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Problem: Sinonasal squamous cell carcinoma (SNSCC) and sinonasal lymphoma

(SNL) lack distinct clinical manifestations and traditional imaging characteristics,

complicating the accurate differentiation between these tumors and the

selection of appropriate treatment strategies. Consequently, there is an urgent

need for a method that can precisely distinguish between these tumors

preoperatively to formulate suitable treatment plans for patients.

Methods: This study aims to construct and validate ML and DL feature models

based on Dynamic Contrast-Enhanced (DCE) imaging and to evaluate the clinical

value of a radiomics and deep learning (DL) feature fusionmodel in differentiating

between SNSCC and SNL. This study performed a retrospective analysis on the

preoperative axial DCE-T1WI MRI images of 90 patients diagnosed with sinonasal

tumors, comprising 50 cases of SNSCC and 40 cases of SNL. Data were randomly

divided into a training set and a validation set at a 7:3 ratio, and radiomic features

were extracted. Concurrently, deep learning features were derived using the

optimally pre-trained DL model and integrated with manually extracted radiomic

features. Feature sets were selected through independent samples t-test, Mann-

Whitney U-test, Pearson correlation coefficient and LASSO regression. Three

conventional machine learning (CML) models and three DL models were

established, and all radiomic and DL features were merged to create three pre-

fusion machine learning models (DLR). Additionally, a post-fusion model (DLRN)

was constructed by combining radiomic scores and DL scores. Quantitative

metrics such as area under the curve (AUC), sensitivity, and accuracy were

employed to identify the optimal feature set and classifier. Furthermore, a deep

learning-radiomics nomogram (DLRN) was developed as a clinical decision-

support tool.

Results: The feature fusion model of radiomics and DL has higher accuracy in

distinguishing SNSCC from SNL than CML or DL alone. The ExtraTrees model

based on DLR fusion features of DCE-T1WI had an AUC value of 0.995 in the

training set and 0.939 in the validation set.The DLRN model based on the fusion

of predictive scores had an AUC value of 0.995 in the training set and 0.911 in the
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validation set.The DLRN model based on the fusion of predictive scores had an

AUC value of 0.995 in the training set and 0.911 in the validation set.

Conclusion: This study, by constructing a feature integration model combining

radiomics and deep learning (DL), has demonstrated strong predictive

capabilities in the preoperative non-invasive diagnosis of SNSCC and SNL,

offering valuable information for tailoring personalized treatment plans

for patients.
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1 Introduction

Sinonasal squamous cell carcinoma (SNSCC) is the predominant

histological subtype of sinonasal malignancies, comprising about 61%

of cases. SNSCC generally adopts a multimodal treatment strategy,

primarily surgical intervention, complemented by postoperative

radiotherapy and/or chemotherapy (1). In contrast, sinonasal

lymphoma (SNL) is more common in China and ranks as the

second most frequent primary malignant tumor in the sinonasal

area, following squamous cell carcinoma. The principal treatment for

SNL involves chemotherapy, supplemented by radiotherapy and

immunotherapy, usually excluding surgical options (2). Hence,

precise differentiation between these two conditions is essential

prior to commencing treatment (3).

The clinical presentations of these diseases are often non-specific,

manifesting early symptoms like nasal bleeding and sinusitis. Nasal

endoscopy biopsy, while the gold standard for diagnosing both types

of tumors, has limited capability in assessing the internal

heterogeneity and involvement of adjacent structures (4). Presently,

CT and MRI stand as the principal non-invasive imaging techniques

for assessing and diagnosing sinonasal disorders. The imaging

features and enhancement patterns of SNSCC and SNL on CT and

MRI are almost indistinguishable, complicating their differentiation

based solely on conventional imaging (5, 6). Thus, developing a non-

invasive, comprehensive, and effective early diagnostic method to

distinguish between SNSCC and SNL before surgery is crucial for

strategic treatment planning.

Machine learning (ML) is extensively utilized in diagnosing

head and neck diseases, enhancing clinical decision-making,

especially within the anatomically complex sinonasal region (7).

