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Lung cancer is currently the leading cause of cancer-related deaths, and early

diagnosis and screening can significantly reduce its mortality rate. Since some

early-stage lung cancers lack obvious clinical symptoms and only present as

pulmonary nodules (PNs) in imaging examinations, accurately determining the

benign or malignant nature of PNs is crucial for improving patient survival rates.
18F-FDG PET/CT is important in diagnosing PNs, but its specificity needs

improvement. Radiomics can provide information beyond traditional visual

assessment, overcoming its limitations by extracting high-throughput

quantitative features from medical images. Radiomics features based on 18F-

FDG PET/CT and deep learning methods have shown great potential in the

noninvasive diagnosis of PNs. This paper reviews the latest advancements in

these methods and discusses their contributions to improving diagnostic

accuracy and the challenges they face.
KEYWORDS

pulmonary nodules, lung neoplasms, PET/CT, radiomics, deep learning
1 Introduction

According to the 2024 statistics from the American Cancer Society, lung cancer is one

of the leading causes of cancer-related deaths (1). About 50% of patients are already at a

locally advanced or distant metastasis stage at the time of diagnosis, thus missing the

optimal window for surgical treatment (2). However, early-stage lung cancer often lacks

obvious clinical symptoms and typically only presents as pulmonary nodules (PNs) in

imaging examinations, with approximately 35% of solitary pulmonary nodules (SPNs)
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1491762/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1491762/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1491762/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1491762/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1491762/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1491762&domain=pdf&date_stamp=2024-11-08
mailto:scorey@sina.com
https://doi.org/10.3389/fonc.2024.1491762
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1491762
https://www.frontiersin.org/journals/oncology


Sun et al. 10.3389/fonc.2024.1491762
being diagnosed as early-stage primary lung cancer (3). Thus,

accurately diagnosing the benign or malignant nature of PNs is

key to improving patient prognosis and survival rates.

Although biopsy is considered the ‘gold standard’ for

confirming the benign or malignant nature of PNs, it has several

limitations, such as being highly invasive, having poor repeatability,

carrying a high risk of complications, and being unable to provide

whole-body assessment or spatial information for non-puncture

sites (4). Although traditional CT has some advantages in non-

invasive screening of PNs, its diagnosis mainly depends on

anatomical information. Therefore, it may show false positives in

some cases, especially in overdiagnosing some benign lesions (such

as granulomas and calcifications). And a report (5) shows that as

many as 50% of the nodules removed during surgery are benign,

indicating that it is difficult for radiologists to determine whether a

pulmonary nodule is malignant based on CT and other clinical

information (6). Currently, dual-modality 18F-FDG PET/CT

imaging, which combines the anatomical information of CT and

the metabolic information of PET, is widely used in diagnosing PNs,

and its diagnostic accuracy is superior to that of PET or CT alone

(7–11). However, 18F-FDG PET/CT still faces the challenge of a

high false-positive rate when diagnosing the benign or malignant

nature of PNs (12–15). This issue often arises because certain

benign lesions (such as granulomas, organizing pneumonia, or

fungal infections) are difficult to distinguish from malignant PNs

based on imaging features (12, 16). Although 18F-FDG PET/CT has

a high sensitivity (SEN: 0.89) in detecting malignant SPNs, its

specificity is relatively low (SPE: 0.70) (17). Therefore, further

research is needed to improve the accuracy of PNs diagnosis.

In recent years, radiomics has been an emerging medical image

analysis technology. This concept was first put forward by the

Dutch scholar Lambin (18) in 2012. Radiomics generally refers to

the high-throughput extraction of many quantitative features from

medical images (such as CT, MRI, PET, etc.) and converting the

image data of the region of interest into mineable high-dimensional

data (19). Its features include intensity, shape, volume, texture

features, etc. (20), which can effectively address the limitations of

traditional assessment methods and offer new perspectives for

diagnosing benign and malignant PNs with 18F-FDG PET/CT

(21–25). Radiomics features are divided into handcrafted features
Abbreviations: ACC, Accuracy; AUC, Area under curve; CNN, Convolutional

neural network; CT, Computed tomography; DCNN: Deep convolutional neural

network; DF, Deep features; DL, Deep learning; DLR, Deep learning-based

radiomics; FPR, False positive rate; GAN, Generative adversarial network;

