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Development of a prognostic
model incorporating a
cuproptosis-related signature
and CNN3 as a predictor in
childhood acute
myelocytic leukemia
Jiafan Cao, Mengyun Xie, Kexin Sun, Yijun Zhao, Jiayin Zheng,
Ying Wang, Yucan Zheng, Sixi Liu* and Uet Yu*

Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
Background: Childhood acute myeloid leukemia (cAML) is the second most

common pediatric blood cancer, with high heterogeneity and poor prognosis.

Recent studies have highlighted cuproptosis, a newly discovered form of

programmed cell death triggered by the accumulation of intracellular copper

ions, as a critical mechanism influencing cancer survival and resistance. Given its

emerging role in cancer biology, we investigated cuproptosis-related genes

(CRGs) in cAML to explore their potential in prognostic prediction and

therapeutic targeting.

Methods:Gene expression data from publicly available sources were analyzed to

identify differentially expressed CRGs. Samples were categorized based on their

expression profiles, followed by the development of a prognostic risk model

using multivariable Cox regression, LASSO, and univariable analyses. The model’s

performance was evaluated through Kaplan-Meier survival analysis and ROC

analysis. Immune infiltration in the tumor microenvironment was assessed using

ssGSEA, validated by CIBERSORT. Drug sensitivity correlations were analyzed,

and functional validation experiments were conducted on THP-1 and MOLM13

cell lines to assess the role of CNN3.

Results: A set of 12 differential CRGs was used to build a robust prognostic risk

model, with high accuracy in predicting patient outcomes (P < 0.001). Significant

differences in immune cell composition were identified between risk groups,

particularly in T cells, B cells, monocytes, and dendritic cells. Drug sensitivity

analysis revealed altered IC50 values for drugs like 5-fluorouracil and

bortezomib. Knockdown of CNN3 in leukemia cell lines led to reduced

cell proliferation.

Conclusion: Our CRGs-based prognostic model shows potential for guiding

personalized treatment strategies in cAML. The differences in immune cell

infiltration between risk groups suggest that immune modulation is key in
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cAML progression. CNN3 and LGR4 were identified as modulators of cAML

progression, making them potential therapeutic targets. Future studies with

larger cohorts are essential to validate these findings and further explore

CRGs-targeted therapies.
KEYWORDS

acute myelocytic leukemia, cuproptosis, CNN3, prognostic model, immune
cell phenotypes
1 Introduction

Acute leukemia represents the most prevalent type of cancer in

children, with its incidence on the rise (1). Although acute myeloid

leukemia (AML) accounts for only 20% of all pediatric acute

leukemia cases, it has surpassed acute lymphoblastic leukemia

(ALL) as the primary cause of leukemia-related mortality among

children. A significant factor contributing to this shift is the failure

of current prognostic models, which often misclassify children who

eventually succumb to the disease as being at low or intermediate

risk. Moreover, effective targeted therapies for childhood AML

(cAML) remain scarce, with investigational tyrosine kinase

inhibitors for FLT3-activated AML being among the few under

exploration. This scarcity contrasts sharply with the treatment

landscape for adult AML, where actionable mutations like IDH

play a key role in guiding therapy. In cAML, the absence of such

common mutations reflects the disease’s distinct molecular

makeup, complicating the development of treatment options (2,

3). These challenges, including the lack of effective targeted

therapies and the limitations of current prognostic models, stem

largely from an incomplete understanding of cAML’s underlying

biology (4).

Cuproptosis, or copper-induced cell death, is a recently

discovered form of cell death linked to mitochondrial

metabolism, distinct from well-known mechanisms like apoptosis,

ferroptosis, and necroptosis (5). Studies indicate that mitochondrial

respiration plays a pivotal role in cuproptosis, which is triggered by

either a deficiency or excess of intracellular copper. A lack of copper

impairs the activity of copper-binding enzymes (6). In contrast,

when copper levels are elevated, it can accumulate in the

mitochondria and bind to lipid-acylated components of the

tricarboxylic acid (TCA) cycle. This interaction induces toxic

protein stress, ultimately resulting in cell death (7). Research on

muscle-invasive bladder cancer has identified a cuproptosis-related

genes (CRGs) signature with implications for prognosis and

treatment (8). In adult AML, cuproptosis-related lncRNA have

been linked to patient prognosis and immune characteristics, but its

role in cAML remains unexplored (9).

