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Selenium (Se) is important and plays significant roles in many biological

processes or physiological activities. Prolonged selenium deficiency has been

conclusively linked to an elevated risk of various diseases, including but not

limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan

disease, and acquired immunodeficiency syndrome. The intricate relationship

between selenium status and health outcomes is believed to be characterized by

a non-linear U-shaped dose-response curve. This review delves into the

significance of maintaining optimal selenium levels and the detrimental effects

that can arise from selenium deficiency. Of particular interest is the important

role that selenium plays in both prevention and treatment of cancer. Finally, this

review also explores the diverse classes of selenium entities, encompassing

selenoproteins, selenium compounds and selenium nanoparticles, while

examining the mechanisms and molecular targets of their anticancer efficacy.
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1 Introduction

Cancer condition is a formidable public health issue that afflicts millions of individuals

across the globe, with an increasing number of cases being reported annually. The most

prevalent forms of this disease within the population are lung, breast, colorectal and

prostate cancers (1, 2). The heterogeneity of cancers is increasingly being acknowledged as

a pivotal characteristic in the field of oncology (3). The incidence and mortality rates of

these cancers vary significantly by time, geographic region, age, and gender. For instance,

according to the Global Cancer Statistics 2020, lung cancer remains the most common

cancer worldwide, with the highest incidence rates in certain regions such as East Asia and

Europe (4). Breast cancer is the most frequently diagnosed cancer among women, with

nearly 2.3 million new cases reported in 2020, and it disproportionately affects developed

countries (4, 5). Colorectal cancer is also a leading cause of cancer-related mortality, with
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the highest rates observed in North America and Europe (6).

Prostate cancer is the second most common cancer among men

globally, with significant variations in incidence rates across

different populations, being particularly high in developed

countries (7). Understanding these disparities is crucial for

targeted prevention and treatment strategies.

Alterations in the equilibrium of micronutrients can potentially

contribute to the process of tumor formation by exacerbating

cellular damage, inducing DNA lesions, and disrupting the

delicate balance of cellular redox status (8). In addition, trace

minerals are recognized for their salutary effects on a range of

biological pathways. They play a crucial role in cell stabilization, the

modulation of oxidative stress, the intricate DNA damage response

(DDR)/repair mechanisms, as well as serving as potent antioxidants

(9). For instance, zinc, an integral component of the antioxidant

enzyme superoxide dismutase (SOD), effectively neutralizes free

radicals and subsequently stimulates the activity of DNA repair

enzymes (10). This cascade of events serves as a formidable

anticancer defense mechanism. In a parallel vein, selenium, a

trace element of paramount importance, is indispensable for the

optimal maintenance of human health and well-being (11).

Selenium, a cornerstone of selenoenzymes, plays a pivotal role in

mitigating DNA damage, curbing oxidative stress, alleviating

inflammation, and facilitating the detoxification of carcinogenic

substances (12). This vital trace element is indispensable for the

formation of selenocysteine, a genetically encoded amino acid, and

is crucial for the genesis of a suite of proteins called selenoproteins.

Selenium’s protective powess against the onslaught free radicals is

attributed to its strategic positioning within active center of

antioxidant enzymes, including the renowned glutathione

peroxidase, thereby fortifying the body’s defense against oxidative

harm (11, 13–15). Selenium exerts a profound influence on the

immunological system, bolstering the immune response across both

the innate and acquired immune systems (16). This trace element is

instrumental in amplifying the efficacy of the immune system,

particularly in the realms of cytotoxic lymphocyte function and

the dynamic activity of natural killer cells (17). In our daily diet,

selenium can be predominantly sourced from a variety of nutritious

foods, including whole grains, an array of vegetables, a selection of

seafood, various types of meat, dairy products and nuts (18). This

essential micronutrient is delivered to the body via both natural

food sources and dietary supplements, and it exists in two principal

forms: the organic forms, which include selenomethionine and

selenocysteine, and the inorganic forms, which encompass

selenite and selenate. Upon absorption into the body, both

organic and inorganic forms undergo a transformation into

selenides, which are integral to the synthesis of selenoproteins

(19). Selenium boasts a diverse array of functions that contribute

to overall health. It serves as a powerful antioxidant, combats

inflammation, bolsters the immune system, and plays a significant

role in diminishing the risk of cancer. Additionally, selenium

exhibits properties that inhibit the invasive and metastatic

capabilities of tumor. Beyond these preventative measures,

selenium also finds application in the clinical realm, offering

support in the treatment of cancer through radiation therapy and

chemotherapy protocols. Numerous scientific publications have
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consistently demonstrated a significant correlation between

selenium levels in human serum and the incidence of various

types of cancer. This association has been meticulously

investigated across a spectrum of malignancies, including but not

limited to cancers of the colon, lung, bladder, breast, ovary and

prostate. Consequently, the recognition of selenium’s potential in

cancer prevention and treatment has led to a surge in its global

popularity (20–24).

Nevertheless, it is imperative to approach selenium with a

discerning eye, as it embodies a dual nature that can be both

beneficial and detrimental. The balance is delicate; both deficiencies

and excessive intakes of selenium can induce harmful effects on the

body. Selenosis, a condition arising from an adequate or marginally

excessive selenium intake, can pose significant risks to individuals

(25). Selenium, a trace element of paramount importance, walks the

fine between being an indispensable nutrient and a potential toxin.

Given these complexities, the chemopreventive role of selenium in

cancer remains a subject of ambiguity. Consequently, there is a

pressing need for more comprehensive and meticulous research to

unravel the intricate relationship between selenium and its impact on

health. Further studies are essential to clarify the nuances of

selenium’s role and to establish guidelines for its safe and effective

use in promoting wellness and preventing disease. It is equally

important to recognize that the effectiveness and outcomes of such

research are likely contingent upon several variables. These include

the specific chemical form of the Se compound in question, whether it

be inorganic, such as sodium selenite, or organic, such as

selenomethionine (SeMet). Additionally, the dosage administered,

the compound’s bioavailability, the baseline selenium levels within

the study cohort, the particular type of cancer under investigation,

and even the stage of the cancerous lesion can all significantly

influence the results (26, 27). A comprehensive understanding of

these factors is essential for interpreting the study’s findings and for

guiding future research in this area.

This comprehensive review delves into the role of selenium in

both the prophylaxis and therapeutics of cancer. It encapsulates an

overview of the current understanding regarding selenium’s

contribution to oncological management, encompassing its

therapeutic modalities. Additionally, it presents a synthesis of the

principal findings from the extant literature that investigates the

nexus between selenium and cancer, placing particular emphasis on

the most contemporary outcomes that have marked significant

advancements in the research domain. Ultimately, the review

meticulously compiles pertinent Se species and scrutinizes their

emergent progress and prospective efficacy in the realm of cancer

prevention and treatment. This scholarly work paves the way for

forthcoming investigative endeavors in this critical field.
2 Metabolism and biological effects
of selenium

Selenium metabolism is a complex and systemic biological

process involving selenium absorption, transport, transformation,

and excretion, as illustrated in Figure 1. Selenium is obsorbed from

the diet in both organic forms, such as selenomethionine (SeMet)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1490740
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2024.1490740
and selenocysteine (Sec), and inorganic forms, including selenite

and selenate. The absorption of selenium and its associated

compounds predominantly takes place in the duodenum and

small intestine, a process that is mediated by an array of

transport mechanisms. It is noteworthy that the efficiency of

absorption varies among the diverse selenium species, reflecting

the nuanced complexity of this metabolic pathway. Although

elemental selenium, selenium dioxide, and selenium sulfide

exhibit limited bioavailability, compounds such as selenite,

selenate, and selenium-enriched amino acid analogs are more

amenable to absorption, particularly when synergized by vitamins

A, D and E (28, 29). The direct uptake of selenite typically does not

surpass 60%; the majority of this is converted into seleno-

substituted diglutathione (GS-Se-SG) in the intestinal lumen,

thereby enhancing its absorption potential (30). A minor fraction

of selenite and GS-Se-SG undergoes metabolic conversion to

selenide, which preferentially binds with albumin and

hemoglobin, subsequently being conveyed to the liver (31). Post-

absorption, SeMet is also directed to the liver, facilitated by

albumin. Nevertheless, the intricate details of the transport

mechanisms for selenate and selenocysteine (Sec) remain

somewhat enigmatic, warranting further investigation.

Selenium is metabolized through the liver, and synthesized and

exported to selenoprotein P (SelP), which is eventually secreted into

the bloodstream, serving as a vital conduit for the distribution of

selenium to peripheral tissues or organs (32, 33). SelP stands out

among selenoproteins due to its distinctive C-terminal structural

domain, which is replete with multiple Sec residues that facilitate
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extracellular selenium transport (34, 35). Once transported, selenium

is then converted to selenophosphate through an intricate

intracellular selenometabolic pathway. The excretion of selenium

from the human body is a meticulous process, primarily occurring

through the exhalation of breath or the elimination of urine. During

this process, selenium is converted into small molecule metabolites,

which are formed through a series of methylation reactions (36–38).

The biological effects of Se are exerted primarily through the form

of selenoproteins synthesized by the selenometabolic system. Once

inorganic selenium enters the cell, it may be reduced to hydrogen

selenide (H2Se) by glutathione (GSH) (39) or thioredoxin (TXN)

(40). Selenide can then be transformed into selenocysteine (Sec)

through the catalytic action of cysteine synthase, or alternatively,

through a coordinated enzymatic process involving selenohydrosine

dikinase, Se-cysteine-tRNA synthase, and cysteine-tRNA ligase. This

intricate biochemical pathway ensures the precise incorporation of

Sec into the protein structure. The subsequent step involves the

delivery of selenocystyl-tRNA, which carryies Sec, to the UGA which

is normally a stop codon. However, in the synthesis of selenoproteins,

the UGA codon is uniquely recognized as a codon for Sec. In

response to this codon, Sec is co-translationally integrated into the

nascent polypeptide chain (41). This exceptional mechanism

exemplifies the sophisticated regulation of the genetic code,

allowing for the seamless incorporation of Sec into selenoproteins,

which are crucial for a myriad of biological functions. Proteins

containing selenocysteine are collectively known as selenoproteins.