Previous research has demonstrated that traditional radiomics

models significantly enhance the diagnostic differentiation of

SNSCC and SNL (8). Additionally, machine learning can

distinguish between various pathological subtypes of SNL (9).

However, traditional machine learning approaches often require

manual design and feature extraction, which may not thoroughly or

accurately assess the complete biological characteristics of the

tumor (10).
02
Deep learning (DL), a subset of machine learning, empowers

computers to autonomously learn pattern features and incorporate

feature learning into the model development process. This

approach mitigates the limitations associated with manual feature

design and enhances the accuracy of medical image classification

and its broader applicability. Unlike radiomics, convolutional

neural networks (CNNs) possess multiple hidden layers that

engage with predefined non-linear functions, learning features

that surpass traditional radiomics in performance (11, 12). DL

based on MRI has been extensively applied in diagnosing and

treating SNSCC (10, 13, 14).

Extensive research indicates that ML and DL significantly

enhance the segmentation, classification, and prediction of

nasopharyngeal carcinoma (15, 16). Feature integration, which

combines ML with DL, is an effective strategy that merges

manually extracted radiomic features with automatically learned

DL features to create a more comprehensive feature set. This

method of feature integration maximizes the advantages of

traditional features in specific domains while addressing the

limitations of deep learning models in handling small datasets,

thereby enhancing the diagnostic performance of diseases. So is it

possible to combine traditional machine learning algorithms with

deep learning techniques in the diagnosis of nasal sinus tumors in

order to improve the ability to differentiate squamous cell

carcinoma of the nasal sinuses from lymphoma of the nasal

sinuses? To date, no research has integrated MRI-based machine

learning with three-dimensional (3D) deep learning to differentiate

between SNSCC and SNL. This study aims to assess the efficacy of

CML models, DL models, and their integrated forms, and to

evaluate their effectiveness in the preoperative differentiation of

SNSCC from SNL lesions.

The structure of this paper is organized as follows: The first part

reviews the diagnostic and treatment strategies for SNSCC and SNL,

emphasizing the importance of accurate differentiation and

proposing the use of ML and DL technologies to enhance

diagnostic performance. The second part describes the research

methodology in detail, including data collection, feature extraction,

and model construction. The third part presents the research results
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to validate the effectiveness of the models. The fourth part discusses

the findings of the study. Finally, the paper concludes with the main

discoveries and suggests directions for future research.
1.1 Main contributions

The advantages of feature fusion are evident: This research,

through pre-fusion and post-fusion strategies, has validated the

efficacy of integrating radiomics and deep learning features,

effectively distinguishing between SNSCC and SNL.

Clinical decision support tools have been provided: Based on

the study’s findings, a deep learning-radiomics nomogram has been

constructed to aid physicians in clinical decision-making.
2 Materials and method

2.1 General data

This retrospective study was approved by our hospital

institutional review board. A retrospective analysis was performed

on 90 patients diagnosed with sinonasal tumors (mean age, 59.94 ±

14.78 years; 55 males and 35 females; 50 cases of SNSCC and 40

cases of SNL) from January 2015 to September 2024. Clinical data,

including age, gender, and smoking history, were collected.

Inclusion criteria encompassed: (1) patients confirmed to have

SNL or SNSCC through postoperative pathology; (2) patients who

had undergone preoperative enhanced MRI scans without prior

treatment. Exclusion criteria included: (1) poor image quality or

tumor volume too insubstantial for effective segmentation;
Frontiers in Oncology 03
(2) patients with a history of surgical or other treatments. The

