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Radiomic and dosimetric
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predicts radiation esophagitis in
patients with non-small cell
lung cancer undergoing
combined immunotherapy
and radiotherapy
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Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and
Shandong Academy of Medical Sciences, Jinan, Shandong, China, 3Department of Radiation
Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC),
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
Anhui, China, 4Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei,
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Background: The combination of immune checkpoint inhibitors (ICIs) and

radiotherapy (RT) may increase the risk of radiation esophagitis (RE). This study

aimed to establish and validate a new nomogram to predict RE in patients with

non-small cell lung cancer (NSCLC) undergoing immunochemotherapy

followed by RT (ICI-RT).

Methods: The 102 eligible patients with NSCLC treated with ICI-RT were divided

into training (n = 71) and validation (n = 31) cohorts. Clinicopathologic features,

dosimetric parameters, inflammatory markers, and radiomic score (Rad-score)

were included in the univariate logistic regression analysis, and factors with p <

0.05 in the univariate analysis were included in themultivariate logistic regression

analysis. Factors with significant predictive values were obtained and used for

developing the nomogram. The area under the receiver operating characteristic

curve (AUC), calibration curve, and decision curve were used to validate

the model.

Results: A total of 38 (37.3%) patients developed RE. Univariate and multivariate

analyses identified the following independent predictors of RE: a maximum dose

delivered to the esophagus >58.4 Gy, a mean esophagus dose >13.3 Gy, and the

Rad-score. The AUCs of the nomogram in the training and validation cohorts

were 0.918 (95% confidence interval [CI]: 0.824–1.000) and 0.833 (95% CI:
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0.697–0.969), respectively, indicating good discrimination. The calibration

curves showed good agreement between the predicted occurrence of RE

and the actual observations. The decision curve showed a satisfactory

positive net benefit at most threshold probabilities, suggesting a good

clinical effect.

Conclusions: We developed and validated a nomogram based on imaging

histological features and RT dosimetric parameters. This model can effectively

predict the occurrence of RE in patients with NSCLC treated using ICI-RT.
KEYWORDS

r a d i a t i o n e s o ph a g i t i s , n o n - sma l l - c e l l l u n g c a n c e r , r a d i om i c s ,
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1 Introduction

Lung cancer is the leading cause of cancer-related death globally,

with non-small cell lung cancer (NSCLC) accounting for

approximately 85% of all lung cancers. Approximately one-third of

patients with NSCLC have locally advanced disease at the time of

diagnosis (1). The emergence of immune checkpoint inhibitors (ICIs)

has transformed the treatment of NSCLC, bringing new options for

clinical care with significant efficacy in improving disease control,

overall survival, and quality of life (2, 3). Radiotherapy (RT) has long

been a cornerstone of NSCLC treatment (4). The combination of ICIs

and RT has a synergistic effect on NSCLC and can enhance the tumor-

killing effect of effector T cells and the distant effect of RT (5, 6).

The side effects of RT remain a significant challenge for

treatment management. Radiation esophagitis (RE) usually occurs

2–4 weeks after the start of treatment, and some symptoms, such as

progressive dysphagia, can appear up to 2 months after RT. Despite

advances in RT techniques, RE remains one of the major toxicities

among patients with NSCLC following RT (7). The incidence of RE

≥grade 2 ranges from 30% to 50% and increases at higher radiation

doses (8). RE can lead to dysphagia, retrosternal pain, and even

esophageal ulcer or fistula formation in severe cases. The

development of RE affects the quality of life of the patient and

may also require interruption or early termination of treatment,

resulting in a significant financial burden and poor prognosis (8, 9).

Importantly, RE affects local tumor control, and severe RE has a

negative impact on overall survival (10, 11). Therefore, early

identification of patients with risk factors for developing RE
cCRT, concurrent

um dose; GTV, gross

mean esophagus dose;

-1, programmed cell

e, radiomic score; RE,

istic; ROI, regions of
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allows clinicians to take appropriate preventive measures, such as

pharmacologic prophylaxis, dietary guidance, or nasal feeding.