Selenoproteins are a unique class of proteins containing the rare

amino acid selenocysteine (Sec), often hailed as the 21st
FIGURE 1

Schematic representation of selenium’s biological process in the human body.
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proteinogenic amino acid. The biological functions of selenium are

mainly exerted through the structural domains of selenoproteins

containing Sec residues. As of the latest research, the human

genome has revealed the presence of 25 distinct selenoprotein

genes (42). Furthermore, selenoproteins can be categorized into

several subfamilies according to their cellular functions, including

subfamilies involved in antioxidant defense, redox regulation,

thyroid hormone metabolism, selenium transport and storage,

selenophosphate synthesis, calcium metabolism, myogenesis,

protein folding and protein amination (43, 44).
3 Selenium and cancer prevention

Alterations in redox homeostasis are thought to be a contributing

factor in the pathogenesis of numerous diseases, especially cancer. This

is because oxidative damage can result in genomic instability, DNA

mutations, and tumorigenesis and progression. Selenium, known for its

antioxidant properties through the action of selenoproteins, has been

postulated to mitigate oxidative stress. Consequently, it has been

theorized that selenium supplementation could potentially thwart the

onset and progression of cancer. Supporting this hypothesis, animal

tumormodels have shown that selenium supplementation can decrease

the occurence and severity of liver, esophageal, pancreatic, prostate,

colon, and breast cancers (45–49).

Concentrated efforts to prevent cancer by selenium has its roots

in the late 1960s. In a pioneering study conducted in 1966,

Shamberger and Rudolph demonstrated that sodium selenide
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(Na2Se) drastically curtailed the development and expansion of

tumors in a chemically induced mouse skin model (50). In the

United States, the notion that selenium might possess anticancer

properties was further bolstered by empirical observations

suggesting an inverse correlation between cancer mortality rates

and selenium concentrations in both blood and feed crops (51, 52).

Since the 1970s, a plethora of epidemiological studies and clinical

trials focusing on selenium supplementation have lent credence to

the “selenium cancer hypothesis.” This hypothesis posits that a diet

low in selenium associated with an elevated risk of developing

cancer. Collectively, these investigations have reinforced the idea

that selenium’s role in cancer prevention is not merely speculative

but is supported by a substantial body of evidence.

In comparison to inorganic and organic compounds (in which

inorganic forms are more harmful than organic ones), SeNPs have

gained considerable attention due to their high bioavailability,

strong biological activity, and low toxicity. More suitable items

have been created using nanotechnology to guarantee their

physiological and therapeutic efects. SeNPs have a wide variety of

biological applications, have been developed for dietary

supplements as well as therapeutic agents and do not exhibit

noticeable side efects in cancer. According to the fndings of many

researchers, SeNPs are benefcial in the chemoprevention of cancer

as a potential anticancer medication and carrier of anticancer drugs.

Moreover, the size and morphology of SeNPs can afect their

biological activity and uptake capacity of cells (53). Terefore, it is

very important to select the appropriate method for preparing the

desired nano size and morphology of SeNPs (Figure 2).
FIGURE 2

Morphology of diferent SeNPs used in cancer treatment and their biological application (53). (A) Sodium selenite and quartz tubes were treated with
alcohol by heat, laser, and ablation to synthesize rod-shaped SeNPs. (B) Nanotube SeNPs were synthesized with sodium selenite, water, ammonia
and ethanol by heating and sonication. (C) Synthesis of spherical SeNPs from sodium selenite and potato extract.
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3.1 Selenium and breast cancer

Breast cancer, a malignant neoplasm that originates in the

glandular epithelium of the mammary gland, holds the distinction

of being the most prevalent form of cancer affecting women across

the globe. The age-standardized incidence rate of prostate cancer

was 11.6% in developed countries, which ranked second following

lung cancer. The global cancer statistics for the year 2020 show that

approximately 2.3 million new cases of breast cancer, accounting for

11.7% of all female cancer diagnoses, are identified worldwide (4).

Breast cancer is anticipated to remain one of the primary

contributors of female mortality in Europe (54) and is projected

to rank as the fifth leading cause of cancer-related deaths on a global

scale (55). So far, research into the protective role of selenium

against breast cancer has been limited, yielding inconsistent

findings that warrant further investigation.

In their study, Martin et al. observed that selenate effectively

enhanced trans-epithelial electron resistance and substantially

decreased paracellular permeability to macromolecules in breast

cancer cells (56). And under selenate’s influence, the metastatic

MDA-MB-231 breast cancer cells exhibited markedly diminished

motility and a reduced capacity to breach the endothelial cell

barrier. Furthermore, in addition to impacting endothelial cells

and curtailing the production of matrix metalloproteinase-2

(MMP-2), methylated selenium has also been shown to inhibit

vascular endothelial growth factor (VEGF) expression in breast

cancer cells (57). Suzana and coworkers have documented a

correlation indicating that the risk of breast cancer diminishes

progressively with each ascending quartile of selenium intake

(58). In a separate study, Harris and colleagues reported a notably

inverse relationship between dietary selenium consumption and the

risk of breast cancer-specific mortality in Sweden, a nation

characterized by relatively low selenium intake levels. And they

also found that an elevated selenium intake prior to breast cancer

diagnosis has contributed to improve specific survival rate, as

evidenced by a hazard ratio of 0.69 (95% confidence interval:

0.52-0.92), and clinical outcomes (59). In 2021, Szwiec et al.

conducted a cohort study of 538 breast cancer patients in Poland

and showed that patients with lower serum selenium levels at the

time of diagnosis faced a heightened risk of mortality over the

subsequent decade (60). In contrast, a comprehensive prospective

case-cohort study involving 145,033 postmenopausal women in the

United States, which included 9,487 cases of breast cancer, did not

uncover any correlation between daily dietary selenium intake and

the risk of developing breast cancer (61). Bengtsson and colleagues

conducted a comparative analysis of varying levels of selenium

intake in relation to breast cancer incidence, but no significant

difference in breast cancer risk was observed between the groups

examined (62). Similarly, a study from Spain reported no

discernible protective effect of dietary selenium intake on the

incidence of breast cancer (63). The data regarding the

relationship between selenium levels and the risk of breast cancer,

as well as patient survival, are indeed inconsistent. The disparity in

these findings can be attributed to the baseline selenium levels

present within the populations being studied (64, 65).
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The widespread feature of breast cancer is heterogeneity. Since

the 19th century, breast tumor heterogeneity has been observed and

described, and these differences have become the basis of disease

classification (66). The spatial and temporal differences in

heterogeneity, phenotype and genotype between and within

tumors have a significant impact on the clinical management of

breast cancer patients, affecting prognosis and treatment response

(67). As an antioxidant, the role of selenium in the treatment of

breast cancer may be affected by tumor heterogeneity. For example,

seleniummay enhance the effect of chemotherapy in some subtypes,

but the effect is not obvious or resistant in other subtypes. This

requires that in the clinical application of selenium as an adjuvant

therapy, the specific biological characteristics and subtypes of the

tumor need to be considered to achieve individualized treatment.
3.2 Selenium and lung cancer

Lung cancer has emerged as one of the most prevalent forms of

malignant tumors and ranks highest in terms of both incidence and

mortality worldwide. The conventional therapeutic arsenal

comprises surgery, chemotherapy and radiation therapy. Despite

rapid progress over the past decade, there are still inherent

limitations to these treatments. Therefore, there is an urgent need

to identify treatments that are both safer and more efficacious,

prompting ongoing research aimed at uncovering drugs that are

more potent and less toxic. In recent times, the identification of

antitumor agents derived from the essential trace element selenium

has presented promising avenues for the management of

lung cancer.

Lung cancer’s heterogeneity, spanning cellular and histological

levels, profoundly influences pathogenesis, diagnosis, molecular

diagnostic tissue selection, and treatment decision-making (68).

This heterogeneity is not only a hallmark of the disease but also a

critical factor in determining the efficacy of treatments, including

selenium supplementation. The impact of selenium on lung cancer

treatment and outcomes is multifaceted and contingent upon the

tumor’s unique characteristics. In a subsequent investigation, Reid

delved into the relationship between selenium supplementation and

lung cancer incidence, revealing that the intake of selenium

supplements was associated with a reduced risk of lung cancer,

exhibiting a negative correlation with its incidence (69). It has been

documented that selenium-enriched yeast can reduce metastasis in

a murine model of Lewis lung carcinoma (70). The research also

indicated patients suffering from malignant pleural effusion as a

result of advanced lung cancer tend to have diminished serum

selenium levels in comparison to those of healthy individuals (71).

This finding further underscores the significance of Se in the context

of lung cancer. The selenoprotein glutathione peroxidase 4 (GPx4)

is an important negative regulator of iron death (72). The

application of GPx4 siRNA or the GPx4 inhibitor Rsl-3 has been

shown to markedly suppress the proliferation and migration of lung

cancer cells. Notably, this inhibitory effect can be counteracted by

Fer-1, an inhibitor of ferroptosis, a form of iron-dependent cell

death. This observation implies that the selenoprotein GPx4 holds
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promise as a novel therapeutic target for the treatment of lung

cancer (73, 74). Selenium can slow down the side effects of lung

cancer after radiation and chemotherapy. A study by Mix et al.

included 16 patients with non-small cell lung cancer who were

given organic selenium one week prior to concurrent radiation and

chemotherapyand showed that selenium supplementation helped to

reduce treatment-related side effects such as myelosuppression (75).

So far, not all patients with lung cancer can benefit from the

treatment of each stage of the disease. The development of drug

resistance, adverse events, and inevitable disease progression

highlights the urgent need for new diagnosis, prognosis, and

treatment options for these diseases. The heterogeneity of lung

cancer has an impact on the understanding of pathogenesis,

diagnosis, molecular diagnostic tissue selection and treatment

decision-making. The supplement and application of selenium

need to be individualized according to the specific type and stage

of lung cancer and the individual differences of patients. At the

same time, the dose, form of selenium and its combination with

other treatment methods need further research to clarify its effect

and optimal application strategy in the treatment of lung cancer.
3.3 Selenium and thyroid cancer

The thyroid gland is pivotal in maintaining homeostasis,

fostering growth and development, and ensuring the proper

functioning of the reproductive, nervous and cardiovascular

systems. There has been a striking global increase in the

incidence of thyroid cancer over the past 30 years, outpacing the

rise of any other form of cancer (76, 77). Beyond unchangeable

external factors such as age, gender, ethnicity, and genetic

predisposition to thyroid cancer, the influence of chemical

elements on thyroid malignancy has garnered significant research

interest. The normal operation of the thyroid gland hinges on an

array of trace elements that are indispensable for the synthesis and

metabolism of thyroid hormones (78–80). Selenium is not only an

integral component of the synthesis and metabolism of thyroid

hormones but also plays a unique role in the thyroid gland (81).