Given this context, our research delved into how cuproptosis

intersects with cAML, specifically investigating its impact on the

tumor microenvironment, potential drug resistance, and
02
interactions with immune cells. We aimed to create a reliable

model for predicting cAML outcomes by integrating these factors.

To ensure the accuracy of our predictions, we not only developed

this prognostic model but also carried out experimental validations

in vitro to confirm the role of the genes incorporated into our

model. This dual approach—combining computational predictions

with experimental validation—helped us better understand the

complex dynamics of cuproptosis in cAML and its implications

for treatment strategies.
2 Materials and methods

2.1 Dataset information

We gathered mRNA sequencing data from 187 pediatric cAML

patients through the TARGET (Therapeutically Applicable

Research to Generate Effective Treatments) program, which

collaborates with The Cancer Genome Atlas (TCGA). TARGET is

a database focused on pediatric cancer research, aimed at improving

treatment outcomes by providing comprehensive genomic,

transcriptomic, and clinical data. The database compiles a wealth

of samples from various types of childhood cancers, helping

researchers identify potential therapeutic targets and biomarkers

for the development of more effective targeted therapies. Out of

these, clinical information was available for 155 patients

(Supplementary Table S1). TARGET’s multi-omic framework

offers a detailed molecular profile of childhood cancers. In

addition, we assembled clinical data and assessed the expression

of 84 genes previously implicated in cuproptosis.
2.2 Consensus clustering and
survival analysis

Using the “ConsensusClusterPlus” R package, we categorized

samples by analyzing the expression levels of 84 CRGs and their

associated hazard ratios, detailed in Supplementary Table S2 (10).

The clustering parameter maxK was set to 5, and the optimal

clustering method was determined by comparing consistency

heatmaps across different clustering approaches. Following this
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classification, we utilized principal component analysis (PCA) to

evaluate the clustering patterns and ensure the effectiveness of the

grouping. To gain deeper insight into the clinical implications of

these clusters, the “survival” package in R was used to examine their

prognostic relevance. Kaplan-Meier survival analysis was

subsequently performed to compare the survival differences

between the identified CRGs clusters.
2.3 Enrichment analysis of genes: KEGG
and GO

To gain a deeper understanding of the functional roles and

associated pathways of the screened genes, we utilized the R package

“clusterProfiler” for a comprehensive analysis. This tool was applied

to investigate both Gene Ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, offering

valuable insights into the biological processes, molecular functions,

and cellular components linked to the identified genes. In the

analysis, a p-value of less than 0.05 was considered significant.

The results shed light on the functional annotations and pathways

that are critical to understanding the underlying mechanisms

influenced by these genes.
2.4 Evaluation of prognostic model

In order to estimate the risk ratio, we performed Cox

proportional hazards regression by combining the differentially

expressed gene data from cAML patients with their

corresponding survival data. The patients were then randomly

assigned into two groups: a training cohort consisting of 77

patients and a testing cohort of 78 patients. To identify potential

risk factors within the training group, we first applied univariate

Cox regression (p < 0.05) to examine the expression of CRGs. The

LASSO Cox regression method was then applied to reduce

overfitting and select key genes for the model. Following the

multivariate Cox regression, we determined the coefficients for

the prognostic model and assessed the relevance of each clinical

feature in predicting patient outcomes. Based on the median risk

score, the training group was classified into low-risk and high-risk

categories. The performance of the prognostic model was assessed

through Kaplan-Meier analysis, ROC curve analysis, risk score

distribution, and survival status evaluation.
2.5 Analysis of drug sensitivity
and correlations

Using the R package “pRRophetic,” we conducted Spearman’s

rank correlation test to examine the relationship between risk scores

and drug sensitivity. Spearman’s rank correlation was chosen due to

its suitability for assessing monotonic relationships between

variables, especially in cases where the data may not follow a

normal distribution. Additionally, the package predicted IC50
Frontiers in Oncology 03
values based on cancer cell line data, providing crucial drug

sensitivity information (11).
2.6 Immune infiltration analysis

To assess the variety of immune cell types and functions present in

the tumor microenvironment, we applied single-sample gene set

enrichment analysis (ssGSEA). This approach utilizes 547

biomarkers to differentiate 29 distinct immune cell phenotypes (types

and functions), such as T-cells, MHC class I, T cell co-stimulation, B-

cells, type I/II IFN responses, plasma cells, and various subpopulations

(12). The method relies on support vector regression and

deconvolution techniques to analyze immune cell subtype expression

data. By employing ssGSEA, we estimated the relative proportions of

these immune-infiltrating cells in patient samples.