Identifying patients at low risk for RE provides the opportunity to

moderately increase the dose of RT to improve tumor control.

Using radiomics, medical images can be converted into

mineable data through high-throughput extraction of quantitative

features, which is promising for cancer diagnosis, prognosis, and

treatment-response prediction (12–14). The maximum dose

delivered to the esophagus (Dmax), mean esophagus dose (MED),

percent of esophagus volume receiving ≥50 Gy (V50), concurrent

chemoradiotherapy (cCRT), neutrophil nadir during RT, high

platelet counts, and low hemoglobin levels before treatment have

been associated with the development of RE (15, 16).

However, the above studies have focused on the high-risk factors

for RE in patients with NSCLC undergoing cCRT, and did not analyze

the data of patients treated with ICIs prior to RT. In this study, we

collected data on clinicopathological features, computed tomography

(CT) imaging histological features, RT dosimetric parameters, and

inflammatory markers of patients to develop and validate a non-

invasive and personalized predictive model for the occurrence of RE in

patients with NSCLC who underwent RT after immunochemotherapy

(i.e., who had received ICIs prior to RT, ICI-RT).
2 Methods

2.1 Patients

The data of patients with NSCLC who underwent ICI-RT from

April 2021 to September 2023 at the Shandong Cancer Hospital and

Institute were retrospectively analyzed. The inclusion criteria were as

follows: (a) histopathologically confirmed diagnosis of NSCLC, which

included squamous cell carcinoma, adenocarcinoma, and other types

of NSCLC, such as large cell carcinoma; (b) clinical stage II–IV

carcinoma considered inoperable; and (c) patients treated with ICIs

prior to RT. The exclusion criteria were as follows: (a) previous chest
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RT and (b) incomplete recording of clinical information or loss of

visits. A total of 102 patients were eligible for enrollment and randomly

assigned to a training (n = 71) or a validation (n = 31) set in a 7:3 ratio,

as shown in Figure 1. This study was approved by the Ethics

Committee of the Shandong Cancer Hospital and Institute (approval

number: SDTHEC2022009020), which waived the requirement for

participant informed consent considering the retrospective nature of

the study. The study was conducted in accordance with the ethical

guidelines outlined in the Declaration of Helsinki.
2.2 Treatment regimen and dosimetric data

All patients underwent intensity-modulated radiation therapy

or three-dimensional conformal radiation therapy. The RT dose

was 36–70 Gy fractions, 5 days per week, 1 time per day. All patients

underwent CT scanning with a 3 mm slice thickness using a Philips

16-slice Brilliance large-aperture CT scanner (Philips Medical

Systems). The CT images were imported into the Eclipse 16.1

(Varian) planning system for target area and organ at risk

outlining. The gross tumor volume (GTV) was defined as the

primary tumor and metastatic lymph nodes visible on imaging.

The clinical target volume (CTV) was defined as microscopically

visible tumor microfoci outside the GTV. CTVmargins were 0.8 cm

beyond the GTV for adenocarcinoma and 0.6 cm beyond the GTV

for squamous cell cancer, including the drainage area of the positive

lymph nodes. The planning target volume was 0.5–1 cm outside the

CTV owing to various errors.
Frontiers in Oncology 03
Dosimetric parameters such as Dmax, MED, V20, V30, V40, V50,

and V60 were extracted from dose-volume histograms of the Eclipse

16.1 planning system. Vn was defined as the percentage of the total

esophageal volume irradiated with doses exceeding n Gy.

All patients underwent ICIs prior to RT, and chemotherapy could be

administered concurrently with ICIs. Immunotherapy regimens were 1–

8 cycles of programmed cell death-1 (PD-1) inhibitor administered

intravenously (pembrolizumab at a dose of 200 mg, camrelizumab at a

dose of 200 mg, tislelizumab at a dose of 200 mg, or sintilimab at a dose

of 200 mg) every 3 weeks or programmed cell death-ligand 1 (PD-L1)

inhibitor (atezolizumab at a dose of 1200 mg) every 3 weeks.