Thyroid hormone metabolism is mediated by 3 iodothyronine

deiodinases which are selenoproteins (82–84). Selenium stands

out as a crucial element for both the production and the activity

of thyroid hormones (85). It is found that the the thyroid gland,

which exhibits the highest selenium concentration per unit of tissue,

remarkably retains selenium and continues to express

selenoproteins even in the face of severe selenium deficiency,

reflecting the distinctiveness of the human thyroid and highlights

the critical importance of selenium for its proper functioning and

health (86–88). Beyond their role in thyroid hormone metabolism,

selenoproteins are indispensable for a multitude of vital cellular

processes. They are essential in the detoxification of tissue-

damaging peroxides, the reduction of oxidative stress on proteins

and cell membranes, the modulation of intracellular redox signaling

pathways, and the maintenance of thyroid hormone homeostasis.

These functions underscore the multifaceted significance of

selenoproteins in safeguarding cellular integrity and supporting

the intricate balance of thyroid hormone activity (89).
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Numerous clinical investigations have demonstrated a substantial

correlation between serum selenium concentrations and the presence

of thyroid cancer. These studies consistently reveal that individuals

diagnosed with thyroid cancer tend to exhibit lower serum selenium

levels in comparison to those observed in healthy control subjects (90–

93). A study conducted in 2019 indicated that a deficiency in selenium

elevates the risk of developing hyperthyroidism in patients with Graves’

disease and those suffering from nodular goiter. However, the same

study found that selenium supplementation did not have a significant

impact on the levels of TSH receptor autoantibodies or on the

proliferation of T-cells (94). Appropriate selenium supplementation

combined with thyrotazole therapy results in faster recovery from

hyperthyroidism than thyrotazole therapy alone (95). Several

observational studies propose that Se may exert an influence on the

trajectory of autoimmune thyroid diseases by modulating the immune

response (96, 97). A prospective study conducted by Xu, X., and his

team revealed no substantial association between Se intake and thyroid

cancer (98). This finding contrasts with prior research that has explored

the link between reduced Se levels and thyroid cancer. In light of this

discrepancy, we postulate that the incongruity of the study’s results

may be attributable to methodological biases in the assessment of

selenium levels. Although the incorporation of selenium-enriched

compounds into the therapeutic regimen for thyroid cancer has not

yet been endorsed, their potential anticancer effects have garnered

considerable interest. It is important to emphasize that the application

of selenium-containing compounds as an intervention in cancer

development and progression warrants meticulous evaluation.

The intricate relationship between selenium and thyroid cancer

is influenced by a multitude of factors, with the individual’s baseline

selenium levels and genetic profile being paramount. The

heterogeneity of thyroid cancer encompasses a spectrum of

pathological types, each with distinct molecular signatures and

clinical behaviors (99). This diversity implies that various forms

of thyroid cancer may exhibit different sensitivities and responses to

selenium and its compounds. For instance, differentiated thyroid

cancers, which include papillary and follicular carcinomas, may

interact with selenium in a manner distinct from that of more

aggressive forms such as anaplastic thyroid cancer.

In light of these considerations, a personalized medicine

approach is warranted for selenium supplementation in thyroid

cancer. This approach should take into account the patient’s

genetic background, the tumor’s molecular characteristics, and the

potential for selenium to interact with existing treatments, such as

chemotherapies and radiotherapies. Future research endeavors

should focus on elucidating the complex interactions between

selenium and the diverse thyroid cancer subtypes, aiming to

uncover the optimal conditions for selenium’s therapeutic potential

and to develop strategies that maximize its efficacy while minimizing

potential adverse effects.
3.4 Selenium and prostate cancer

Prostate cancer ranks as the second most common male

malignancy globally and holds the top position in the United

States (100). The etiology and advancement of this disease involve
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a intricate interplay of genetic and environmental determinants

(101, 102). Selenium, a trace mineral with a spectrum of biological

functions, has emerged as a focal point in prostate cancer research,

holding promise for its potential in both prevention and therapeutic

strategies. An increasing body of evidence suggest that selenium

may act as a prophylactic agent, with circulating selenium levels

potentially linked to the risk of prostate cancer development (103).

Interestingly, both suboptimal and elevated selenium levels have

demonstrated significant effects, indicating a nuanced relationship

between selenium status and prostate cancer outcomes. A meta-

analysis conducted by Cui et al. integrating results of 17 studies that

measured selenium status by serum and toenail selenium observed

an inverse relationship between serum selenium levels and prostate

cancer risk (104). The present investigation, which involved the

collection of plasma samples from 116 Caucasian men with

delayed-onset prostate cancer in South Australia, along with 132

well-matched controls, indicated that the mean plasma selenium

concentration was notably lower among individuals with prostate

cancer compared to the control group (105). This finding seems to

corroborate the abnormal expression of Se levels in prostate cancer.

Conversely, findings from a cohort study encompassing 784 cases of

prostate cancer and a corresponding control group indicated that

the median plasma selenium levels and SelP concentrations were

similar between the two groups, with a notable elevation in high-

grade prostate cancer cases (106). These suggest that while plasma

selenium status may not be directly linked to the overall risk of

prostate cancer, there is an association between elevated selenium

levels and a reduced risk of high-grade prostate cancer. In addition,

recent studies have uncovered that genetic factors and single

nucleotide polymorphisms (SNPs) within selenoprotein genes can

modulate the body’s response to selenium, potentially playing a role

in the prevention of prostate cancer (103, 107).

Based on current research, selenium supplementation alone has

not shown favorable results in prostate cancer treatment. A study

endeavored to evaluate the potential of selenium supplementation

to decelerate the progression of prostate cancer by administering

daily doses of selenium to patients with prostate-specific antigen

(PSA) indicative of prostate cancer (108). The findings revealed that

selenium supplementation did not exert a significant impact on the

PSA velocity in cases of localized prostate cance. Another study

evaluated mortality in 4,459 patients supplemented with selenium

after diagnosis and found that supplementation of 140 mg/day or

more after diagnosis of non-metastatic prostate cancer increased

prostate cancer mortality (109). This may be due to the need to

consider an individual’s selenium levels, as well as other influencing

factors, and to supplement with appropriate doses of selenium.

While standalone selenium supplementation has not yet proven

to positively influence the progression of prostate cancer, it has

exhibited potential in augmenting the effectiveness of

chemotherapy and radiation therapy, as well as in alleviating the

side effects that typically accompany these treatments. For instance,

sodium selenite has been demonstrated to substantially enhance the

radiosensitization of HI-LAPC-4 and PC-3 xenograft tumors (110).

In the realm of chemotherapy, the concomitant use of doxorubicin

and sodium selenite has shown a synergistic inhibition of prostate

cancer cell proliferation, surpassing the effects of doxorubicin in
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isolation (111). While selenium holds promise in prostate cancer

management, the heterogeneity of the disease and the complexity of

selenium’s interactions with various patient characteristics

underscore the need for personalized approaches and further

research. Future studies should consider baseline selenium status,

age, genetic factors, and other variables to elucidate the activity of

selenium in cancer prevention and to identify the subpopulations

most likely to benefit from selenium supplementation. Therefore, it

is imperative that additional research and clinical trials are

undertaken to ascertain the most efficacious dosage, duration, and

timing of selenium supplementation regimens within cancer

therapeutic strategies.
3.5 Selenium and liver cancer

Primary liver cancer (PLC), which ranks as the sixth most

prevalent cancer globally, is also the third leading cause of

cancer mortality (4, 112). The incidence of PLC is steadily

increasing. Hepatocellular carcinoma (HCC) and intrahepatic

cholangiocarcinoma (ICC) constitute the predominant forms of

PLC, collectively accounting for approximately 95% of all cases

(113, 114). It was estimated that there were 905,677 new cases of

PLC, resulting in nearly 830,180 fatalities worldwide in 2020 (4).

The heterogeneity of PLC is not only reflected in its varying

pathological types but also in its diverse responses to selenium

supplementation. Both animal models and clinical research have

highlighted the significance of adequate selenium intake and

consistent selenoprotein synthesis rates in safeguarding

hepatocytes from damage and in mitigating the risk of PLC.

Epidemiological data indicates a heightened risk of PLC in

regions with marginally lower selenium levels, such as in Western

Europe (115).

A burgeoning corpus of research indicates that the diminished

expression of selenoproteins may be a contributing factor to the risk

of PLC. This is attributed to the weakening of the body’s inherent

antioxidant defenses and the detrimental influence on immune

system dynamics (116). Liver cells, or hepatocytes, are especially

vulnerable to oxidative stress, inflammatory responses, hypoxic

conditions, and endoplasmic reticulum stress. Notably, hepatic

selenoprotein expression was also affected by these factors,

suggesting an interrelated modulation between cancer protective

and risk factors (116). Selenium deficiency causes systemic redox

imbalance, and blood inflammation with liver pathology (117). In a

case-control study in the European Prospective Investigation into

Cancer and Nutrition cohort, researchers analyzed the relationship

between pre-diagnostic selenium status and the risk of PLC. The

findings indicated that elevated levels of Se and selenoprotein P

were significantly associated with a reduced risk of HCC (118).