recruitment pathway is shown in Figure 1.
2.2 Instruments and equipment

A Philips 3.0 T superconducting MRI scanner (Achieva TX; the

Netherlands), equipped with a 16-channel head and neck coil, was

employed. DCE-T1WI scanning parameters were set as follows: 10

dynamic scans per patient, with a TR of 3.3 ms, TE of 1.6 ms, slice

thickness of 1 mm, matrix of 244×188, and a field of view (FOV) of

220mm×220mm. The contrast agent utilized was Gd-DTPA (Bayer

Healthcare Pharmaceuticals, Germany), administered at a dosage of

0.1 mmol/kg and a flow rate of 2 ml/s.
2.3 MRI acquisition and segmentation

Initially, image formats were converted from DICOM to NIFTI,

and all images underwent standardization with a pixel spacing

adjusted to 1 × 1 × 1 mm³. Regions of interest (ROI) were manually

outlined by a radiologist with 10 years of experience using ITK-

SNAP 3.8.0 (http://www.itksnap.org) and independently verified by

another radiologist with 15 years of experience. Both agreed that the

optimal enhancement effect was observed in the lesions of the 7th

phase, with the best observation and outlining of the solid

components of the lesion, effectively avoiding adjacent nasal sinus

tissue. These enhanced lesions on each slice of the 7th phase of the

DCE sequence were meticulously delineated, and the data were

stored as 3D volumes of interest (VOI).
FIGURE 1

Flowchart of patient recruitment. SNSCC, Sinonasal squamous cell carcinoma; SNL, sinonasal lymphoma.
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2.4 Model construction and
experimental design

This study aimed to develop three types of models based on

DCE sequences:
Fron
1. Task 1: Extracting radiomics features to construct three

classical machine learning (CML) models: logistic

regression (LR), k-nearest neighbors (KNN), and light

gradient boosting machine (LightGBM);

2. Task 2: Developing three 3D deep learning models (ResNet

10, ResNet 18, and ResNet 34);

3. Task 3: Creating two types of fusion models, specifically

feature fusion models and predictive score fusion models.
The feature fusion model integrated selected radiomics and

deep learning features, utilizing deep learning techniques to

formulate a deep learning-based radiomics (DLR) fusion model.

This approach combined CML scores and DL scores to develop a

predictive score fusion model, termed the deep learning radiomic

nomogram (DLRN). The research methodology is depicted

in Figure 2.

Task 1: Construction and Validation of CML Models

Image preprocessing and feature extraction were conducted using

PyRadiomics 3.0.1, resulting in the extraction of 1834 radiomics

features. Patients were allocated into training and internal validation

sets at a 7:3 ratio. All radiomics features underwent Z-score

normalization and t-tests, retaining only those with p-values < 0.05.
tiers in Oncology 04
Pearson correlation coefficients assessed correlations among highly

repetitive features; features with coefficients greater than 0.9 were

consolidated, retaining only one. The remaining CML features

underwent further selection using the Least Absolute Shrinkage and

Selection Operator (LASSO) technique.

Classification models were developed for each feature set using

CML techniques (LR, KNN, LightGBM). ROC curves were plotted

for both the training and validation sets, calculating the area under

the curve (AUC), accuracy (ACC), and other metrics to assess each

model’s predictive capacity.

Task 2: Construction and Validation of Deep Learning Models

This study was executed in Python 3.10. Initially, all images and

delineated ROIs were uploaded into the system, and the minimal

bounding box around the tumor was segmented. Surrounding

background tissue was removed, isolating the 3D volume of

interest (VOI) for model development and testing. 3D-CNNs were

utilized to exploit the volumetric data (e.g., MRI images) more

thoroughly than 2D and 2.5D methods, enhancing the detection of

complex features in supervised learning tasks and bolstering the

efficacy of end-to-end automatic disease classification and diagnostic

support. This approach deepened the model’s comprehension and

analytical capabilities regarding tumors (17). Pre-trained 3D-CNN

models (ResNet 10, ResNet 18, and ResNet 34) from the ImageNet

dataset were employed for transfer learning. The 3D spatial

dimensions of the input VOI were set to 64×64×48. The Adam

optimizer, with a learning rate of 0.01 and a batch size of 4, was used.