Chemotherapy regimens consisted mainly of platinum drugs

combined with pemetrexed or paclitaxel/albumin paclitaxel

intravenous infusion therapy. The former consisted of platinum agents

(carboplatin area under the curve 5–6 or cisplatin 75 mg/m2, day 1) and

pemetrexed 500 mg/m2, day 1; the latter chemotherapy regimen

consisted of paclitaxel 135–175 mg/m2, day 1 or albumin paclitaxel

125 mg/m2, days 1 and 8 in combination with platinum agents. Patients

underwent chemotherapy every 3 weeks for an average of 4 cycles, with

the dose of chemotherapy adjusted according to patient tolerance.
2.3 Toxicity assessment

Patients were assessed weekly for toxicities during RT and

followed up monthly for 6 months after the end of RT. The

diagnosis of RE was based on a combination of clinical

presentation, upper gastrointestinal barium meal, hematology test
FIGURE 1

Flow chart for patient inclusion.
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results, and endoscopy findings. The RE classification was based on

the Common Terminology Criteria for Adverse Events v5.0. as

follows: (a) Grade 1: asymptomatic, clinical or diagnostic findings

only, no treatment required; (b) Grade 2: symptomatic, altered

feeding/swallowing, need for nutritional supplementation by

mouth; (c) Grade 3: severe alteration of feeding/swallowing, need

for nasogastric feeding, total gastrointestinal parenteral nutrition, or

hospitalization; (d) Grade 4: life-threatening, need for urgent

surgical intervention; and (e) Grade 5: death.
2.4 Radiomic feature extraction

We analyzed the CT scans obtained from the enrolled patients

before the RT. If multiple CT images were available, the most recent

CT images before commencement of RT were used. CT images in

DICOM format were extracted from a PACS system. All tumor target

areas were manually depicted layer-by-layer by a radiation oncologist

using a 3D Slicer (version 5.2.1). The regions of interest (ROI) were

then confirmed by another clinician experienced in chest CT analysis.

All features were extracted using the open source software package

Pyradiomics in 3D Slicer. To reduce the variation across different

patient images, Z-score normalization was performed on all data as a

preprocessing step. To reduce any type of bias or overfitting caused by

too many features, features with high repeatability and stability were

first screened by calculating the intraclass correlation coefficient

(ICC). In this study, the features were screened using ICC > 0.9 as

the criterion. After the initial screening of features with high

repeatability, these features were further downscaled and screened

for key features using least absolute shrinkage and selection operator

regression (17, 18). Finally, the selected features and corresponding

weighting coefficients were linearly combined to create a radiomic

score (Rad-score) for each patient (19).
2.5 Model construction and evaluation

The point with the largest Youden’s index was determined as the

optimal cutoff value for each parameter using receiver operating

characteristic (ROC) curves. Univariate logistic regression was used

to analyze the correlation between clinicopathological characteristics,

RT dosimetry parameters, inflammatory indicators, Rad-score, and

RE in the training cohort. Factors with p < 0.05 were included in the

multivariate logistic regression analysis to screen for independent risk

factors. Next, a nomogram was constructed using factors with

significant predictive values derived from the multivariate analysis.

Finally, the predictive performance of the nomogram model for RE

was evaluated using the area under the ROC curve (AUC), calibration

curves, and decision curves in the training and validation cohorts.
2.6 Statistical analysis

Continuous variables were compared using independent sample

t-tests or rank-sum tests, whereas categorical variables were
Frontiers in Oncology 04
compared using chi-square or Fisher’s exact tests. Univariate and

multivariate logistic regression analyses were performed to identify

independent risk factors for RE. Spearman rank correlation

coefficients were used to assess the relationship between dose

parameters. All tests were two-sided, and p < 0.05 was considered

statistically significant. All data analyses and graphing were

performed using SPSS software (version 25.0; IBM Corp.) and R

software (version 4.3.2.).
3 Results

3.1 Patient characteristics and incidence
of RE

A total of 102 patients with NSCLC treated with ICI-RT

participated in this study. Of these, 88 (86.3%) were male and 43

(42.2%) aged ≤60 years. The tumors were located in the left and

right lung of 39 (38.2%) and 63 (61.8%) patients, respectively. More

than half of the patients had squamous cell carcinoma of the

pathologic type. Seventy-one patients were included in the

training cohort and 31 were included in the validation cohorts,

respectively. Table 1 summarizes the baseline characteristics of the

training and validation cohorts.