Studies have shown that reduced selenium levels lead to the

accumulation of lipid peroxides, which increase the activity of

AP-1, and then upregulate the expression of VEGF and

interleukin-8, thereby accelerating the growth of hepatocellular

carcinoma cells (119). Furthermore, viral infections have the

potential to significantly disrupt selenium metabolism and the

biosynthesis of selenoproteins (120). The carcinogenic
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implications of such interactions are likely to be most pronounced

in individuals with selenium deficiency, which may explain part of

the observed correlation between low selenium levels and the

increased risk of PLC. Overall, the existing body of evidence

further implicates PLC in the expanding array of health concerns

associated with selenium deficiency and call for more evidence-

based discussion of the importance of selenium as a health-

related micronutrient.
4 Anticancer mechanism of selenium

Selenium primarily manifests its chemopreventive properties by

ensuring proper redox equilibrium and preventing the

accumulation of misfolded proteins, largely through the action of

selenoproteins such as glutathione peroxidases (GPxs), thioredoxin

reductases (TrxRs), and selenoprotein P, which safeguard DNA

from oxidative, mutagenic stresses (121). Additional roles

encompass the regulation of gene expression, the modulation of

redox and hormonal metabolism, and participation in DNA repair

and cellular signaling cascades. Selenoproteins function at multiple

pivotal levels: they curb cell proliferation, promote apoptosis, and

curtail metastasis. This is achieved through the redox modification

of protein thiols and methionine mimicry in critical proteins, which

can halt the cell cycle in the G1 phase (Figure 3). Selenoproteins that

are directly or indirectly involved in maintaining redox

homeostasis, including GPX, TXNRD1, SelF, and SelP, seem to

influence a myriad of signaling pathways that are implicated in the

initiation and advancement of cancer. Reduced selenium levels may

affect the synthesis of the selenium-containing proteins mentioned

above, thereby causing an imbalance in these pathways, which can

lead to tumorigenesis and progression.

Experimental studies conducted in cells and mouse models of

cancer indicate that different Se compounds exert anticancer effects

in cancer. Of all the tested Se compounds, the promising anticancer

effects in cancer seem to be associated with Se-NPs and Na2SeO3.

Laboratory evidence on specific mechanisms of action of Se in

cancer is shown in Figure 4. According to the observations, Se
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compounds (both organic and inorganic compounds, as well as Se-

NPs), were able in most cases to suppress cell proliferation and

migration, and induce oxidative stress and apoptosis, both of which

are considered to underlie antitumor effects of Se in general (122).
4.1 Antioxidant effects

It is a well-established fact that selenium demonstrates its

anticancer capabilities primarily through its antioxidant

attributes, either directly or indirectly. These attributes help

maintain the cellular redox balance and shield healthy cells from

oxidative damage caused by reactive oxygen species (ROS) (123).

ROS are free radicals that possess unpaired electrons and are

generated as a byproduct of normal biological and physiological

processes. Excessive ROS levels are known to foster carcinogenesis

by intensifying oxidative stress and augmenting the frequency of

DNA mutations (124). Cancer cells are frequently defined by their

capacity to generate and respond to elevated ROS levels. They must

manage the oxidative stress conditions that are marked by

heightened ROS concentrations (125). In essence, an enhanced

reliance on antioxidant defenses is a defining characteristics of

cancer cells.

The therapeutic potential of selenium compounds lies in their

ability to modulate cellular oxidative stress, which is a significant

factor in cancer treatment strategies. Selenium compounds with

redox activity possess pro-oxidant characteristics that can enhance

the formation of ROS. This property can be harnessed to create an

oxidative environment within cancer cells, which may lead to their

destruction while sparing healthy cells. Compared with normal

cells, cancer cells have higher levels of ROS (126–128).

Consequently, everaging these properties in combination could

lead to the generation of additional reactive oxygen species, such

as superoxide (O2
·-) and hydrogen peroxide (H2O2), thereby

throwing the oxidative homeostasis of cancer cells into even

greater distress. In breast tumor cells, Se compounds react with

thiols to form ROS (129). The ability of cells to generate Se

metabolites more rapid oxidation of glutathione and other thiols
FIGURE 3

The multiple-stage action of selenium on cancer-related pathways.
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within tumor cells, resulting in the production of ROS and

peroxides. Notably, substantial disparities in thiol concentrations

have been detected between malignant and normal cells.

Administration of high concentrations of sodium selenite

preferentially targets and eradicates cancer cells because more free

radicals are produced than in normal cells and no systemic

selenotoxicity is produced (130).
4.2 Immunomodulatory effect

The immune system stands as the body’s premier defense against

the onslaught of invasive pathogens. It is tasked with the recognition

and neutralization of foreign antigenic entities and works in synergy

with other physiological systems to ensure the maintenance

of systemic stability and equilibrium. Extensive research has

been conducted to explore the potential benefits of selenium

supplementation in diminishing the likelihood of cancer onset.

This research suggests that selenium may function as an

immunostimulant, capable of countering immunosuppression

within the tumor microenvironment and bolstering anti-tumor
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immunity. This is achieved by stimulating the activity of immune

cells, such as M1 macrophages and CD8+ T lymphocytes, and

by promoting the secretion of pro-inflammatory cytokines,

including interferon-gamma. On the other hand, M2 macrophages

are known for their role in exerting anti-inflammatory and

immunosuppressive effects, which they achieve by producing anti-

inflammatory cytokines like IL-10. These cytokines play a crucial role

in curbing the progression of tumors by creating an environment that

is less conducive to their growth and spread (131). Selenium

supplementation significantly enhances the migratory and

phagocytic capabilities of macrophages that are deficient in

selenium. Moreover, it facilitates a beneficial transition from a pro-

inflammatory M1 phenotype to a more anti-inflammatory M2

phenotype. This shift in macrophage polarization is instrumental in

dampening the pro-inflammatory responses, thereby contributing to

a more balanced and regulated immune environment (132). The

immunomodulatory effects of Se have been attributed primarily

to the multiple activities of selenoproteins, particularly their role

in maintaining redox balance (16, 133, 134). Selenoproteases such as

glutathione peroxidases (GPxs) 1-4 and 6, thioredoxin reductases

(TXNRDs) 1-3, methionine-R-sulfoxide reductase B1 (MSRB1),
FIGURE 4

Mechanisms of action investigated in studies on Se compounds effects in cancer cells. Organic Se compounds, inorganic Se compound, Se
nanoparticles are indicated in green. AIF, Apoptosis Inducing Factor; AKT, Protein Kinase B; Bad, Bcl-2 Associated Agonist of Cell Death; Bak, Bcl-2
Homologous Antagonist/killer; Bax, Bcl-2-like protein 4; Bcl-2, B-celllymphoma 2; ERK, Extracellular Regulated Kinase; MeSeA, Methylseleninic Acid;
MeSeCys, Methylselenocysteine; PARP, Poly (ADP-ribose) Polymerase; ROS, Reactive Oxygen Species; SBP1, Selenium Binding Protein 1; SeMet,
Selenomethione; Se-NPs, Selenium Nanoparticles; SOD1, Superoxide Dismutase 1; Ub, Ubiquitin.
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iodothyronine deiodinases (DIOs) 1-3, and selenophosphate

synthetase 2 (SEPHS2) affect immune function. Adequate or

excessive Se supplementation is critical for modulation of

appropriate immune responses. For example, Se is incorporated

into selenoenzymes that possess antioxidant properties (e.g., GPxs)

to catalyze the reduction of peroxides, thus providing protection

against ROS. Furthermore, other selenoproteins like TXNRD and

MSRB1 are integral in regulating redox reactions and in the repair of

immune cells that have been compromised by oxidative stress (116).

Adequate selenium levels are vital in healthy mice for the

upregulation of selenoprotein expression, as well as for the

production of interferon (IFN)-g and interleukin (IL)-6 (135).

A human intervention study has demonstrated that the intake of

selenium-enriched foods can lead to an increase in the levels of IL-2

and other interleukins (136). Selenium supplementation enhances

spontaneous NK cytotoxicity in mouse splenocytes and specific

cytotoxic T lymphocytotoxicity in peritoneal exudate cells (137).
4.3 Reduction of carcinogenic effects of
chemical substances

Selenium can prevent the metabolic activity of certain chemical

carcinogens or antagonize their metabolites thereby inhibiting the

carcinogenic effects of chemical carcinogens (138). In vitro

experiments have shown that selenium reduces the activity of

hydroxylases that activate carcinogens, such as aryl hydroxylase

(AHH), by more than 50% and weakens the metabolism of PAH

compounds into carcinogens. FINLEY et al. found that the higher

the dose of selenium added to the diet of rats, the lower the number

of aberrantcrypt focus (ACF) of colon cancer in rats (139). This

result also confirms that selenium can inhibit the tumorigenesis

caused by chemical carcinogens mainly in the initiation and

promotion stages of chemical carcinogenesis, and its related

mechanism may be related to the fact that selenium reduces the

activity of hydroxylase that can activate carcinogens such as

aromatic amine hydroxylase in the early stage of carcinogenesis,

and increases the activity of glucuronosyltransferase that can release

the toxicity of carcinogens, thus blocking the activation of the

metabolism of carcinogens in the organism.

An additional significant aspect of selenium’s role in cancer

prevention is its chemical capacity to interact with various metals,

many of which have been implicated in elevating cancer risk (140).