GLCM, Gray-level co-occurrence matrix; GLZLM, Gray-level zone length

matrix; HF, Handcrafted features; HRNet, High-resolution network; J48,

Decision tree; KNN, k-Nearest Neighbors; LR, Logistic regression; LASSO,

Least absolute shrinkage and selection operator; MTV, Metabolic tumor

volume; NA, Not available; NB, Naive bayes; NGTDM, Neighborhood gray-

tone difference matrix; NSCLC, Non-small cell lung cancer; OPLS-DA,

Orthogonal partial least squares discrimination analysis; PCs, Principal

components; PET, Positron emission tomography; PNs, Pulmonary nodules;

RF, Random forest; RS, Radiomics score; SEN, Sensitivity; SPE, Specificity; SPNs,

Solitary pulmonary nodules; SUVmax, Maximum standardized uptake value;

SVM, Support vector machine.
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(HF) and deep features (DF) according to different extraction

methods. Figure 1 illustrates the differences in procedures

between extracting handcrafted features and deep features.

Handcrafted features are predefined or manually extracted by

image processing experts, while deep learning (DL) algorithms

automatically extract deep features without human intervention

(26, 27). In recent years, both HF and DF have been widely used in

tasks such as image classification and regression, demonstrating

great potential in improving the performance of diagnostic models.

However, effectively combining these features in diagnosing PNs

and addressing the challenges that arise from this combination

remain key areas of current research. This paper reviews the

methodological advancements of 18F-FDG PET/CT radiomics and

deep learning in diagnosing benign and malignant PNs, focusing on

the application and challenges of HF and DF in enhancing

diagnostic model performance.
2 Application of HF in the diagnosis of
benign and malignant PNs

Handcrafted features (HF) extracted by traditional radiomics

can generally be divided into four categories: statistical features

(such as histogram-based features and texture features), model-

based features, transform-based features, and shape-based

features (28).

Histogram-based features include the mean, maximum,

minimum, variance, and percentiles of gray levels (28, 29). These

features are typically based on single-pixel or single-voxel analysis

and thus are referred to as first-order features. Texture features, also

termed second-order characteristics, involve entities such as the

Gray-Level Co-occurrence Matrix (GLCM) and the Neighborhood

Gray-Tone Difference Matrix (NGTDM), which are employed to

depict the interrelationships among voxels. Model-based features

characterize the features of an object or shape by analyzing the gray-

level information in space. Transform-based features are extracted

through methods like Fourier transform, Gabor transform, or Haar

wavelet transform and are utilized to analyze gray-level patterns in

different spaces (19). Shape-based features, such as compactness

and sphericity, depict the geometric attributes of the region of

interest (ROI).
2.1 Differentiating diagnosis of PNs using
HF alone in PET/CT imaging

Multiple studies have evaluated the ability of handcrafted

features (HF) from 18F-FDG PET/CT to differentiate between

benign and malignant PNs (see Table 1) (22, 30–32). For

example, Liu et al. (30) studied 20 CT radiomics features,

including 14 gray-level co-occurrence matrix (GLCM) features, 1

intensity histogram feature, and 5 shape features, to distinguish

between peripheral lung cancer and inflammatory pseudotumor.

They found that GLCM features had the highest discriminative

ability. Additionally, Chen et al. (22) extracted neighborhood gray-

tone difference matrix (NGTDM) features from dual-time-point
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TABLE 1 Summary of literature on the diagnosis of benign and malignant lung nodules based on HF.

Author Year
Case
number
(case)

Benign
nodules
(number)

Malignant
nodules
(number)

Extracted
radiomic
features

Classifier
Model
Evaluation
(models)

Best model
AUC/ACC

Chen et al. (22) 2019 116 25 81 3 NA 5
Visual analysis with texture
features
AUC: 0.890

Kang et al. (34) 2019 268 111 157 4338 LASSO, LR 5
Hybrid nomogram (PET/CT
RS + manual diagnosis)
AUC: 0.980

Teramoto et al. (38) 2019 33 18 18 25 RF 3

Classification based on CT
images and early and delayed
PET images
AUC: 0.895

Zhang et al. (23) 2020 82 37 45 102
SVM,
LASSO, LR

3
SVM model
AUC: 0.854

Liu et al. (30) 2020 42 21 21 435 LR 20 5 shape features AUC: 0.748

Palumbo et al. (24) 2020 111 39 72 18
ClT,
KNN, NB

24

NB that combines PET
traditional imaging features,
shape and texture features
ACC: 0.824