All patients had undergone prior treatment with PD-1 (96.1%)

or PD-L1 (3.9%) inhibitors, and the median time between

immunotherapy and initiation of RT was 17 days (IQR, 5–28).

The median time interval from RT initiation to RE occurrence was

18.5 days (IQR, 13.25–24.25). In total, 64 (62.7%) patients did not

develop RE, whereas 38 (37.3%) developed RE. Of these, 30 (29.4%)

had grade 2 RE, 1 (1.0%) had grade 3 RE, and no patients had grade

4–5 RE. RE occurred in 28 (39.4%) and 10 (32.3%) patients in the

training and validation cohorts, respectively. Table 2 lists the pre-

RT inflammatory indices and RT dosimetric parameters of patients

in the training and validation cohorts. No significant differences

were observed between the cohorts with respect to the

clinicopathological features, dosimetric parameters, and

inflammatory indices (p > 0.05).
3.2 Rad-score construction

A total of 991 features were extracted from each patient’s ROI

using the open-source package Pyradiomics in 3D Slicer software.

The extracted radiomics features included shape features, first-

order statistical features, gray level co-occurrence matrix, gray

level dependence matrix, gray level run-length matrix, gray

level size zone matrix, neighbor gray tone difference matrix,

and wavelet features. The meaning of these features has been

previously described (20), and details are available at https://

pyradiomics.readthedocs.io/en/latest/. A total of 13 radiomic

features that were most valuable for predicting RE were screened

(Figure 2). The Rad-score was derived from the linear combinations

of the selected key features and corresponding weighting

coefficients, as follows:
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TABLE 1 Basic clinical information of patients in the training and validation cohorts.

Characteristics Training
(n = 71)

Validation
(n = 31)

c² p-value

Sex (%)

Female 9 (12.68) 5 (16.13) 0.02 0.878

Male 62 (87.32) 26 (83.87)

Age (%)

≤60 30 (42.25) 13 (41.94) 0.00 0.976

>60 41 (57.75) 18 (58.06)

Pathology (%)

Squamous cell carcinoma 39 (54.93) 16 (51.61) 0.10 0.757

Adenocarcinoma 32 (45.07) 15 (48.39)

Clinical stage (%)

II-III 30 (42.25) 15 (48.39) 0.33 0.566

IV 41 (57.75) 16 (51.61)

Location (%)

Right 44 (61.97) 19 (61.29) 0.00 0.974

Left 27 (38.03) 12 (38.71)

KPS (%)

≥90 48 (67.61) 21 (67.74) 0.00 0.989

<90 23 (32.39) 10 (32.26)

Number of treatment cycles (%)

≤2 22 (30.99) 14 (45.16) 1.90 0.168

>2 49 (69.01) 17 (54.84)

T stage (%)

1 9 (12.68) 3 (9.68) 0.82 0.844

2 20 (28.17) 8 (25.81)

3 13 (18.31) 8 (25.81)

4 29 (40.85) 12 (38.71)

N stage (%)

0 7 (9.86) 2 (6.45) 4.58 0.205

1 14 (19.72) 4 (12.90)

2 19 (26.76) 15 (48.39)

3 31 (43.66) 10 (32.26)

Immunotherapy drugs (%)

PD-L1 2 (2.82) 2 (6.45) 0.10 0.753

PD-1 69 (97.18) 29 (93.55)
F
rontiers in Oncology
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KPS, Karnofsky performance status; PD-L1, programmed cell death-ligand 1; PD-1, programmed cell death-1.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1490348
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1490348
TABLE 2 Inflammatory indicators and radiotherapy parameters of patients in the training and validation cohorts.