Each model underwent 60 epochs of training on the entire dataset to

enhance data interpretation and predictive accuracy, thereby
FIGURE 2

Workflow Diagram. It involves defining 3 tasks using the DCE sequence: (1) Task 1 established 3 CML models; (2) Task 2 developed 3 3D deep
learning models; (3) Task 3 created 2 fusion models.
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improving the model’s generalization capacity. Adam, a renowned

stochastic gradient descent optimization algorithm, integrates

adaptive learning rate mechanisms and momentum to optimize

neural network parameters, enhancing training efficacy and

convergence speed.

Post-training, network parameters were fixed, and the stabilized

model served as a feature extractor. DL feature extraction code was

derived from the “One-key AI” platform based on PyTorch 1.8.0

(https://github.com/OnekeyAI-Platform/onekey).

Task 3: Development of DLR and DLRN Models

DL features were harvested from the penultimate layer of the

finely-tuned network for each patient in both the training and

validation cohorts. Information derived from the last convolutional

layer was utilized for weighted fusion, employing Gradient-weighted

Class Activation Mapping (Grad-CAM) to visualize the model. This

process produced class activation maps that underscored critical

regions within the images for classification purposes.

Due to the extensive number of features extracted by the DLmodel,

Principal Component Analysis (PCA) was implemented to manage the

high-dimensional data. PCA, a statistical method, simplifies data by

discerning patterns and interrelationships among variables within

high-dimensional datasets, thus minimizing redundant information

and enhancing the efficiency of subsequent data analysis and modeling

(18). The PCA-reduced features were amalgamated with radiomics

features to advance DLR modeling. The feature selection procedure

and model development approach for the DLR model mirrored those

used for the CMLmodels, leading to the establishment of three models:

KNN, ExtraTrees, and RandomForest. In this model, we fuse radiomics

features with deep learning extracted features in the same feature space.

Such fusion can fully utilize the advantages of both and mitigate the

instability linked to constrained sample sizes.

Moreover, a predictive score fusion model, known as DLRN,

was devised by amalgamating the respective CML and DL scores.

The DLRN was engineered by weighting these scores based on their

respective coefficients to compute the DLRN for each patient across

the training and validation datasets. In this model, we train CML

and DL models separately and then combine their outputs. By

combining the predictions of different models, this strategy is able

to reduce the possible bias of a single model and improve the

robustness and accuracy of the overall classification.
Frontiers in Oncology 05
The optimal CML model, premier DL model, leading DLR

model, and the DLRN model were all evaluated and their

performances compared using AUC among other metrics.

Decision Curve Analysis (DCA),calibration curves and Delong

test were employed to assess the clinical utility of these models.
2.5 Statistical analysis

The clinical characteristics of the training and validation cohorts

were analyzed using Python 3.7.0 and the statsmgdels version 0.13.

Continuous variables were assessed using independent sample t-tests

or Mann-Whitney U tests, and categorical variables were examined

via chi-square tests. A p-value of less than 0.05 was deemed to

indicate statistical significance.
3 Results

3.1 Clinical data

A total of 73 patients were included in this study. The patients

were randomly divided into training (n = 51, SNSCC = 26 and

SNL = 25) and validation (n = 22, SNSCC = 16 and SNL = 6) sets in

a 7:3 ratio. There were no statistically significant differences in age,

gender, or smoking history between the two groups (P > 0.05 for all,

as shown in Table 1).
3.2 Task 1: Construction and validation of
CML models

A total of 1834 features were extracted across 7 categories,

including 14 shape features, 360 first-order features, and 1460

texture features. After LASSO regression screening, 19 non-zero

coefficient features were selected for further analysis. The

coefficients and mean squared error (MSE) from 10-fold cross-

validation are shown in Figure 3.

Table 2 presents the performance of the CML models, with

LRoutperforming the KNN and LightGBM classifiers. The AUC
TABLE 1 Clinical information of SNSCC and SNL patients in this study.