Hu et al. (25) 2021 235 104 131 92 LR, LASSO 3
Complex model (PET/CT
imaging model + clinical
model) AUC: 0.909

Niu et al. (35) 2021 165 23 167 49 LR, LASSO 5
PET+CT (1mm) imaging
model AUC: 0.940

Albano et al. (32) 2021 202 64 127 42 LR 3
Combining GLCM and
GLZLM features
AUC: 0.861

Ren et al. (40) 2022 280 128 152 157 LASSO 3
Combined model (radiomic
model + clinical model)
AUC: 0.940

(Continued)
F
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FIGURE 1

The differences in procedures between extracting handcrafted features and deep features.
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imaging (DTPI) 18F-FDG PET/CT images and found that these

features had an AUC of 0.89 in diagnosing benign and malignant

solitary pulmonary nodules (SPNs), outperforming the maximum

standardized uptake value (SUVmax, AUC: 0.75) or visual

assessment (AUC: 0.80). This finding is consistent with the

results of Bomhals et al. (31). Texture features, as part of HF,

capture tissue structural heterogeneity by quantifying the

relationship between voxels and their surroundings, thus

performing well in the diagnosis of benign and malignant PNs.

However, using HF alone may be insufficient to fully describe

tumor heterogeneity (32). Combining HF with other features, such

as CT semantic features, PET metabolic parameters, and clinical

features, can significantly improve the accuracy and reproducibility

of 18F-FDG PET/CT radiomics in diagnosing benign and malignant

PNs (33).
2.2 Differentiating diagnosis of PNs using a
combination of HF and other features in
PET/CT imaging

Since benign lesions (such as inflammatory lesions) and

malignant tumors have significant differences in biological

behavior, pathological processes, and internal structures,

combining the complementary nature of various features can

provide a more comprehensive description of the benign and

malignant differences in PNs, leading to more accurate qualitative

diagnoses. Table 1 summarizes 16 studies that utilized HF for the

diagnosis of benign and malignant lung nodules, of which 15 studies

combined PET/CT imaging HF with other features (such as CT

semantic features, PET metabolic parameters, and clinical features)

for diagnosis (10, 22–25, 31, 32, 34–41). These studies reported
Frontiers in Oncology 04
diagnostic AUC values ranging from 0.813 to 0.980, demonstrating

the great potential of combining HF with other features to improve

model performance.

In clinical diagnosis, physicians typically rely on the CT

semantic features of PNs (such as morphology, density, internal

structure, etc.) to determine their nature. Although these features

play an important role in diagnosis, their accuracy may be reduced

due to the influence of subjective factors (35). In contrast, HF from

PET/CT can provide objective quantitative information that is not

obtainable through traditional visual assessments. Studies have

shown that combining HF with CT semantic features can more

effectively differentiate between benign and malignant PNs, with

diagnostic AUC values ranging from 0.875 to 0.980 (22, 34, 35). For

example, Kang et al. (34) extracted features from CT, thin-slice CT,

PET, and PET/CT images, used the LASSO algorithm to select the

most significant features and calculated a radiomics score (RS),

which was then combined with manual diagnosis to construct a

hybrid nomogram. The results showed that the AUC of the hybrid

nomogram exceeded 0.89 and significantly reduced the false

positive rate (FPR) from 30.9% in manual diagnosis to 9.1%.

Additionally, studies (35) have shown that a model combining

CT semantic features with radiomics features has significantly

better diagnostic performance than a model using RS alone

(AUC: 0.908 vs. 0.704) while substantially reducing the FPR.

These findings indicate that combining radiomics with CT

semantic features can significantly improve the accuracy of

PNs diagnosis.

Studies have also shown that combining HF from PET/CT with

PET metabolic parameters can significantly enhance the diagnostic

performance for differentiating between benign and malignant PNs

(22–24, 35, 36, 41). For example, Palumbo et al. (24) retrospectively

evaluated data from 111 patients and found that combining PET
TABLE 1 Continued

Author Year
Case
number
(case)

Benign
nodules
(number)

Malignant
nodules
(number)

Extracted
radiomic
features

Classifier
Model
Evaluation
(models)