To ensure greater accuracy and to cross-validate the results

obtained from ssGSEA, we subsequently used the CIBERSORT

algorithm. This tool was employed to determine the composition of

immune cells in the tissue samples, with analysis limited to those with

p-values below 0.05 (13). In addition to these steps, we performed

correlation analyses to explore how gene expression levels were

associated with the proportions of different immune cell types.
2.7 Cell culture and CNN3 knockdown

THP-1 and MOLM13 cells were cultured in RPMI-1640

medium (1640; Sigma-Aldrich, China; Merck KGaA, China),

supplemented with 10% fetal bovine serum (FBS; Gibco, China;

Thermo Fisher Scientific Inc., China) and 1% penicillin-

streptomycin (Gibco). For the knockdown of CNN3 expression, a

short-hairpin RNA (shRNA) sequence was designed and employed.

The shRNA sequence targeting CNN3 was as follows: Forward:

CCGG GATTACCAATATAHCHACCAA CTCGAG

TTGGTCGCTATATTGGTAATC TTTTTG; Reverse: AATT

CAAAAA GATTACCAATATAGCGACCAA CTCGAG

TTGGTCGCTATATTGGTAATC. Additionally, the scrambled

shRNA sequence was referred to as plasmid No. 1864. Lentiviral

transduction was used to achieve CNN3 knockdown in the cells,

utilizing Plasmid No. 12260 (psPAX2), Plasmid No. 12259

(pMD2.G), and Plasmid No. 10879 (pLKO.1-TRC control). The

transduction process involved centrifugation at 1,000 rpm for 1.5

hours at 37°C with a polybrene solution at 8 µg/ml (Sigma-Aldrich;

Merck KGaA). Afterward, the cells were subjected to puromycin

selection (1 µg/ml; ST551, Beyotime, China) for 48 hours to ensure

successful transduction. Finally, qRT-PCR was employed to validate

the knockdown efficiency of CNN3.
2.8 qRT-PCR experiment

Cells were sorted into 1 ml of Trizol reagent (Thermo Fisher

Scientific, 15596026) for RNA extraction and quantified using a

NanoDrop ND-100 spectrophotometer (Thermo Fisher Scientific).
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cDNA was synthesized using the HiScript II one-step qRT-PCR Kit

(Vazyme, Q221-01) on a CFX96 real-time PCR system (Bio-Rad),

with b-actin as the internal control. The primer sequences for

CNN3 were: Forward: GAAGAAGGTCAACGAGTCCTCA;

Reverse: AGTCTGAACCTGGGTCATGTT.
2.9 Flow cytometry

In order to evaluate cell apoptosis, we stained THP-1 (human

monocytic leukemia cells) and MOLM13 (human acute myeloid

leukemia cells) cells using Annexin V. For measuring intracellular

ROS levels, the same cell lines were stained with H2-DCFDA (D6883,

Sigma) and subsequently analyzed using fluorescence-activated cell

sorting (FACS). Cells transfected with the vehicle were used as

controls to ensure proper gating and data interpretation. The cell

sorting and analysis were carried out with an Attune NxT analyzer

(Thermo Fisher Scientific). The resulting data from these procedures

were then processed and analyzed with FlowJo software.
3 Results

3.1 cAML consensus clustering and
identification of differentially expressed
genes using CRGs

In our investigation, we focused on 84 CRGs identified from

previous studies to evaluate their prognostic significance in cAML

using data from the TARGET database. We categorized the samples

based on CRGs expression levels, which allowed us to employ consensus

clustering and successfully identify two distinct clusters at k=2

(Figures 1A–F). This clustering analysis was crucial for distinguishing

between different gene expression profiles. The differentially expressed

genes (DEGs) between these clusters were further validated, providing a

clearer classification framework based on CRGs expression (Figure 1G).