Characteristics Training
(n = 71)

Validation
(n = 31)

c² p-value

NLR

≤3.3 49 (69.01) 24 (77.42) 0.75 0.387

>3.3 22 (30.99) 7 (22.58)

LMR

≤3.8 51 (71.83) 23 (74.19) 1.85 0.828

>3.8 20 (28.17) 8 (25.81)

PLR

≤178.0 42 (59.15) 18 (58.06) 0.01 0.918

>178.0 29 (40.85) 13 (41.94)

SII

≤703.4 48 (67.61) 21 (67.74) 0.00 0.989

>703.4 23 (32.39) 10 (32.26)

PAR

≤4.0 30 (42.25) 9 (29.03) 1.60 0.206

>4.0 41 (57.75) 22 (70.97)

Dmax

≤58.4 40 (56.34) 14 (45.16) 1.08 0.298

>58.4 31 (43.66) 17 (54.84)

MED

≤13.3 43 (60.56) 13 (41.94) 3.02 0.082

>13.3 28 (39.44) 18 (58.06)

V20

≤22.3 31 (43.66) 10 (32.26) 1.17 0.280

>22.3 40 (56.34) 21 (67.74)

V30

≤15.9 34 (47.89) 11 (35.48) 1.35 0.246

>15.9 37 (52.11) 20 (64.52)

V40

≤14.1 42 (59.15) 17 (54.84) 0.16 0.685

>14.1 29 (40.85) 14 (45.16)

V50

≤11.3 47 (66.20) 19 (61.29) 0.23 0.633

>11.3 24 (33.80) 12 (38.71)

V60

≤0 28 (39.44) 18 (58.06) 3.02 0.082

>0 43 (60.56) 13 (41.94)
F
rontiers in Oncology
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NLR, neutrophil–lymphocyte ratio; LMR, lymphocyte–monocyte ratio; PLR, platelet–lymphocyte ratio; SII, systemic immunoinflammatory index; PAR, platelet–albumin ratio; Dmax, maximum
dose; MED, mean esophagus dose; V20, percent of esophagus volume receiving ≥ 20 Gy; V30, percent of esophagus volume receiving ≥ 30 Gy; V40, percent of esophagus volume receiving ≥ 40 Gy;
V50, percent of esophagus volume receiving ≥ 50 Gy; V60, percent of esophagus volume receiving ≥ 60 Gy.
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3.3 Univariate and multivariate analyses in
the training cohort

The univariate logistic regression analysis of the training cohort

revealed that left location (p = 0.017), Karnofsky performance status

(KPS) < 90 (p = 0.008), platelet-albumin ratio (PAR) >4.0

(p = 0.022), Dmax > 58.4 Gy (p < 0.001), MED > 13.3 Gy (p =

0.001), V20 > 22.3% (p =0.041), V30 > 15.9% (p = 0.032), V60 > 0 (p =

0.032), and Rad-score (p < 0.001) were potential risk factors for the

development of RE (Table 3).

As shown in Figure 3, a significant correlation was observed

between the Vn parameters. Therefore, left location, KPS < 90, PAR

> 4.0, Dmax > 58.4 Gy, MED > 13.3 Gy, V60 > 0, and Rad-score were

included in the multivariate logistic regression analysis. The results

showed that Dmax > 58.4 Gy (odds ratio [OR]: 0.09, 95% confidence

interval [CI]: 0.02–0.99, p = 0.044), MED > 13.3 Gy (OR: 6.23, 95%

CI: 1.98–9.56, p = 0.027), and Rad-score (OR: 0.24, 95%CI: 0.10–

0.58, p = 0.002) all maintained significant differences and were

independent predictors of RE occurrence (Table 3).
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3.4 Establishment and evaluation of
the nomogram

Based on the results of the multivariate logistic regression analysis,

a nomogram was constructed using the identified independent

predictors (Figure 4). The ROC curves indicated the AUC of the

model in the training and validation cohorts to be 0.918 (95%CI:

0.824–1.000) and 0.833 (95%CI: 0.697–0.969), respectively, indicating

the good discriminative ability of the model (Figures 5A, D). In

addition, the predictive performance of the nomogram and three other

independent predictors for RE was compared. In the training cohorts,

the AUCs based on theMED, Dmax, and Rad-score models were 0.857,

0.797, and 0.684, respectively, and the nomogram model obtained an

AUC of 0.918 (Supplementary Figure 1A). In the validation cohorts,

the AUCs based on the MED, Dmax, and Rad-score models were

0.779, 0.633 and 0.630, respectively, while the AUC of the nomogram

model is 0.833 (Supplementary Figure 1B). The calibration curves of

the training and validation cohorts showed good agreement between

the actual and predicted occurrence probabilities of RE (Figures 5B, E),

and decision curves showed that the nomogram had a positive net

benefit for most threshold probabilities, suggesting that the model had

satisfactory clinical outcomes (Figures 5C, F).
4 Discussion

According to the PACIFIC criteria, approximately half of the

patients with unresectable NSCLC undergoing cCRT are not eligible

for durvalumab treatment (21, 22). RT after induction

immunochemotherapy has become a viable alternative treatment

strategy for patients with unresectable locally advanced NSCLC

(23). However, the combination of ICIs and RT also increases the

risk of RE. In this study, a total of 38 (37.3%) patients developed RE;

however, the field currently lacks a validated tool to identify patients

at high risk of developing RE. To the best of our knowledge, this was

the first study to use a predictive model for the development of RE

after treatment with a combination of ICIs and RT.

In this study, after multivariate analysis, Dmax > 58.4 Gy, MED >

13.3 Gy, and radiomic features were identified as independent risk
FIGURE 2

Radiomic feature selection using the LASSO regression model. (A) The LASSO regression model identified radiomic features with nonzero
coefficients predicting RE. (B) Distribution of LASSO regression coefficients for predicting radiomic characteristics of RE. (C) Optimal combination of
radiomic features and their correlation coefficients for predicting RE. LASSO, least absolute shrinkage and selection operator; RE,
radiation esophagitis.
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TABLE 3 Univariate and multivariate analysis of clinical and radiomic characteristics for RE prediction.

Univariate analysis Multivariate analysis

Characteristics
OR

(95% CI)
p-value

Regression coefficient OR
(95% CI)

p-value

Sex

Female 0.93 (0.79–0.90) 0.898

Male Ref

Age

≤60 Ref

>60 0.50 (0.22–1.14) 0.101

Pathology

Squamous cell carcinoma 0.92 (0.41–2.06) 0.840

Adenocarcinoma Ref

Clinical stage

II-III 0.58 (0.26–1.30) 0.184

IV Ref

Location

Right Ref Ref

Left 2.73 (1.20–6.25) 0.017 1.22 2.72 (0.32–11.48) 0.335

KPS

≥90 0.26 (0.09–0.70) 0.008 -1.87 0.11 (0.02–1.45) 0.117

<90 Ref Ref

Number of treatment cycles

≤2 0.76 (0.56–0.84) 0.184

>2 Ref

T

1 Ref

2 1.06 (1.02–2.45) 0.941

3 1.06 (1.01–3.52) 0.930

4 1.65 (1.40–2.51) 0.327

N

0 Ref

1 1.23 (1.13–2.12) 0.581

2 1.77 (1.33–2.44) 0.123

3 1.01 (1.00–1.32) 0.980

Immunotherapy drugs

PD-L1 1.62 (0.23–2.76) 0.595

PD-1 Ref

Total dose

≤60 0.62 (0.27–1.41) 0.256

>60 Ref

(Continued)
F
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TABLE 3 Continued

Univariate analysis Multivariate analysis

Characteristics
OR

(95% CI)
p-value

Regression coefficient OR
(95% CI)