Best model
AUC/ACC

Agüloğlu et al. (36) 2023 106 53 53 41
LR, NB,
SVM, KNN,
J48, RF

6
LR classification model
AUC: 0.813

Wang et al. (41) 2023 1068 356 712 12
LR,
OPLS-DA

3
Machine Learning Model
AUC: 0.890

Ning et al. (37) 2023 113 63 60 678 LR, LASSO, 2

18F-FDG PET/CT+FLT
features
AUC:0.879

Elia et al. (39) 2023 71 25 46 71
Functional
Tree, Rep
Tree, J48

3 J48 AUC: 0.932

Bomhals et al. (31) 2023 39 20 19 118 LR 2
LR model with two PCs
AUC: 0.770

Zheng et al. (10) 2024 190 69 121 396 LR, LASSO 3
PET/CT model
AUC: 0.929
NA, not Available; NB, naive bayes; RF, random forest; RS, radiomics signatures; SVM, support vector machine; LR, logistic regression; LASSO, least absolute shrinkage and selection operator;
ClT, classification tree; KNN, k-Nearest Neighbors; J48, decision tree; OPLS-DA, orthogonal partial least squares discrimination analysis; PCs, principal components; ACC, Accuracy; AUC, area
under curve.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1491762
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2024.1491762
and CT shape and texture features with PET conventional

metabolic parameters could improve the diagnostic accuracy of

the model by 2.2% to 10.2%. Zhang et al. (23) analyzed PET/CT

images from 82 patients and compared the diagnostic performance

of a support vector machine (SVM) model based on SUVmax,

metabolic tumor volume (MTV), and texture features, finding that

the AUC of the SVM model was 0.854, which was superior to using

only the SUVmax (AUC: 0.595) or MTV model (AUC: 0.616). Niu

et al. (35) significantly improved the diagnostic performance by

incorporating SUVmax into a CT radiomics model, with the AUC

increasing from 0.704 to 0.940. These results further support the

idea that combining radiomics features with PET metabolic

parameters can enhance the diagnostic capability of the model.

Additionally, studies have explored strategies to improve the

qualitative diagnosis of PNs by combining HF from PET/CT with

clinical features (25, 40, 41). This fusion strategy is divided into pre-

fusion and post-fusion (see Table 2). Pre-fusion involves merging the

selected radiomics features with clinical features before model training.

Wang et al. (41) studied PET/CT data from 187 patients with non-

small cell lung cancer (NSCLC) and 190 patients with benign lung

nodules, incorporating clinical features such as gender, age, and

smoking history. The results showed that the model’s AUC reached

0.890, significantly improving the diagnostic ability of early SPNs.

Conversely, post-fusion involves independently constructing HF and

clinical feature models and combining them to form a complex model.

Ren et al. (40) developed clinical, radiomics, and combined models

using data from 280 patients. The results showed that the combined

model exhibited the best AUC (0.910 and 0.940) and the lowest false

positive rate (FPR: 18.68% and 5.41%) in the classification of solid lung

nodules. However, the study by Hu et al. (25) found that although the

complex model combining radiomics features and clinical features had

a slightly higher AUC than the radiomics model alone in distinguishing

solitary pulmonary adenocarcinoma from pulmonary tuberculosis, the

difference was not significant (training set AUC: 0.884 vs. 0.861;

validation set AUC: 0.909 vs. 0.889). This may be related to the
Frontiers in Oncology 05
impact of different scanners on the accuracy of radiomics features

(32). Therefore, whether combining clinical features with radiomics

features can significantly improve diagnostic performance still requires

further research.

Although HF is beneficial for reducing the false-positive rate of

PET/CT in diagnosing pulmonary nodules, there are three major

issues in extracting HF. First, image segmentation often relies on

manual delineation, a process that is not only time-consuming but

also prone to consistency issues between different operators and

within the same operator at other times, thereby affecting the

stability of the results. Second, the variability in the selection and

processing of various image features can lead to inconsistencies in

the analysis results, making it difficult to verify accuracy and

reproducibility, increasing the likelihood of computational errors,

and heightening diagnostic uncertainty. Lastly, although manual

methods can extract various features, they are limited in their ability

to comprehensively capture all the information within the Region of

Interest (ROI), potentially missing details critical to the diagnosis

(42). These limitations have driven the increasingly widespread

application of DF. Deep features are automatically identified and

extracted by deep learning algorithms, reducing human

intervention and enhancing the accuracy and efficiency of analysis.
3 Application of DF in the diagnosis of
benign and malignant PNs

DF is extracted from medical images through deep neural

networks, particularly Convolutional Neural Networks (CNN).