Clinical
Characteristics

Training
Set –

ALL(n=63)

Training
Set –

SNL(n=28)

Training Set
–

SNSCC
(n=35)

P
Value

Validation
Set –

ALL(n=27)

Validation
Set –

SNL(n=12)

Validation
Set –

SNSCC(n=15)

P
Value

Age 59.94 ± 14.78 57.71 ± 15.72 61.71 ± 13.95 0.289 58.37 ± 12.70 58.50 ± 10.34 58.27 ± 14.68 0.963

Gender 1.0 0.964

Male 38(60.32) 17(60.71) 21(60.00) 17(62.96) 7(58.33) 10(66.67)

Female 25(39.68) 11(39.29) 14(40.00) 10(37.04) 5(41.67) 5(33.33)

Smoking History 1.0

Non-smoker 29(46.03) 13(46.43) 16(45.71) 11(40.74) 5(41.67) 6(40.00) 1.0

Smoker 34(53.97) 15(53.57) 19(54.29) 16(59.26) 7(58.33) 9(60.00)
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values for theLR model in the training and validation sets were

0.967 and 0.806, respectively. Additionally, the DCA curve for the

best model, KNN, in the validation set is shown in Figure 4.
3.3 Task 2: Construction and validation of
deep learning models

In the validation set, the ResNet 18 model demonstrated

superior performance compared to the other two deep learning

models (see Table 2; Figure 5). The ResNet 18 model achieved an

AUC of 0.856, an accuracy of 0.741, a sensitivity of 0.733, and a

specificity of 0.750 in the validation set.
3.4 Task 3: Construction of DLR and
DLRN models

Due to the better predictive performance of the ResNet 18

model, we extracted deep learning features from the fixed ResNet 18

model. A total of 512 DL features were extracted from each 3D

sample and reduced to 32 DL features using PCA. The DL score

consists of these 32 features.

These 32 DL features were combined with the 1834 radiomics

features from Task 1, resulting in a total of 1866 features. After

LASSO logistic regression screening, only 16features were retained.

Finally, due to the superior performance of the ExtraTrees classifier

model (Table 2), we used the ExtraTrees classifier to construct the

DLR model (Figure 6).

We also constructed a feature-selected predictive score fusion

model (DLRN). The DLRN framework is based on the combination

of CML scores and DL scores. The individual variable values (KNN

score and ResNet 18 score) were determined based on the top

Points scale, and the points for each variable were summed

(Figure 7). Finally, the probability of diagnosing SNSCC was

obtained using the Total Points scale at the bottom.

Table 2 lists all the models used for differentiating SNSCC and

SNL. The ExtraTrees classifier in the DLR model has the highest

AUC values in the training and validation sets of 0.995 and 0.939,
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respectively. The DLRN model, although its validation set AUC

value (AUC=0.911) is slightly lower than that of the best DLR

model, its validation set accuracy and sensitivity (accuracy of 0.889

and sensitivity of 0.867) are higher than all other models, which

shows the highest performance.

Figure 8 shows the AUC, calibration curves, DCA and Delong

test for the best CML model (KNN), best DL model (ResNet18),

best DLR model, and DLRN model in the training and validation

cohorts. During training, the preoperative application of the DLRN

model demonstrated higher clinical benefits in distinguishing

SNSCC from SNL compared to the other three models.
4 Discussion

Sinonasal squamous cell carcinoma (SNSCC) and sinonasal

lymphoma (SNL) are the two most prevalent malignant tumors

in the sinonasal region, yet their etiologies remain elusive. They may

be linked to exposure to industrial substances like formaldehyde,

wood dust, welding fumes, as well as smoking and tobacco use

(1, 19). Consequently, this study incorporated an analysis of the

smoking history of patients with these conditions. Given the limited

availability of clinical factors and the absence of statistical

significance, clinical factors were not included in this study,

aligning with prior research (8, 13).

The choice to base this study on a single DCE-T1WI sequence

was driven by several factors. Previous research on head and neck

tumors has demonstrated that DCE-MRI holds promising potential

for diagnosing and treating squamous cell carcinoma and

lymphoma, especially in differentiating between the two (20, 21).