It has been reported that selenium interacts with metals such as

gold, platinum, cadmium, cobalt and mercury, which in turn can

counteract the toxicity of these heavy metals (140, 141). For

example, cadmium is recognized as a critical factor in the etiology

of prostate and breast cancers. Selenium has been documented to

offer protection against the peroxide-induced damage that is

associated with cadmium exposure (142). Several of these metals

have the potential to react with and inhibit vital proteins, such as

thioredoxin reductase, thereby potentially exerting their toxic effects

through the disruption of cellular redox balance. In such scenarios,

selenium serves as a countermeasure by forming chelates with these

metals, thereby mitigating their harmful impact.
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4.4 Inducing apoptosis in cancer cells

Tumorigenesis is associated with uncontrolled apoptosis of

tumor cells, and the search for highly efficient and low-toxic

apoptosis-inducing agents with a clear mechanism of action is an

important strategy for tumor prevention and treatment. One of

mechanisms proposed for the anticancer activity of selenium is

apoptosis induction which is an essential mechanism to control or

eliminate the undisciplined expansion of tumors. Selenium triggers

the cessation of cell proliferation and induces cell death in vivo

through a multifaceted approach. It diminishes the expression of

the cell cycle protein D1, enhances the expression of p27kip1, and

activates c-Jun NH2-terminal kinase (JNK) (143). Methylselenic

acid (MSeA) has been observed to augment caspase-mediated

apoptosis by down-regulating the expression of survivin, Bcl-xL,

and Mcl-1, which are proteins that typically inhibit apoptosis (144,

145). Furthermore, MSeA instigates a cell cycle arrest at the G1

phase, a critical checkpoint in the cell cycle, which is correlated with

an upregulation in the expression of p27kip1 and p21cip1, both of

which are cyclin-dependent kinase inhibitors that play a crucial role

in regulating cell cycle progression (146). The combination of

selenocysteine and 5-fluorouracil can regulate the intracellular

redox system, induce cellular oxidative stress and DNA damage,

and block the extracellular signal-regulated kinase (ERK) signaling

pathway, thus promoting 5-fluorouracil-induced apoptosis of

tumor cells, and enhancing its antitumor effects (147). Sodium

selenite, the most abundant inorganic selenium compound in

nature, reduces mitochondrial membrane potential and enhances

the antiproliferative and apoptosis-inducing effects of polyene

paclitaxel on prostate cancer cell PC3 (111). The synthesized

selenium compound diphenylselenocyanate can induce DNA

damage through ROS, upregulate p53 gene expression, activate

the caspase signaling pathway, thereby increasing the sensitivity of

Ehrlich ascites cancer cells to cyclophosphamide (148). In addition,

it was found that nanosized selenium significantly enhanced the

killing effect of irinotecan hydrochloride on HCT-8 cells through

p53-mediated apoptosis pathway (149). The above studies also

suggest that ROS generation, upregulation of p53, and reduction

of mitochondrial membrane potential play important roles in

selenium-assisted anti-tumor processes.
4.5 Inhibition of tumor angiogenesis and
tumor metastasis

Tumor angiogenesis is a pivotal process that enables tumor cells

to proliferate, infiltrate surrounding tissues, and disseminate to

distant sites. Angiogenesis and tumor progression are closely related

and can affect the tumor microenvironment as well as the sensitivity

of tumor cells to chemotherapeutic agents or radiotherapy (150).

The suppression of tumor invasion and metastasis constitutes a

significant mechanism underlying the anti-metastatic capabilities of

selenium in cancer therapy. Hypoxia-inducible factor-1a (HIF-1a)
serves as a critical transcription factor that orchestrates cellular

responses to hypoxic conditions. Its activity is instrumental in
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sustaining the energy metabolism of cancer cells, fostering

neovascularization, and enhancing both the proliferation and

migration of tumor cells. In vitro investigations have

demonstrated that selenomethyl selenocysteine is capable of

diminishing ROS levels, stabilizing the levels of prolyl

hydroxylase-2 (PHD2) and prolyl hydroxylase-3 (PHD3), and

downregulating HIF-1a expression in colon and head and neck

cancer cells. These findings suggest that selenomethyl

selenocysteine may enhance the responsiveness of tumor tissues

to anticancer agents by reducing HIF-1a expression in mice bearing

tumors, thereby potentially improving the efficacy of cancer

treatments (151). Liu et al. showed that selenomethyl

selenocysteine, sodium selenite and methyl selenite could enhance

the inhibitory effect of cyclophosphamide on canine breast cancer

cells by down-regulating the expression of VEGF, angiotensin II

(Ang II) and HIF-1a, which are related to the growth and

vascularity of tumors, and by up-regulating the expression of

phosphatase and tensin homologous genes (152). Matrix

metalloproteinases (MMP) -2 and MMP-9 are enzymes that

break down the extracellular matrix and basement membrane,

which are crucial barriers preventing the spread of cancer cells.

These enzymes play a pivotal role in facilitating tumor invasion and

metastasis by enabling cancer cells to penetrate and migrate

through these protective layers. The urokinase-type plasminogen

activator (uPA) system is another factor that is closely linked to

tumor progression. It is implicated in the processes of tumor

invasion and metastasis, and its elevated activity is often

correlated with a reduction in patient survival times, highlighting

its significance as a prognostic indicator in cancer (153). Selenite

impedes the invasive capabilities of cancer cells by curtailing the

activity of MMP-2 and MMP-9, as well as uPA (154). Another

experiment showed that MSeH acts as a nutritional adjuvant to

reduce melanoma cell metastasis by inhibiting integrin expression

and MMP (155). Ultimately, Se forestalls the invasive and

metastatic progression of tumors by suppressing the activity of

MMPs. These enzymes are instrumental in the breakdown of the

extracellular matrix (ECM), the penetration of basement

membranes, the processes of endocytosis and exocytosis, and the

promotion of further angiogenesis. Moreover, there is a necessity for

additional animal and human intervention studies to ascertain the

efficacy of selenium compounds in chemoprevention strategies and

their potential to obstruct the metastatic cascade of cancer.
4.6 Inhibition of tumor cell
cycle progression

Selenoprotein H plays a crucial role in modulating cell cycle

progression and in curbing the onset of rampant cell proliferation.

The intricate mechanisms through which selenium influences the

inception and advancement of cancer could potentially be linked to

the function of selenoprotein H. This selenoprotein’s involvement

in maintaining cellular homeostasis may be a critical factor in

selenium’s chemopreventive properties, particularly in the context

of cancer development. Knockout studies in human colorectal

cancer cells by BERTZ et al. found that selenoprotein H knockout
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cells showed faster cell cycle transitions, and high levels of

selenoprotein H significantly inhibited cell proliferation and the

G1/S phase of cell mitosis (156). CHIGBROW et al. found that the

mechanism of selenium inhibition of tumor cell cycle progression

may be related to selenium regulation of RNA expression of mitotic

cell cycle protein B and cdc2 kinase activity by analyzing the cell

cycle effects of selenoethanethionine in colon cancer cells in their

laboratory (157). Thus, selenium inhibition of tumor cell cycle

progression may result from multiple mechanisms.
4.7 Others

4.7.1 Protecting the structure and function of
genetic material

Selenium is also capable of stimulating DNA repair pathways,

which are essential for the removal of DNA damage. Considering

the vital function of selenoproteins, such as glutathione peroxidase

and thioredoxin reductase, in providing antioxidant protection and

preserving a reduced intracellular milieu, selenium plays a pivotal

role in expediting the DNA damage repair process. This

acceleration is achieved by boosting the synthesis of

selenoproteins, which in turn reinforces the cell’s capacity to

counteract oxidative stress and maintain genomic integrity (158).

SeM enhances p53 activity and protects cells from DNA damage

through its antioxidant activity (159). A study involving wild-type

(WT) and p53 knockout (p53 -/-) mouse embryonic fibroblasts

(MEFs) demonstrated that pretreatment with 10 mmol/L of

selenomethionine (SLM) for 15 hours, followed by exposure to

cisplatin or oxaliplatin, revealed a protective effect of selenium on

WT-MEFs. This protection was manifested by a reduction in DNA

damage, highlighting the role of selenium in safeguarding cells from

the genotoxic effects of these platinum-based chemotherapeutic

agents (160).

4.7.2 Influencing the expression of oncogenes
and oncogenes

Recent studies have confirmed that selenium can affect the

expression of oncogenes and oncogenes in the body. ANVAR et al.

carried out an in vitro study to investigate the impact of selenium on

the telomerase activity in human umbilical cord mesenchymal stem

cells (161). The findings indicated that following supplementation

with sodium selenite, there was a marked decrease in the expression

levels of the oncogene c-myc, accompanied by a significant

elevation in the expression levels of the tumor suppressor gene

p53. The activity of telomerase was inhibited to prevent the

occurrence and development of tumors and the proliferation of

cancer cells.

4.7.3 Involving in DNA repair and
cellular senescence

Selenium’s capacity to stimulate DNA damage repair is a

significant aspect of its anticancer activity. Recognizing the

essential function of selenoproteins, such as glutathione

peroxidase and thioredoxin reductase, in antioxidant defense and

in preserving a reduced intracellular state, selenium is able to
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expedite the DNA repair process. This acceleration is achieved by

augmenting the synthesis of selenoproteins, which in turn bolsters

the cell’s ability to counteract oxidative stress and to safeguard the

integrity of its genetic material (158). It was found that the

treatment of leukocytes with bleomycin induced DNA damage,

and the addition of selenomethionine significantly reduced

bleomycin-induced DNA breaks and improved the repair of DNA

damage (162). Cellular senescence is an important step in

suppressing tumorigenesis. Selenium compounds were able to

activate DNA damage response-associated kinases and caused

senescence in human embryonic lung fibroblasts cell 5 (MRC-5),

but not in human colorectal cell 116 (HCT-116) and prostate cancer

cells 3 (PC-3) (163). Deletion of phosphatase Pten protein is often

detected in specimens of human prostate cancer, and the effect of

selenium was examined by using mice lacking this gene, it was

found that a large number of senescent cells could be detected in the

defective parts of the prostate gland after 4 weeks of continuous

treatment with methyl selenate, indicating that selenium-induced

cellular senescence can indeed inhibit tumorigenesis (164).
5 Forms of selenium action in tumor
supression: selenoproteins, selenium
compounds, selenium nanoparticlels

5.1 Selenoproteins

Selenium exerts its biological influence primarily through the

action of selenoproteins (165). In these selenoproteins, the

Selenocysteine (Sec) residue is often observed at their enzymatic

active site, which is critical for their function and activity (166). To

date, a catalog of 25 selenoprotein-encoding genes has been

delineated in the human genome (Table 1). These selenoproteins

are ubiquitously present across a spectrum of organs and tissues,

each characterized by distinct substrate affinities and functional

roles (167–169).