p-value

NLR

≤3.3 Ref

>3.3 1.28 (0.53–3.08) 0.587

LMR

≤3.8 Ref

>3.8 1.46 (0.58–3.64) 0.423

PLR

≤178.0 Ref

>178.0 1.50 (0.67–3.38) 0.329

SII

≤703.4 Ref

>703.4 2.01 (0.86–4.70) 0.107

PAR

≤4.0 Ref Ref

>4.0 2.84 (1.16–6.96) 0.022 -0.44 1.75 (1.15–6.33) 0.733

Dmax

≤58.4 0.06 (0.02–0.18) <0.001 -2.44 0.09 (0.02–0.99) 0.044

>58.4 Ref Ref

MED

≤13.3 Ref Ref

>13.3 25.89 (8.44–79.40) 0.001 4.22 6.23 (1.98–9.56) 0.027

V20

≤22.3 Ref

>22.3 1.99 (1.59–10.03) 0.041

V30

≤15.9 Ref

>15.9 2.14 (2.04–12.95) 0.032

V40

≤14.1 Ref

>14.1 1.37 (1.46–7.80) 0.094

V50

≤11.3 Ref

>11.3 1.33 (1.42–7.81) 0.101

V60

≤0 Ref Ref

>0 2.14 (2.04–12.95) 0.032 1.54 1.47 (0.91–3.55) 0.225

Rad-score 0.30 (0.19–0.44) <0.001 -1.12 0.24 (0.10–0.58) 0.002
F
rontiers in Oncology 09
RE, radiation esophagitis; OR, odds ratio; CI, confidence interval; KPS, Karnofsky performance status; PD-L1, programmed cell death-ligand 1; PD-1, programmed cell death-1; NLR, neutrophil–
lymphocyte ratio; LMR, lymphocyte–monocyte ratio; PLR, platelet–lymphocyte ratio; SII, systemic immunoinflammatory index; PAR, platelet–albumin ratio; Dmax, maximum dose; MED, mean
esophagus dose; V20, percent of esophagus volume receiving ≥ 20 Gy; V30, percent of esophagus volume receiving ≥ 30 Gy; V40, percent of esophagus volume receiving ≥ 40 Gy; V50, percent of
esophagus volume receiving ≥ 50 Gy; V60, percent of esophagus volume receiving ≥ 60 Gy; Rad-score, radiomic score.
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factors for the development of RE following RT after

immunochemotherapy. The AUC values were 0.918 and 0.833 for

the training and validation cohorts, respectively, indicating

good discrimination.

Our study revealed Dmax and MED to be the independent risk

factors for RE, and the optimal thresholds for Dmax and MED in ICI-

RT were 58.4 Gy and 13.3 Gy, respectively. Huang et al. retrospectively
Frontiers in Oncology 10
analyzed 193 patients with NSCLC undergoing cCRT, multivariate

analysis showed that MED and V10–V60 were significantly correlated

with RE and that the MEDmodel was the best fitted model compared

with models with other parameters (24). Belderbos et al. evaluated 156

patients with inoperable or locally advanced NSCLC to analyze the

relationship between clinical and dosimetric parameters and acute

esophageal toxicity. The results showed that the most important
FIGURE 3

Correlation between the dosimetric parameters Vn (Spearman coefficient). The darker the red color, the stronger the positive correlation. V20,
percent of esophagus volume receiving ≥ 20 Gy; V30, percent of esophagus volume receiving ≥ 30 Gy; V40, percent of esophagus volume receiving
≥ 40 Gy; V50, percent of esophagus volume receiving ≥ 50 Gy; V60, percent of esophagus volume receiving ≥ 60 Gy.
FIGURE 4

Nomograms used for predicting RE in the training cohort. Nomogram incorporating the Dmax, MED, and Rad-score from patients with NSCLC. RE,
radiation esophagitis; Dmax, maximum dose; MED, mean esophageal dose; Rad-score, radiomic score; NSCLC, non-small cell lung cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1490348
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1490348
clinical parameter predicting acute esophageal toxicity was cCRT, and

among the dosimetric parameters, V35 was the strongest predictor of

grade ≥2 acute esophageal toxicity (25). Notably, Kim et al. showed

that V60 was significantly associated with the occurrence of grade 3

and higher RE (26). Furthermore, a meta-analysis by Palma et al.

based on data from 1082 patients treated with cCRT revealed that

although Dmax was significant in univariate analysis, it was not an

independent risk factor. Only V60 was the best predictor of grade 2

and 3 RE with good calibration and discrimination (27). This

difference can be attributed to the fact that previous studies were

based on the direct effects of RT on tumors and normal tissues;

however, the addition of ICIs strengthens the antitumor immune

response by inducing lymphocyte differentiation and upregulating

cytokine and autoantibody levels, resulting in excessive cytokine

release and increased immune cell infiltration, which amplifies the

inflammatory response in irradiated normal tissues (28). In addition,

the antitumor effect on the body is enhanced after the application of

ICIs, and the accumulation of self-DNA released from dead tumor

cells can trigger the cGAS–STING signaling pathway, which induces

the production of interferon and inflammatory cytokines and

ultimately triggers an inflammatory response (29).