Compared to HF, DF can capture more complex and higher-level

features (42). The extraction process of DF does not rely on manual

operations, reducing human errors and significantly improving the

accuracy of image data analysis. By automatically learning and

identifying complex patterns within the data, DF enhances features’

representational power and substantially increases diagnoses’ accuracy

and reliability. Table 3 summarizes five studies that used DF to

diagnose benign and malignant pulmonary nodules (11, 43–46).

Deep Learning (DL) utilizes multi-layer feedforward neural

networks to directly receive image inputs and perform end-to-end

training in a supervised environment, thereby learning highly

discriminative image features. The DL modeling includes image

acquisition, preprocessing, model training, and analysis (47). In

diagnosing benign and malignant Pulmonary Nodules (PNs), in

addition to traditional 2D models, 2.5D and 3D models have also

been developed. The 2.5D models input coronal, sagittal, and axial

2D images into three channels for modeling (48), while the 3D

models integrate the continuous scan layers of pulmonary nodules

into a three-dimensional object, further enhancing the ability to

extract stereoscopic information (49). For instance, Alves et al. (46)

used a 3D-CNN architecture model, and although only PET images

were input, its diagnostic performance surpassed that of the 2D

ResNet-50 model (AUC: 0.839 vs 0.774). Lai et al. (44) proposed a

3D High-Resolution Network (3D HRNet) architecture, which

avoids stride layers and pooling layers to maintain the original

dimensions of features, showing higher diagnostic accuracy than
TABLE 2 Comparison of pre-fusion and post-fusion strategies.

Pre-fusion Post-fusion

Fusion level Data layer fusion Decision-making layer fusion

Concept In the early stages of feature
processing, data or features
from different sources (such
as radiomics and clinical
data) are combined.

Integrate outputs from different
models (e.g., radiomics and
clinical models) at a later stage
of model training or after
model training is complete.

Advantages Allows to capture
interactions between data
early in model training,
potentially improving the
overall predictive power of
the model

Allows specialized processing
and optimization for each data
type, increasing model
flexibility and interpretability

Disadvantages Need to solve the
compatibility issues between
different data sources to
ensure data consistency
and standardization.

It may not fully capture
potential interactions between
different data sources, which
can sometimes reduce the
power of combined forecasts.
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ResNet (AUC: 0.781 vs 0.650). Although 3D models generally

outperform 2D models, in some cases, 2.5D models may perform

more accurately (48), possibly due to overfitting issues in

3D models.

Deep learning-based radiomics (DLR) combines deep learning

(DL) and traditional radiomics. While handcrafted features (HF)

struggle to express tumor heterogeneity fully, limiting the

performance of diagnostic models, DLR compensates for this by

extracting deeper and higher-dimensional features through

convolutional kernels, more comprehensively quantifying tumor

heterogeneity (50). Studies show that combining HF and deep

features (DF) can significantly improve model performance (45).

For instance, Zhang et al. (45) extracted 100 HF and 2048 DF

obtained through ResNet from PET and CT images to distinguish

tuberculosis nodules from lung cancer. The results indicated that

the deep convolutional neural network model with both HF and DF

input (Radiomics-DCNN, AUC: 0.820) outperformed the DL
Frontiers in Oncology 06
model with only DF input (AUC: 0.720) and the traditional

machine learning model with only HF input (AUC: 0.760).

Although DLR has shown its potential, research in this field is

still scarce, and further studies are needed to validate its feasibility

and performance.

Although HF and DF employ different methods in radiomics,

their goals and application scenarios are similar. With advancements

in deep learning (DL) technology, DF typically outperforms HF in

diagnostic performance, provided there is sufficient training data (see

Table 4 for specific comparisons (42, 51). HF is susceptible to

variations in manual segmentation and scanning parameters,

whereas DL models improve robustness and generalization by

organically integrating feature extraction and classification through

end-to-end training (52). However, DF has weaker interpretability,

requires more data, and incurs higher computational costs. Therefore,

HF still holds value in situations with limited data or specific tasks.
4 Outlook

With the advancement of nuclear medicine technology, many

studies have shown that dual-modality PET/CT radiomics models

outperform models using CT or PET alone in the qualitative

diagnosis of pulmonary nodules (PNs) (10, 11). Techniques such

as dual-tracer imaging (e.g., using 18F-FLT and 18F-FDG) (37) and

dual-time-point imaging (DTPI) (22, 38) have also significantly

improved diagnostic accuracy.