Research has demonstrated that selenoproteins, such as

selenoprotein P (SelP), glutathione peroxidase (GPx), thioredoxin

reductase (TXNRD), and selenoprotein F (SEP15, SelF), exert

regulatory effects on tumorigenesis and tumor progression

through modulation of cancer-associated signaling pathways

(170). The correlation between single nucleotide polymorphisms

(SNPs) within selenoprotein genes and cancer susceptibility has

been a subject of investigation, encompassing genes like SelP and

GPx, as well as TXNRD, selenoprotein N (SEPN1, SelN),

selenoprotein S (VIMP, SelS), and selenoprotein W (SEPW1,

SelW) (171, 172). Since selenium is of great significance in cancer

and immune system function, it is necessary to further study the

role of selenoproteins in cancer development, growth and

progression. At present, most of the studies on the relationship

between selenium and cancer are observational studies. Because

there are still many conflicting conclusions in the related research,

further research is needed to clarify the correlation between

selenium and cancer. This comprehensive review delineates a

selection of pivotal and extensively investigated selenoproteins,
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aiming to inspire innovative directions for forthcoming

scientific inquiries.

5.1.1 Glutathione peroxidase
The glutathione peroxidase (GPx) family is a group of the most

well characterized selenoproteins, and it holds the distinction of

being the inaugural class of selenium-enriched enzymes to be

discovered, marking a significant milestone in the understanding

of selenium’s biochemical role (173, 174). The antioxidant power of

GPxs is well documented, and they typically use glutathione

primarily as an electron donor to catalyze the reduction of

peroxides, which in turn helps the body defend itself against free

radicals. The glutathione peroxidase family, which has been found

to include eight members of GPx1-8, is one of the most intensively

studied SePs to date in terms of its contribution to tumourigenesis.

As of now, the scientific community has identified five selenium-

dependent GPx, which include GPx1, GPx2, GPx3, GPx4, and

GPx6. These enzymes are distinguished by their reliance on

selenium for their catalytic activity. In contrast, GPx5, GPx7, and

GPx8 are notable for incorporating Cys in place of Sec, highlighting

the diversity within this family of enzymes (42, 175). The GPx play a

pivotal physiological role in safeguarding cells and tissues against

the onslaught of oxidative stress, particularly from hydroperoxides.

Among them, GPx1 is one of the most abundantly present and

widely expressed selenoproteins (176). Several studies have shown

that GPx1 is associated with cancer when its expression is inhibited

or reduced in particular (177, 178). Notably, an overabundance of

GPx1 has been demonstrated to shield cancer cells from the potent

oxidizing effects of anticancer therapeutics. Furthermore, the levels

of GPx1 have been observed to exhibit a direct correlation with the

progression to advanced metastatic cancer, underscoring its

potential role in cancer biology (179, 180). Among the critical

antioxidant enzymes in humans, GPx4 holds a significant position.

It plays a crucial role in mitigating the process of non-apoptotic cell

death, colloquially termed “ferroptosis,” by counteracting the

aggregation of lipid ROS and the subsequent occurrence of lipid

peroxidation under oxidative stress conditions (181). In such a

situation, the ablation of GPx4 has been demonstrated to render

tumor cells more susceptible to ferroptosis-eliciting agents,

suggesting that GPx4 may emerge as a promising target for the

development of novel therapeutic interventions (181, 182).

5.1.2 Thioredoxin reductase
Thioredoxin reductase (TrxR) is a homodimeric enzyme that

boasts a sophisticated architecture, featuring a flavin adenine

dinucleotide (FAD) and a reduced nicotinamide adenine

dinucleotide phosphate (NADPH) binding site for each of its

monomers, thereby facilitating its essential role in cellular redox

homeostasis (183). The primary function of TrxR is to reduce

thioredoxin, which is used in a variety of processes (184). As normal

cells become malignant, the number of TrxR system components

increases dramatically. For instance, Thioredoxin reductase 1

(TrxR1) is meticulously governed by the nuclear factor erythroid

2-related factor 2 (Nrf-2), a pivotal transcription factor that

modulates its expression. Notably, TrxR1 exhibits elevated levels
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of expression across a spectrum of malignancies, encompassing

hematological neoplasms such as lymphoma and multiple

myeloma, underscoring its potential as a therapeutic target in

oncology (185). Overexpression of thioredoxin reductase 2

(TrxR2) in cancer cells is often considered a critical factor in the

complex interplay of tumorigenesis, disease progression, and the

resistance to apoptosis, underscoring its significant role in the

intricate dynamics of cancer development and survival. The

suppression of thioredoxin reductase 2 (TrxR2) results in a

marked elevation of ROS within the mitochondrial compartment.

This occurs through the impairment of thioredoxin 2 (Trx2)
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activity, which subsequently triggers the release of a cascade of

proapoptotic factors, including the notable cyclophilin D, thereby

influencing the apoptotic pathways and cellular homeostasis.

Therefore, selective inhibition of TrxR2 has been paid much

attention as a strategy to kill cancer cells and induce apoptosis

recently (186). Studies have shown that increased TrxR enhances

oncogenic processes in a number of ways, including enhancing

tumor formation, inducing angiogenesis, and increasing resistance

to cancer therapies (187). Cancer cells typically exhibit a profound

dependence on aerobic glycolysis as their primary energy-

generating pathway (188). In addition, in the pentose phosphate
TABLE 1 Selenoproteins and their functions in the human body.

Selenoprotein Abbreviation Function Sec location Protein size

Glutathione peroxidase 1 GPx1
Metabolize hydrogen peroxide and some

organic hydroperoxides
47 201

Glutathione peroxidase 2 GPx2 Antioxidant activity in gastroin testinal tissues 40 190

Glutathione peroxidase 3 GPx3
Reduce H2O2, fatty acid hydroperoxides, and phospholipid

hydroperoxides in the plasma and thyrocytes
73 226

Glutathione peroxidase 4 GPx4
Reduce phospholipid- and cholesterol-hydroperoxides by

using GSH
73 197

Glutathione peroxidase 6 GPx6 Reduce olfactory organs H2O2 73 221

Thioredoxin reductase 1 TrxR1 Antioxidant activity and regenerate reduction of thioredoxin 498 499

Thioredoxin reductase 2 TrxR2 Regenerates reduced thioredoxin in mitochondria 655 656

Thioredoxin reductase 3 TrxR3 Redox regulation 522 523

Iodothyronine deodinase 1 DIO1 Production of T3 in thyroid and peripheral tissues 126 249

Iodothyronine deodinase 2 DIO2 Production of T3 in peripheral tissues 133, 266 273

Iodothyronine deodinase 3 DIO3 Inactivates thyroid hormone 144 278

Methionine-R-
sulfoxide reductase

MSRB1
Restores oxidatively damaged methionine (Met-sulfoxide) to

native configurations
95 116

Selenophosphate synthetase 2 SEPHS2 Sec synthesis 60 448

Selenoprotein F SelF
Oxidoreductase that may assist in disulfide formation and

protein folding/Correcting misglycosylated
93 162

Selenoprotein H SelH Cell cycle regulation & cancer prevention 38 116

Selenoprotein I SelI Phospholipid biosynthesis 387 397

Selenoprotein K SelK Antioxidant activity/immunity/inflammation 92 94

Selenoprotein M SelM Maintenance of Ca2+ ions/Antioxidant activity 48 145

Selenoprotein N SelN Growth and development of muscles 428 556

Selenoprotein O SelO Regulation of redox reactions 667 669

Selenoprotein P SelP
Transportation of Se to brain and

other tissues of body

59, 300, 318, 330,
345, 352, 367, 369,

376, 378
381

Selenoprotein S SelS
Deletes the misfolded proteins in endoplasmic reticulum and

responds to endoplasmic reticulum stress
188 189

Selenoprotein T SelT Regulation of endocrine secretion/Ca2+ mobilization 36 182

Selenoprotein V SelV Expression of taste/Regulation of redox reactions 273 346

Selenoprotein W SelW
Oxidative stress regulation, Bone

remolding
48 145
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pathway (PPP), more glucose is required to produce reducing

equivalents. Tumor cells harness this metabolic pathway to

meticulously preserve redox equilibrium, which is essential for

sustaining their viability, proliferation, and the perpetuation of

cell division, thereby facilitating their relentless growth and

expansion (189, 190). In brief, inhibition of TrxR augments the

susceptibility of tumor cells to oxidative stress, bolsters the selective

eradication of cancerous cells, and instigates the cascade of

apoptosis, which has received widespread attention in recent

years making TrxR a potential target for cancer therapy (191, 192).

5.1.3 Selenoprotein P
Selenoprotein P (SelP) stands out as an exceptional member

within the selenoprotein family due to its distinctive composition;

SelP can harbor up to ten Sec residues, a feature that contrasts with

the majority of selenium-enriched proteins, which typically

incorporate only a single Sec residue. This abundance of selenium-

laden residues strongly implies a pivotal function in the transport and

distribution of selenium throughout the body, underscoring the

unique biological role of SelP in selenium transport. Apart from

GPx3, SelP is among the select group of secreted selenoproteins

predominantly synthesized in the liver, which serves as a principal

hub for selenium metabolism (193). During the inflammatory

response, specifically the acute phase reaction, SelP biosynthesis is

reduced, which disrupts selenium transport and selenium

metabolism, which may result in lower selenium levels in cancer

patients (194). Furthermore, the presence of single nucleotide

polymorphisms (SNPs) within the human SelP gene can result in

an altered response to dietary selenium intake. Such genetic

variations may restrict the efficiency of selenium transport,

consequently diminishing the activity of selenium-dependent

enzymes. This reduction in enzymatic activity could potentially

elevate the risk of developing cancer, highlighting the intricate

relationship between genetics, selenium metabolism, and cancer

susceptibility (195, 196). Overall, extensive research has

conclusively shown that levels of SelP are consistently diminished

across a multitude of cancer types. This decrease in SelP expression

exhibits a negative correlation with the progression of the disease.

Notable examples include hepatocellular carcinoma, cancers of the

gallbladder and biliary tract, gastric adenocarcinoma, colorectal

cancer, and prostate cancer. These findings underscore the

potential of SelP as a biomarker for disease severity and its pivotal

role in the pathogenesis of various malignancies (118, 197–200).