The Kaplan-Meier survival analysis highlighted significant survival

differences between the two clusters (p < 0.05), underscoring the

clinical relevance of these gene groups (Figure 1H).

To visually represent the DEGs distribution, we utilized a

volcano plot, which revealed that Cluster 2 had 209 upregulated

genes, and 4966 downregulated genes compared to Cluster 1

(Figure 1I). Complementing this, a heatmap displayed the

distribution of DEGs across the clusters (Figure 1J). Functional

enrichment analyses, including KEGG and GO, pointed out that the

DEGs were predominantly involved in key biological processes such

as immune regulation, cell cycle progression, and chromosome

activation (Figures 1K, L). These findings suggest that the identified

CRGs play significant roles in cAML pathogenesis by influencing

critical cellular functions and immune responses.
3.2 Assessment of prognostic model using
cuproptosis-related genes in cAML patients

Through the use of LASSO regression and random forest

algorithms, we identified 12 critical genes linked to cAML
Frontiers in Oncology 04
(Figures 2A–C). These genes—LGR4, FERP1, C2orf88, PGAP1,

ACSM1, PRSS2, IGHD4-17, SNORD19C, PSMD6-AS2, MIR553,

SNRPGP4 and CNN3—were further validated as the most

significant predictors of cAML (p < 0.01) prognosis through Cox

and LASSO Cox regression analysis. The formula for the prognostic

model is detailed in Supplementary Table S3. To ensure the

reliability and accuracy of the model, it was thoroughly tested

across different patient groups, including the training, testing, and

merged cohorts. As expected, significant survival differences were

observed, with p-values less than 0.001 for the training and merged

groups, and p < 0.05 for the testing group.

The robustness of the model was further confirmed by analyzing

the ROC curve AUCs, which provided a detailed assessment of the

model’s predictive performance. For the training group, the AUCs

were 0.822 at 1 year, 0.797 at 3 years, and 0.821 at 5 years, indicating

strong predictive accuracy. The testing group showed lower AUCs of

0.506, 0.628, and 0.627, respectively, while the merged group

exhibited moderate performance with AUCs of 0.663, 0.714, and

0.723 (Figures 2D–O). These results underscore the model’s ability to

distinguish between high- and low-risk patients, with high-risk

individuals demonstrating significantly poorer survival outcomes

compared to those in the low-risk group.

This in-depth analysis underscores the model’s clinical

relevance in categorizing cAML patients according to their risk

profiles, providing key insights for developing personalized

treatment strategies.
3.3 Analysis of drug sensitivity and
risk score

Due to the challenge of chemotherapy resistance in relapsed

cAML, we evaluated the effectiveness of commonly used leukemia

treatments to determine their potential sensitivity. Based on the

study’s findings, high-risk patients are predicted to be sensitive to

drugs such as 5-Fluorouracil, quizartinib (AC220), and bortezomib,

suggesting their potential effectiveness in relapsed cAML cases

(Figures 3A–J). Correlation analysis further showed that higher

risk scores were linked to lower IC50 values for these drugs,

suggesting their potential efficacy in relapsed cAML cases

(Figures 3K–T).
3.4 Characteristics of immune infiltration in
the risk model

The immune microenvironment, composed of various elements

such as immune cells, extracellular matrix, growth factors, and

inflammatory mediators, plays a pivotal role in the development

and recurrence of cAML. To investigate the underlying molecular

mechanisms, we conducted an ssGSEA analysis to explore the

relationship between immune infiltration and the two risk groups.

Our findings revealed significant variations in several immune

functions (p < 0.05), including APC co-stimulation, cytolytic

activity, HLA, MHC class I, T cell co-stimulation, and type I/II

IFN responses between the low- and high-risk groups (Figure 4A).
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These functional differences point to the diverse ways in which the

immune microenvironment influences disease progression.

