follow-up, in relation to

the development of lesions.
6 Effect of H. pylori eradication on
gastric cancer prevention

Several studies demonstrate that individuals who tested positive

for H. pylori were three to six times more likely to develop GC in

comparison to uninfected controls. So, it suggested that screening

for and eliminating H. pylori is a cost-efficient method for averting

GC in individuals in their middle ages (73–75). The recognition of

this bacterium as a disease-causing agent prompted certain authors

to advocate for diverse programs aimed at eradicating the infection

within the population, as a means of curtailing the progression of

the disease (76). Many studies of randomized clinical trials (RCTs)

showed that eradicating H. pylori leads to a decrease in GC

incidence among healthy and undergone endoscopic resection of

early GC (Table 2).
7 Conclusion and outlook

Infection with H. pylori, a bacterial carcinogen, stands as the

primary cause of GC, claiming hundreds of thousands of lives
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annually. H. pylori infection significantly contributes to gastric

microbial dysbiosis, potentially playing a role in carcinogenesis.

Successful eradication of H. pylori may restore the gastric

microbiota to a state resembling that of uninfected individuals,

thereby exhibiting beneficial effects on the gut microbiota. The

current study has underscored variations in microbiota changes

among individuals with GC with or without H. pylori. Examining

the interplay between H. pylori infection and microbiota changes in

patients with GC aids in refining therapy for H. pylori infection in

individuals with GC and concurrent H. pylori presence. In the

future, it is imperative to comprehensively observe changes in

intestinal flora from multiple perspectives through more scientific

and rational research methods. This approach will enable a

thorough and clear understanding of the causes and outcomes of

the relationship between GC and intestinal flora, moving beyond

mere correlation analysis.
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