Research has shown that, compared to other standard MRI

sequences, the texture parameters of DCE-T1WI significantly

expose the internal heterogeneity and structure of tumors (8, 22,

23). Su et al. (24) analyzed the texture parameters of T2WI, ADC,

and DCE-T1WI images in patients with sinonasal non-Hodgkin

lymphoma (NHL) and squamous cell carcinoma (SCC), finding

that the texture parameters based on the T2WI sequence lacked

statistical significance, while the mean value of DCE-T1WI in SCC

was substantially higher than in NHL (p=0.015). This indicates that
FIGURE 3

Coefficients of 10-fold cross-validation in CML model (A). MSE of 10-fold cross-validation in CML model (B), l=0.0596. Selected features weight
coefficients (C).
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the DCE sequence offers higher specificity in texture features

compared to other sequences, and enhanced scanning aids in

delineating the extent of lesion infiltration.

Although previous studies have acknowledged the diagnostic

value of CT or MRI in identifying lymphoma and squamous cell
Frontiers in Oncology 07
carcinoma, traditional imaging features often do not distinctly

differentiate between the two (5, 6). It has been noted that

diffusion-weighted MRI (DWI) can enhance the accuracy of

distinguishing these tumors in the head and neck area. However,

due to the similar histological characteristics shared by squamous
FIGURE 4

ROC analyses for different CML model validation groups (A) and DCA curves for the best model LR (B).
TABLE 2 Performance of each model on the training and validation sets.

Model Type Model Name AUC 95% CI Accuracy Sensitivity Specificity PPV NPV Group

CML Models LR 0.967 0.9330- 1.0000 0.889 0.800 1.000 1.000 0.800 Training Set

LR 0.806 0.6319– 0.9792 0.741 0.800 0.667 0.750 0.727 Validation Set

LightGBM 0.925 0.8590- 0.9910 0.873 0.829 0.929 0.935 0.812 Training Set

LightGBM 0.575 0.3471- 0.8029 0.556 0.333 0.833 0.714 0.500 Validation Set

KNN 0.922 0.8624- 0.9815 0.667 0.400 1.000 1.000 0.571 Training Set

KNN 0.761 0.5833- 0.9389 0.667 0.533 0.833 0.800 0.588 Validation Set

DL Models ResNet10 0.906 0.8347-0.9756 0.825 0.886 0.750 0.816 0.840 Training Set

ResNet10 0.772 0.5808-0.9637 0.778 0.800 0.750 0.800 0.750 Validation Set

ResNet18 0.966 0.9267-1.0000 0.921 0.914 0.929 0.941 0.897 Training Set

ResNet18 0.856 0.7153-0.9958 0.741 0.733 0.750 0.786 0.692 Validation Set

ResNet34 0.951 0.8911-1.0000 0.905 0.857 0.964 0.968 0.844 Training Set

ResNet34 0.783 0.5843-0.9824 0.815 0.800 0.833 0.857 0.769 Validation Set

DLR Models KNN 0.997 0.9920- 1.0000 0.921 0.857 1.000 1.000 0.848 Training Set

KNN 0.867 0.7281- 1.0000 0.778 0.667 0.917 0.909 0.687 Validation Set

ExtraTrees 0.995 0.9853- 1.0000 0.952 0.914 1.000 1.000 0.903 Training Set

ExtraTrees 0.939 0.8501- 1.0000 0.852 0.733 1.000 1.000 0.750 Validation Set

LightGBM 0.931 0.8714- 0.9909 0.857 0.800 0.929 0.933 0.788 Training Set

LightGBM 0.814 0.6478- 0.9800 0.667 0.400 1.000 1.000 0.571 Validation Set

DLRN Model 0.995 0.9841 - 1.0000 0.968 0.971 0.964 0.971 0.964 Training Set

0.911 0.7845 - 1.0000 0.889 0.867 0.917 0.929 0.846 Validation Set
The AUC value of the model with the best efficacy in each task was bolded, and all the performances of the best performing DLRN model were bolded.
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cell carcinoma and lymphoma, their ADC values may closely align