Data imbalance is a major challenge in radiomics research for

diagnosing benign and malignant pulmonary nodules (PNs), leading to

biased diagnostic results. Several strategies can be employed to address

this issue. First, data augmentation can increase the diversity and

quantity of samples. Second, resampling or oversampling at the

feature level: for example, using SMOTE (Synthetic Minority Over-

sampling Technique) (53) to generate synthetic samples can help avoid

model overfitting. Lastly, semi-supervised learningmethods can be used:

for example, pseudo-labeling, which involves vote-based classification of

unlabeled samples, can improve model robustness. Additionally,

Generative Adversarial Networks (GANs) have shown significant
TABLE 4 Comparison between HF and DF.

HF DF

Feature
extraction
method

Extract features from images
through manually defined
algorithms based on domain
knowledge and
experience design.

Automatically learn feature
extraction by training deep
learning models (such
as CNN).

Model
training

No model training is
involved, and the feature
extraction process is fixed.

A large amount of data is
required to train the model to
recognize and learn the feature
representation in the
image automatically.

Feature
expression
ability

Limited by human domain
knowledge and experience,
it may be impossible to
capture all the details in the
image fully.

It can automatically identify
and express richer and more
abstract image features
through hierarchical learning.

Generalization May have limited
generalization capabilities
across different tasks
and datasets

It has strong generalization
ability, especially when dealing
with large-scale and complex
data sets.
TABLE 3 Summary of Literature on the diagnosis of benign and malignant pulmonary nodules based on DF.

Author Year
Patient
(case)

Benign
nodules
(number)

Malignant
nodules
(case)

Model
Model
Evaluation
(models)

Best model AUC/ACC

Park et al. (43) 2021 359 102 257 ResNet-18 8

PET/CT radiomics model with
inclusion of SUVmax and lesion
size
AUC: 0.877

Shao et al. (11) 2021 106 23 92 3D-CNN, LR 3
PET/CT 3D-CNN AUC:0.970;
PET 3D-CNN AUC:0.970

Lai et al. (44) 2022 112 33 79 HRNet, ResNet 4
Manual HRNet
AUC: 0.789

Zhang et al. (45) 2023 174 77 97 RF, ResNet, DCNN 4 Combined Model AUC: 0.840

Alves et al. (46) 2024 113 62 51 CNN 7
Stacked 3D CNN model
AUC: 0.839
ResNet, residual network; 3D-CNN, three-dimensional convolutional neural network; LR, logistic regression; HR Net, High-Resolution Network; RF, random forest; DCNN, deep convolutional
neural networks; CNN, convolutional neural network; ACC, Accuracy; AUC, area under curve.
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effectiveness in generating high-fidelity synthetic data (54). For instance,

GAN-based methods have successfully synthesized high-quality PET

images from diagnostic CT scans, achieving quality and tumor contrast

comparable to actual PET images (55). Applying these emerging

methods in medical image analysis has already seen some success

(56–58).

Most radiomics studies still rely on single-center and small-scale

retrospective research, lacking prospective studies and external

independent validation. This limitation results in models with

constrained generalization ability. To improve these models’

performance and clinical applicability, future efforts should focus on

establishing large databases through multi-center collaborations and

using external validation sets to evaluate the models. This approach will

enhance the models’ generalization ability and reliability.

With the rapid development of radiomics and deep learning

technologies, the role of PET/CT radiomics and deep learning in

clinical practice is increasingly prominent. Through the in-depth

mining and accurate analysis of massive imaging data, it can

generate more valuable non-invasive diagnostic indicators. This

not only enables patients to avoid the pain and risks brought by

unnecessary biopsies but also significantly reduces the incidence of

biopsy-related complications. Meanwhile, it provides a reliable basis

for clinical treatment decisions, helping patients obtain accurate

diagnosis and timely treatment in the early stage of the disease, thus

effectively improving the cure rate. In addition, it can also reduce

unnecessary repeated examinations and long-term follow-up

observations. In conclusion, PET/CT radiomics and deep learning

show broad clinical application prospects in pulmonary nodule

diagnosis and have important value that cannot be ignored.
5 Conclusion

PET/CT radiomics has significantly improved the accuracy of

diagnosing the benign or malignant nature of pulmonary nodules

(PNs) by deeply exploring the vast amount of hidden information in

conventional imaging. However, issues related to the availability of

technology, the reproducibility of results, and the robustness and

precision of features still limit its widespread clinical application. As

multi-center research progresses, large-scale datasets are established,

and new technologies continue to develop, radiomics is expected to

play an increasingly important role in diagnosing PNs, providing

strong support for clinical decision-making.
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