5.1.4 Selenoprotein F (the 15 kDa selenoprotein)
Selenoprotein F (SelF) is a 15kDa thioredoxin-like oxidoreductase

localized in the endoplasmic reticulum (ER), containing a

quintessential thioredoxin-like fold and having a Cys-X-X-Sec motif,

suggesting that they have the redox activity of thiol disulfide bond

oxidoreductases (201, 202). SelF was first identified in human T cells,

yet its expression is not confined to these immune cells. It is also

abundantly present in a range of epithelial tissues, including the liver

and prostate (203). Moreover, SelF was found to be highly expressed in

normal liver and prostate tissues, but reduced in the malignant

counterparts of these organs (204). The impact of Selenoprotein F
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expression on tumorigenesis has been a subject of investigation across

various cancer types. Research has consistently documented a decrease

in SelF levels within tumor cells and cell lines derived from tumors.

Intriguingly, these studies converge on the finding that the

downregulation of SelF mitigates the pro-tumorigenic characteristics,

implying a protective role for this selenoprotein in the context of cancer

development. Down-regulation of SelF in cancer cell lines leads to up-

regulation of p21 and p27 (cell cycle inhibitors) and subsequently

induces a slowdown in cellular proliferation and triggers a state of

growth arrest specifically in colon and liver cancer cells (205–207).

Knockdown of the 15 kDa Selenoprotein in HT-29 and HCT116

human colon cancer cell lines effectively halted both anchorage-

dependent and anchorage-independent cell proliferation, which was

achieved through the induction of a G0/G1 cell cycle arrest (207).

Similarly, Tsuji et al. noted that the ablation of Selenoprotein F

effectively thwarted the emergence of aberrant crypt foci, which are

early indicators of colonic neoplasia. Concurrently, this deletion led to

the activation of IFN-g and the subsequent induction of gene

expression regulated by the signal transducer and activator of

transcription 1 (STAT1) following the administration of

azoxymethane (AOM), a potent carcinogen (208). Overall, these

results presented thus far exhibit a degree of inconsistency, which

suggests that further investigation is imperative. Additional research

will be crucial in elucidating the comprehensive role of Selenoprotein F

across various cancer types, aiming to reconcile the seemingly

contradictory data and to establish a more definitive understanding

of its impact on oncogenesis.
5.2 Selenium compounds

Selenium compounds include inorganic selenium compounds

and organic selenium compounds, with the main organic forms

being selenomethionine and selenocysteine, and the inorganic

forms being selenite, selenide, selenate, and selenium, which are

integral to various biological functions (Figure 5) (209).

5.2.1 Inorganic Se compounds
Selenium exhibits a range of four natural valence states:

elemental selenium (0, SeNPs), selenide (-2; Se2-), selenite (+4;

SeO3
2-) and selenate (+6; SeO4

2-). The biological functionality and

potential toxicity of inorganic selenium compounds are

significantly influenced by these valence states. Common

inorganic selenium compounds are hydrogen selenide (H2Se),

hydrogen metal selenide (HSeM), dimetallic selenide (M2Se),

hydrogen diselenide (H2Se2), metal diselenide (M2Se2), metal

selenium cyanate (MSeCN) and metal selenium sulfate (SO3SeM2).

Selenite stands as the most extensively researched form of

inorganic selenium compounds, renowned for its remarkable

chemopreventive and anticancer properties. Selenite is effective in

inhibiting the proliferation of a wide range of cancer cells, and it has

been shown to exert anticancer activity in a variety of cancer cell

lines, including prostate, breast, lung, liver, bladder and

osteosarcoma (210). In experiments using selenite to test different

human cancer cell lines, it was found that lung cancer cells may be
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more susceptible to the chemopreventive and anticancer actions of

selenite (211–213). Sodium selenite (Na2SeO3) has received

approval from the United States Food and Drug Administration

(FDA) for use as a dietary supplement in animal nutrition. It was

found that Na2SeO3, when applied to cholangiocarcinoma cells,

significantly reduced invasion, migration and epithelial-

mesenchymal transition by causing apoptosis and down-

regulation of N-calmodulin (214). In some cases, selenate has

demonstrated superior efficacy over selenite in both the

prevention and treatment of cancer. This distinction in

effectiveness can be observed even within the same cancer type,

highlighting the potential variability in response among different

cell lines (215, 216).

5.2.2 Organic Se compounds
Organic selenium compounds have attracted a lot of attention in

the field of cancer research, mainly because they are usually more

bioavailable and less toxic compared to inorganic selenium compounds

(217). Organic selenium compounds constitute a diverse array of

molecules that can be categorized into distinct families based on

their functional chemical structures: Selenides/diselenides,

selenocyanates, selenoamino acid derivatives (e.g., SeMet and MSC),

methyl selenoic acid (MSA; CH3SeO2H), selenoheterocyclic

compounds, and a variety of other selenium-containing compounds.

To date, there have been numerous scientific studies on organic

selenium compounds, many of which have examined their role in

cancer prevention and treatment. These organoselenium compounds

demonstrate potent anticancer and chemopreventive properties by

engaging a multitude of action mechanisms including reduction of

oxidative stress, induction of apoptosis, and enhancement of

chemotherapeutic drug activity (218–221). Research has consistently

illustrated that selenium amino acid derivatives, such as

selenomethionine (SeMet) and methylselenocysteine (MSC), are

capable of stimulating apoptosis in a broad spectrum of human solid

tumors. This pro-apoptotic effect is a significant mechanism in the fight

against cancer, as it targets the elimination of malignant cells.

Moreover, MSC has been found to offer supplementary safeguarding

against the adverse effects of anticancer therapeutics, potentially

reducing the toxicity associated with these treatments (222–224).

MSA is the oxidized form of methylselenol (CH3Se-) converted from

selenoamino acids (e.g. SeMet and MSC) (225). Multiple studies have

proven that MSA is an excellent anticancer agent against a variety of

cancer models, including lung cancer, breast cancer, melanoma, and

especially prostate cancer (226–228). MSA exerts its anticancer effects

through various mechanisms; it effectively curbs the uncontrolled
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expansion of cancer cells by instigating the apoptotic cascade (229),

blocking the cell cycle (230) and anti-angiogenic activity (231). During

the study, MSA was also found to enhance the efficacy of several

chemotherapeutic agents, i.e., paclitaxel (232), TAM (233), adriamycin,

cytarabine cytarabine (234) and cyclophosphamide (152). Based on

current evidence, MSA may be considered a promising drug candidate

for cancer treatment.

The class of selenium compounds encompasses a diverse array of

substances, including selenocyanates and selenium-embedded

heterocyclic compounds, which have garnered attention for their

promising chemopreventive and anticancer attributes. This group

extends from the extensively researched p-xylene selenocyanates and

benzyl selenocyanates to the more recently discovered, innovatively

active compounds. These novel entities ingeniously fuse the

selenocyanate moiety with a variety of heterocyclic rings, quinones,

or steroidal frameworks, thereby expanding the horizons of selenium-

based therapeutics. Heterocyclic organoselenium compounds,

exemplified by ibiselenocyanine and ethylselenocyanine (also

recognized as BBSKE), represent a category of diminutive

molecules that harbor significant potential in the realm of cancer

therapy (235, 236).

The attributes of selenium compounds herald a new era of

optimism within the domain of oncology, particularly in enhancing

the resilience of tumors against conventional chemotherapy and

radiotherapy, as well as mitigating the profound side effects that

often accompany these treatments. The proposition of employing

selenium compounds as novel, prospective pharmacological agents or

adjuvants in cancer therapeutics is substantiated by their reduced

toxicity, heightened selectivity and efficacy, and the prospect of

attenuating the adverse effects typically linked to mainstream

anticancer interventions. In summation, while the potential of these

selenium-enriched compounds is undeniably promising, there

remains an imperative for further comprehensive investigation,

particularly in vivo studies, to ascertain the consequences of their

prolonged consumption and to evaluate the enduring impacts related

to their sustained application.
5.3 Selenium nanoparticles

Selenium nanoparticles (SeNPs) have received extensive attention

in the biomedical field due to their unique physical, chemical and

biological properties. SeNPs exhibit many advantages over

conventional organic and inorganic selenium compounds, including

low toxicity, anticancer and antimicrobial activities. SeNPs can also act
FIGURE 5

The most important inorganic and organic forms of selenium.
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as immunomodulators to inhibit tumor growth by enhancing anti-

tumor immunity, such as modulating tumor-associated macrophages

and activating specific T lymphocytes. In recent years, there has been a

surge of interest in the development of nanomaterials that possess

augmented anticancer capabilities while minimizing adverse effects on

the human body, positioning them as promising candidates for cancer

treatment. In this context, nanoparticles enriched with selenium are

under rigorous investigation for their potential as cancer therapeutics.

This interest is fueled by the fact that selenium is an indispensable trace

element, and selenium-laden nanomaterials exhibit enhanced

biocompatibility. These characteristics make selenium-containing

nanoparticles an attractive avenue for research, with the potential to

revolutionize cancer treatment by offering targeted, effective therapies

with reduced toxicity.

Selenium nanoparticles are effective against a wide range of

cancers, including colon, liver, breast, prostate and lung cancers. In

2010, a pioneering study by Shakibaie and colleagues revealed that

SeNPs exerted a toxic effect on the fibrosarcoma cell line HT-1080.

Remarkably, these nanoparticles were found to impede the invasive

and metastatic potential of cancer cells by modulating the

expression levels of MMP-2, a key enzyme involved in the

degradation of extracellular matrix components and a facilitator

of cancer cell dissemination (237). In a significant study, Kong and

colleagues delved into the cytotoxic effects of SeNPs on the prostate

cancer cell line LNCaP, and they found that SeNPs effectively

curbed the proliferation of these cancer cells by triggering a

cascade of caspase-mediated apoptosis (238). Toubhans and

colleagues conducted a compelling study that illustrated the

profound effects of inorganic selenium nanoparticles on ovarian

cancer cells. They demonstrated that these nanoparticles elicited

nanomechanical responses, including alterations in cell surface

roughness and membrane rigidity, ultimately leading to apoptosis

in SKOV-3 and OVCAR-3 ovarian cancer cell lines (239). Zhai et al.

found that SeNPs stabilized with chitosan (CS) of different

molecular weights exhibited significantly reduced cytotoxicity in

BABLC-3T3 and Caco-2 cells (53). In addition, SeNPs can be

synergistically used with anticancer drugs for cancer therapy,

thereby enhancing anticancer activity and minimizing toxic

effects. Yang et al. found that adriamycin alone destroyed 20% of

cancer cells, while SeNPs combined with adriamycin destroyed

more than 50% of cancer cells (240). During breast cancer

treatment, anastrozole is used to inhibit the growth of the enzyme

aromatase, which causes side effects such as bone fractures and

osteoporosis (241, 242). These can be prevented by combining

anastrozole with SeNPs.