Additionally, we examined the types of immune cells present in

both risk groups and found higher levels of immune infiltration in
Frontiers in Oncology 05
the high-risk group, particularly in aDCs, DCs, iDCs, NK cells, Tfh

cells, Th1, Th2, and Treg cells (Figure 4B). This heightened

infiltration suggests that the immune system’s role in cAML is

more prominent in patients with higher risk scores. To ensure the
FIGURE 1

Identification of cuproptosis-related molecular subtypes and comprehensive pathway enrichment analysis in cAML. (A) CDF curves displayed
consensus distributions from k=2 to k=5. (B) Area fraction under the CDF curve for k =2–5. The horizontal axis indicated the number of categories
(k), while the vertical axis indicated the relative changes in the area under the CDF curves. (C-F) Consensus clustering matrixes were generated for
values of k ranging from 2 to 5. (G) The PCA plot showing the distribution between groups divided by cuproptosis-related genes. (H) KM cures in
two groups separated by cuproptosis-related genes. (I) Volcano plot showing up/down-regulated DEGs of the Cluster 2 vs. Cluster 1. Blue dots
represent down-regulated DEGs while red dots represent up-regulated DEGs. (J) Heatmap showing the distribution of DEGs of cuproptosis-related
genes in cAML. (K, L) Bubble chart showing KEGG and GO enrichment for DEGs of Cluster 1 vs. Cluster 2.
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robustness of these results, we employed the CIBERSORT

algorithm, which confirmed the consistency of immune cell

composition patterns observed in the ssGSEA analysis (Figure 4C).

Furthermore, to understand potential interactions within the

immune microenvironment, we performed correlation analysis

among the immune cells, offering insights into how different cell

types might collaborate or oppose one another in shaping the

disease landscape (Figure 4D). Of particular interest, CNN3 and

LGR4 genes were analysed in relation to immune cell infiltration,

and both exhibited strong associations with distinct immune cell

populations. These results underscore the critical roles of CNN3

and LGR4 in modulating immune responses and suggest that they

are integral to the immune landscape of cAML (Figures 4E, F).
Frontiers in Oncology 06
3.5 Verification of the CNN3 gene’s role in
cell line models

Our preliminary analysis showed that CNN3 was highly expressed

in the high-risk group, and this variation in expression contributed to

the observed differences in survival outcomes between the groups

(Figures 5A, B). Given CNN3’s significant involvement in immune-

related processes and its critical role in our prognostic model (p <

0.001), we carried out a series of experiments to explore its function in

cAML. First, shRNA was designed to knock down CNN3 in THP-1

and MOLM13 cell lines, with successful knockdown confirmed via

qRT-PCR (Figures 5C, D). Colony-forming unit (CFU) assays showed

a substantial reduction in leukemia cell proliferation following CNN3
FIGURE 2

Evaluation for a prognostic model of genes related to cuproptosis in patients with cAML. (A) Plots of LASSO selecting candidate genes. (B) Cross-
validation for LASSO. (C) The forest plot displays the hazard ratios of risk genes in the prognostic model for cAML patients. (D–G) The figures
comprise ROC, KM curve, plots showing distribution between risk score and patients, and plots illustrating distribution between survival status and
patients in the training group. (H-O) The types of (H-O) are consistent with (D–G), but the group is a testing group and a merging
group, respectively.
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knockdown compared to controls (Figures 5E, F). Additionally, flow

cytometry was employed to measure reactive oxygen species (ROS)

levels and apoptosis, revealing that CNN3 knockdown led to

significantly increased ROS levels and apoptosis in both cell lines

(p < 0.05) (Figures 5G-J).

4 Discussion

While copper-induced cell death has been widely studied across

various cancers, its role in cAML remains unclear. Despite notable
Frontiers in Oncology 07
advances in cAML treatment, some patients still do not benefit from

current therapies and experience poor prognoses (14). Investigating

the potential role of cuproptosis in cAML could offer novel

therapeutic insights.