Artificial intelligence methods to extract tumor information and

build machine models have been applied to tumor lymph node

metastasis, tumor clinicopathological grading, and T staging (13).

Moreover, quantifying tumor heterogeneity is also possible using

artificial intelligence, which plays an important role in personalized

prediction. Zheng et al. included 161 patients with locally advanced

NSCLC treated with RT and developed a model to predict grade ≥2

acute RE based on multi-omics features, including imaging and

dosimetry. Multi-omics features exhibited similar predictive

properties as radiomics features; however, the separate predictive

properties of dosimetry features and clinical factors were limited
Frontiers in Oncology 11
(30). Xie et al. combined deep learning, radiomics, and dosimetry

features to predict RE in patients with esophageal cancer

undergoing volumetric modulated arc therapy, and the

combination of various feature extraction methods improved the

accuracy of RE prediction (31). In addition, radiomics exhibit good

efficacy in predicting RT-associated lung injury (32, 33). Additional

studies have shown that the use of complex static step and shoot

technique can reduce radiotherapy-related toxicity by keeping the

organs at risk dose within the limits of quantitative analyses of

normal tissue effects in the clinic (34). In this study, we selected the

13 radiomics features that were most valuable for predicting RE.

The Rad-score was obtained by weighting them according to their

respective coefficients and were statistically different in multivariate

analyses. These findings support the potential of imaging histology

in predicting the occurrence of RE in patients with NSCLC treated

with ICI-RT. Internal validation was performed to validate the

accuracy of our prediction model. The AUC of the ROC curve, the

calibration curve, and the decision curve indicated that the model

had good discriminatory power and clinical effectiveness. In the

modern era of personalized medicine, integrated multi-omics

approaches improve diagnostic accuracy and predictive precision,

and this study integrates radiomics, dosimetry, and clinical factors

to predict the risk of RE in patients with NSCLC treated with ICI-

RT. Our findings provide a new direction for individualized

decision-making and the prediction of adverse effects of RT

for NSCLC.

Our study also has some limitations. First, avoiding selection

bias was difficult owing to the retrospective nature of this study;

therefore, further prospective studies on RE are required to validate

these results. Second, this was a single-center study, and although

internal validation indicated an excellent AUC of the current

predictive model, the results would have been more convincing
FIGURE 5

ROC, calibration curves, and decision curves for nomograms predicting RE in the training cohort and validation cohort. (A) ROC curves for the
nomograms for the training cohort. (B) Calibration curves for the nomograms for the training cohort. The x and y axes represent the predicted and
actual probabilities, respectively. (C) Decision curves for the nomograms for the training cohort. The x and y axes represent the threshold probability
and net benefit, respectively. (D) ROC curves for the validation cohort nomogram. (E) Calibration curves for the validation cohort nomogram. The x
and y axes represent the predicted and actual probabilities, respectively. (F) Decision curves for the validation cohort nomogram. The x and y axes
represent the threshold probability and net benefit, respectively. ROC, receiver operating characteristic; RE, radiation esophagitis.
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with external validation. Third, the sample size of the present study

was relatively small, and future studies should include data from

more research centers and larger population samples.

In summary, Dmax > 58.4 Gy, MED > 13.3 Gy, and Rad-score

were independent predictors of RE occurrence in patients with

NSCLC treated with ICI-RT. These variables were used to develop

and validate a novel nomogram for early screening of patients with

NSCLC treated with ICI-RT. The predictive model developed in

this study can be used to identify patients who are at increased risk

of developing RE during RT.
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