Currently, several methods have been proposed to prepare

SeNPs, which are usually categorized into three main groups

based on different production principles: chemical synthesis

(precipitation, acid decomposition, etc.) , biosynthesis

(photosynthesis, microbial synthesis, etc.), and physical synthesis

(UV radiation, laser ablation, etc.) (243). Among them, chemical

synthesis is considered to be the most common method for the

preparation of SeNPs. In chemical synthesis, Se in the +4 valence

state (e.g., selenite, selenite, or SeO2) is commonly used as a

precursor, while reducing agents (e.g., ascorbic acid and

glutathione [GSH]) and stabilizers (e.g., chitosan and pectin) are
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used for the formation and maintenance of SeNPs (53, 244, 245). To

maximize their efficacy in cancer therapeutics and prophylaxis,

chemically synthesized SeNPs are frequently tailored with particular

molecules that bestow advantageous attributes for real-world

utilization. For instance, the conjugation of SeNPs with additional

biologically active compounds can significantly amplify their

therapeutic impact on specific cancer subtypes, surpassing the

performance of unmodified SeNPs (246, 247). In addition to

direct therapeutic effects, chemically modified SeNPs can also

serve as carriers, conferring favorable properties to the carriers,

such as tumor targeting (248), high efficiency (249) and low toxicity

(250). Overall, the chemical synthesis of SeNPs stands as the

predominant technique for their acquisition and modification.

This method is favored due to its simplicity and the ease with

which the process can be managed and fine-tuned. Nevertheless, it

is imperative to take into account the potential for environmental

contamination and the accumulation of these chemically

synthesized materials within the body. Compared to chemically

synthesized SeNPs, biosynthesized SeNPs appear to be more

environmentally friendly and biologically safe (Figure 6).

Therefore, there is a growing interest in biosynthesized SeNPs,

also due in part to their extraordinary biocompatibility,

sustainability and affordability (251). These selenium

nanoparticle-enriched biomaterials are ingeniously crafted either

extracellularly or intracellularly by a diverse array of organisms,

including selective plants, bacteria, fungi, and other biological

entities (252–254).

Despite the large number of studies reporting positive

biomedical effects, there are still safety and toxicity issues for the

clinical use of selenium. Although the safe range of selenium is

narrow, the safe range of selenium is not only related to its

concentration but also to the form in which it is present. For

example, it has been shown that exceeding the upper limit of

selenium intake (400 mg/d) can lead to selenotoxicity, but no

significant symptoms of toxicity were observed when selenium

was ingested in the form of SeNPs (1,600 mg/d), and some

selenotoxicity symptoms did not occur until even an intake of

3,200 mg/d (255).

SeNPs have lower toxicity and better biological functions than

organic selenium such as selenomethionine (SeMet), selenocystine

(Sec) and seleno-methylselenocysteine (SeMetSec). Sec and seleno-

methylselenocysteine have lower toxicity and better biological

functions. For instance, SeMet significantly increased alanine

aminotransferase, aspartate transferase, and lactate dehydrogenase

levels in the liver for prolonged periods relative to SeNPs, exhibiting

acute liver injury (256). The LD50s for SeNPs, SeMet and SeMetSec

were 92.1, 25.6 and 14.6 mg/kg, respectively, making SeNPs less

toxic than organic selenium. On the other hand, SeNPs have lower

toxicity and better biological functions than inorganic selenium

(selenite and selenium dioxide). For example, inorganic selenium

significantly reduced glutathione reductase levels in the liver and

increased the production of lipid peroxides in the liver compared to

SeNPs, thereby reducing the activity of the antioxidant enzymes

SOD and CAT in the liver (257). The acute toxicity of SeNPs is

about seven times that of sodium selenite: their LD50s are 113 and

16 mg/kg, respectively. In vitro, SeNPs reacted with glutathione at a
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rate 1/10 that of sodium selenite. In vivo studies in rats have also

shown that SeNPs have similar efficacy and lower acute toxicity

compared to sodium selenite. In addition, selenium dioxide (LC50

= 6.7 mg/L) had a lower LC50 relative to SeNPs (LC50 = 41.0 mg/L).

The high toxicity of inorganic selenium (selenite and selenium

dioxide) and organic selenium is related to their ability to oxidize

sulfhydryl groups, leading to inactivation of sulfhydryl-containing

enzymes. Thus, compared to other forms of selenium, SeNPs have a

wider safety profile and can be used as potential chemotherapeutic

agents with lower toxicity risks.
6 Conclusion

Global cancer statistics show an alarming number of patients

suffering from the disease. Cancer places a heavy economic burden

on citizens. Society is under increasing economic pressure from

cancer due to the high cost of cancer treatment and diagnosis (258).

Despite the heavy economic burden, cancer remains a complex

global problem, and stands as the second leading cause of mortality

in the United States, underscoring the complexity and pervasiveness

of this disease (259). Possible preventive measures are therefore

being sought to prevent the development of cancer and thus holds

the promise of curtailing the incidence of new cases and deaths. To

date, many drugs have been introduced for cancer treatment in

different cancer stages. However, some of these drugs are less

selective for cancer cells and can be toxic to healthy cells.

For decades, selenium has been considered an essential trace

element that exerts its biological functions of antioxidant defence,

redox signalling and immune response through various

selenoproteins. Although some clinical trials have shown no
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significant benefit of selenium in preventing cancer, a large body

of evidence suggests that selenium is an effective anticancer agent in

some cases. Selenium boasts a well-established history as a potent

agent in the prevention of cancer. A multitude of factors that

influence the salutary effects of Se compounds have been

pinpointed, including the baseline Se status, the dosage levels

administered and the specific forms of Se employed (260).

Generally speaking, the salutary impacts of selenium become

particularly noticeable in populations characterized by initially

low selenium levels and modest dietary intakes (261, 262).

Selenium is considered a hormone chemical, a compound with a

biphasic dose response that is toxic at elevated concentrations but

has beneficial properties at low doses. Selenium acts as an anti-

cancer agent by employing a multifaceted approach to combat

malignancy. It impedes the invasive and metastatic capabilities of

tumor cells, initiates the process of apoptosis, instigates cell cycle

arrest, and fosters DNA repair mechanisms. The anticancer

properties of selenium have been well-documented across various

types of cancer, including those of the breast, liver, lung, colon, skin,

and rectum. Given its broad spectrum of activity and the established

evidence of its efficacy, selenium holds considerable promise as a

therapeutic agent in the clinical management of cancer.

Currently, a total of 25 selenoproteins have been discovered in

humans, most of which act as oxidoreductases with selenocysteine as

the catalytic redox activesite. Selenocysteine is a true protein amino acid

with a selenol function (SeH) that can be inserted into selenoproteins.

Although the biosynthesis of selenocysteine has been characterized as

“expensive” and “inefficient”, its incorporation into proteins allows

biological systems with the ability to execute fundamental chemical

functions that are beyond the specialized capabilities of cysteine (263).

Glutathione peroxidases (GPxs), iodothyronine deiodinases, and
FIGURE 6

The synthesis methods and advantages of selenium nanoparticles.
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thioredoxin reductases (TrxRs) all rely on the reactivity of the selenol

group within selenocysteine residues to perform their vital functions.

These enzymes, including GPxs and TrxRs, play a crucial role in

shielding cells from oxidative stress, a primary factor in the initiation

and advancement of numerous diseases. Their dependence on the

unique chemical properties of the selenol moiety highlights the

irreplaceable function of selenium in maintaining cellular health and

combating oxidative damage.

Ensuring an adequate intake of selenium may mitigate the risk of

developing cancer, autoimmune disorders, infertility issues, or

succumbing to severe illnesses, although it is acknowledged that

certain conditions arise from specific genotypes of selenoproteins.

Under such circumstances, the supplementation with either organic

or inorganic forms of selenium is a widely adopted approach to

guarantee sufficient selenium levels. Both in vivo and in vitro research

has demonstrated that selenium compounds manifest their

anticancer properties through diverse mechanisms. Nevertheless,

additional investigative efforts and clinical trials are essential to

establish these selenium compounds as recognized anticancer

agents in clinical practice. Beyond their application in cancer

therapy, selenium compounds have also proven to be valuable in

various cancer-related domains, such as chemoprevention, diagnostic

procedures, and imaging techniques. Furthermore, their utility

extends to areas beyond oncology, highlighting the broad spectrum

of potential benefits associated with selenium supplementation.

Recently, there has been a significant upsurge in the interest

surrounding the development of nanomaterials with enhanced

anticancer activity and less adverse effects on the body as

promising candidates for cancer treatment. In light of this

burgeoning interest, selenium-containing nanoparticles are under

investigation for their potential as novel therapeutic agents in the

fight against cancer. We can consider them as potential novel

therapeutic agents, both as drug delivery carriers and directly as

anticancer protective agents. The potential of selenium nanoparticles

in the near future can be considered for pharmaceutical applications

and nutritional supplements. There is a pressing need for more

rigorous and precise clinical trials to assess the viability and benefits

of selenium nanoparticles for enhancing human health. To advance

this field, extensive research is imperative to devise synthetic methods

that are both less toxic and more cost-effective. Additionally, a deeper

understanding of the function of selenium nanoparticles in cancer

therapy is necessary, particularly in the context of chemotherapy and

radiotherapy. This knowledge will be crucial for optimizing their

therapeutic efficiency and managing their cytotoxic effects, thereby

harnessing their potential to improve cancer treatment outcomes.
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In summary, remarkable advancements have been made over

the past decade in understanding the complex biology and

chemistry of Se. Se-based cancer therapies may have a bright

future, but a great deal of research work is still needed before we

see clinical candidates or even approved drugs. This ongoing effort

is crucial to transition from theoretical potential to tangible clinical

applications, including the development of viable candidates for

clinical trials and, ultimately, the approval of new drugs for

cancer treatment.
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