Through a combination of bioinformatics analysis and

experimental validation, we examined the impact of CRGs on

cAML, particularly focusing on their involvement in immune

response, drug resistance, and patient prognosis. Using

sequencing data from the TCGA database, we constructed a

prognostic model that categorized patients into two distinct
FIGURE 3

Analysis of drug sensitivity and risk score. (A–J) Drug sensitivity between groups divided by risks. (K–T) Correlation between drug sensitivity and risk score.
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subtypes, each demonstrating significant differences in survival

outcomes. Further analysis of DEGs revealed their association

with key processes such as immune regulation, cell cycle control,

and chromosome activation, all of which are critical for cancer cell

proliferation. These findings suggest a potential role for CRGs in

driving abnormal hematopoietic cell proliferation through

mechanisms like chromosome replication and cell cycle

dysregulation, ultimately contributing to the development

of leukemia.
Frontiers in Oncology 08
We developed a prognostic risk model for the two subtypes

using univariate, LASSO, and multivariate logistic regression,

identifying 12 risk genes. The observed lower predictive

performance of the prognostic model in the testing group,

compared to the training and merged groups, may be attributed

to the limited sample size of cAML patients and the heterogeneity

between samples. We then examined drug resistance patterns in

patients with poor prognosis. Interestingly, drug sensitivity

predictions suggest that several leukemia treatments may remain
FIGURE 4

Analysis of immune infiltration for hub genes from low- and high-risk group of cAML. (A, B) Box plot showed the difference of immune infiltration
assessed with ssGSEA in low-risk compared to high-risk group. (C) Box plot showed the difference of immune cell subtypes validated by CIBERSORT
algorithm in low-risk compared to high-risk group. P-values in (A-C) are denoted by asterisks: *P<0.05, **P<0.01, ***P<0.001. (D) Correlation
analysis heatmap between various types of immune cells. (E, F) Bubble map for the correlations between hub genes from two CCMs clusters and
immune cells. Circles on the right indicates the absolute value of the correlation coefficient. The bigger the circle, the stronger the positive/negative
correlation. P-value was indicated by color. The deeper of the green color, the closer the P-value was to zero.
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effective in these patients. Our findings also highlight the role of

CRGs in cAML resistance. Additionally, immune function and

immune cells were analyzed based on risk groups, revealing

immunomodulatory effects of CNN3 and LGR4, with LGR4

known to maintain AML stem cell function (15, 16). Further
Frontiers in Oncology 09
validation in AML cell lines confirmed CNN3 as a key factor in

the prognostic model, associated with poor prognosis.

Calponin 3 (CNN3), part of the CNN protein family, is defined

by its tandem repeat sequences (17). CNN3 has an acidic C-

terminus and a highly homologous basic N-terminus with
FIGURE 5

(A) Box plot of the expression level of CNN3 in low- and high-risk groups in cAML patients. (B) Kaplan-Meier curves for groups divided by median
expression levels of CNN3. (C, D) Results of qPCR for CNN3 knockdown THP-1 and MOLM13 cells. (E, F) Colony-forming units for CNN3
knockdown THP-1 and MOLM13 cells. (G, H) Analysis of ROS level for CNN3 knockdown THP-1 and MOLM13 cells. (I, J) Analysis of apoptosis for
CNN3 knockdown THP-1 and MOLM13 cells.
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another family member, CNN1. This protein family is linked to the

cytoskeleton but does not participate in contraction (18). In

addition to remodeling actin stress fibers (19), members of the

CNN family regulate gastric and ovarian cancers (20, 21). Recent

studies suggest that CNN3 acts as an oncogene in gastric, colorectal,

and cervical cancers, and is associated with cancer cell drug

resistance (22–24). Furthermore, it serves as a diagnostic marker

for lymph node metastasis in colorectal cancer (25). Previous

research has shown that knockdown of CNN3 inhibits

extracellular signal-regulated kinase 1/2 (ERK1/2) and p38

phosphorylation, reducing osteosarcoma cell activity and

proliferation via the mitogen-activated protein kinase (MAPK)

signaling pathway. Interestingly, although CNN3 is generally

considered an oncogene, research in non-small cell lung cancer

suggests that CNN3 expression suppresses cancer cell proliferation

and metastasis (26), indicating that CNN3’s role in cancer

progression may be context-dependent. Louka E et al. reported

that CNN3 expression is significantly higher in the blood of juvenile

myelomonocytic leukemia patients compared to cord blood (27).

However, the role of CNN3 in cAML progression remains unclear

and warrants further investigation. Our analysis and experimental

results consistently suggest CNN3’s potential oncogenic role in

cAML and its ability to provide survival advantages to cancer cells.

Cuproptosis, a copper-dependent form of programmed cell

death, offers a novel approach in cancer therapy by diversifying cell

death mechanisms, potentially reducing resistance and improving

treatment outcomes (28). Numerous CRGs have been identified, with

context-dependent roles in cancer, influencing neoplasm-immunity

interactions and chemosensitivity (29–31). These genes act as risk or

protective factors in patient outcomes and are involved in

tumorigenesis pathways, emphasizing their clinical significance and

potential as therapeutic targets (32, 33). Copper ionophores that

induce cuproptosis, such as dimercaprol (DSF) and elesclomol (ES),

have demonstrated safety in clinical trials, though their efficacy in

unselected populations remains to be confirmed (34). The interplay

between cuproptosis and other regulated cell death forms, like

necroptosis and ferroptosis, and its impact on immunotherapy

responses highlight cuproptosis as a multifaceted component of

cancer management (35). AML features genetic mutations that lead

to excessive proliferation and evasion of regulated cell death, with

apoptosis and ferroptosis being key pathways. Apoptosis, regulated

by the B-cell lymphoma 2 (BCL-2) proteins, is crucial in preventing

tumorigenesis and drug resistance, making it a target for new

therapies. Ferroptosis, driven by iron metabolism, oxidative stress,

and lipid metabolism, is related to the survival and maintenance of

AML cells (36). Further investigation into CRGs in the tumor

microenvironment, their relationship with drug resistance, and

their predictive value for chemotherapy response underscores the

complexity of cuproptosis in cancer pathophysiology (37). Previous

studies have found that high levels of copper are toxic to cells and can

induce cuproptosis, potentially through the induction of oxidative

stress by elevating ROS levels beyond a sustainable threshold within

the cells (38). Flow cytometry detected excessive levels of ROS and

Annexin V in AML cells, indicating the presence of intense oxidative

stress within the cells and triggering cell death. Therefore, CRGs
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expression levels influence chemotherapy outcomes and reflect the

prognosis of cAML patients. As an important mechanism in cancer

progression, we identified CNN3 as a key cuproptosis-related

signature affecting cAML development. There may be shared

regulatory pathways between cuproptosis and CNN3. Our study

provides evidence supporting the association of CNN3

downregulation with improved prognosis in cAML patients,

highlighting its potential as a predictive marker.

A comparison of the CIBERSORT and ssGSEA analysis

results revealed a higher level of Dendritic cells (DCs)

activation in the high-risk group compared to the low-risk

group. DCs, a specialized type of antigen-presenting cell, are

crucial for initiating and regulating immune responses. The

immune response to exogenous antigens can be triggered by

the ability of DCs to capture, process, and deliver antigens from

infected or tumor cells to T cells (39). Interestingly, despite the

increased activation of DCs in the high-risk group, this was

associated with poorer prognosis, which contrasts with findings

in adult AML patients (40). This result strongly suggests that

when considering immune-based therapies, such as DCs

vaccines, in pediatric AML patients, the differences in immune

responses between pediatric and adult patients should be

carefully taken into account. Our analysis provides new insights

into immunotherapy for cAML, highlighting the need to carefully

evaluate the feasibility of conventional immunotherapies in the

context of cAML.

This study has several limitations. The limited availability of

publicly accessible cAML datasets, coupled with small sample sizes,

may hinder the representativeness of the overall cAML patient

population. Future studies with larger and more diverse cohorts are

needed to validate our findings and enhance their generalizability.

Clinically, these findings hold promise for advancing personalized

treatment strategies. The incorporation of cuproptosis-related genes

like CNN3 into prognostic models could enable better risk

stratification of cAML patients. Additionally, CNN3’s involvement

in immune-related mechanisms and copper-dependent cell death

pathways may provide novel therapeutic targets for high-risk

patients. However, larger studies and in vivo validation are

essential before clinical applications can be realized.
5 Conclusion

In summary, this study explored the role of CRGs in cAML and

developed a prognostic model, identifying 12 associated risk genes.

Our analysis and experimental findings highlight CNN3 as a key

factor in cAML prognosis, with its knockdown improving outcomes

in AML models, suggesting CNN3 as a potential therapeutic target

for cAML.
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