in certain cases, resulting in reduced specificity in differentiating

ADC values (25). Consequently, features that are visually

identifiable may not accurately reflect the pathological details of

SCC or lymphoma. Radiomics, on the other hand, transforms

images into high-throughput quantitative features that thoroughly

characterize the potential heterogeneity of tumors, thereby

facilitating clinical decision-making. Numerous studies have

demonstrated that integrating machine learning with omics can

significantly improve the accuracy of omics data, offering great

potential in disease classification and diagnosis (26). Wang et al. (8)

developed an MRI-based radiomics model using a support vector

machine (SVM) classifier to distinguish SNL from SNSCC,

achieving AUC values of 0.94 and 0.85 in the training and

validation sets, respectively, proving that radiomics can more

precisely differentiate SNL from SNSCC. In our analysis, among

the CML models created based on the DCE-T1WI sequence, the

Logistic Regression (LR) algorithm emerged as the most effective

classifier, registering the highest AUC in both the training and

validation sets (AUC=0.806).

Deep learning algorithms have significantly impacted image

recognition, disease diagnosis, and prognosis prediction (27, 28).

CNNs have enhanced medical imaging, but increasing neural
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network layers can cause issues such as gradient vanishing

or network degradation, which may reduce performance.

We selected ResNet for this study because, unlike traditional non-

residual deep learning networks, it effectively addresses the issues of

gradient vanishing and performance degradation through the

introduction of residual connections. This allows ResNet to

maintain better stability, efficiency, and performance in training

deep networks (29). In this research, the ResNet 18 classifier

demonstrated the highest performance (AUC=0.856), while the

ResNet 10 classifier showed the lowest. The performance variance

among the DL models can be attributed to their differing network

depths and complexities (30). Mohammeda et al. (31) proposed a

new method for the automatic segmentation and recognition of

nasopharyngeal carcinoma microscopic images based on artificial

neural networks. The results indicate that neural network classifiers

outperform SVM classifiers in handling high-dimensional features.

Our findings also show that DLmodels are more effective than CML

models, likely because deep learning enables end-to-end

classification and prediction, automatically extracting complex

features from the raw pixels of input images without relying on

manually designed feature extraction methods (32).

The advantage of CML lies in its ability to reduce data complexity

through dimensionality reduction techniques; deep learning excels at
FIGURE 6

ROC analysis of three DLN models validation group (A) and DCA curves for the best model ExtraTrees (B).
FIGURE 5

ResNet 10 (A), ResNet 18 (B), ResNet 34 (C) model training set and validation ROC analysis.
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capturing deeper features. Integrating traditional radiomics with deep

learning for feature integration not only reduces biases and overfitting

from single feature sets, thus enhancing model robustness, but also

introduces more diverse information, improving the model’s

adaptability across different scenarios. Studies have shown that

combining these two model types yields better results in differential

diagnosis of head and neck diseases than using a single model (33, 34).

Table 2 lists all models differentiating SNSCC from SNL, with the

ExtraTrees classifier in the DLR model achieving the highest AUC

values in both training and validation sets. In the DLR model, the

ExtraTrees classifier outperformed the other two classifiers, likely due

to its ability to automatically perform feature selection with tree

models, effectively handling high-dimensional feature data and
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minimizing the impact of feature quantity on model performance.

Although the DLRN model has a slightly lower AUC in the validation

set compared to the best DLR model, its accuracy and sensitivity are

higher than all other models. The DLRN model not only exhibited the

highest performance but also provided a visual tool that transforms

complex statistical data into simple graphical representations, offering

clinicians a method for quantitative assessment of diagnoses. Overall,

the integration of DL and CML technologies holds the potential to

non-invasively differentiate SNSCC from SNL.

This study has several limitations. (1) The relatively small

sample size from a single-center study may affect the model’s

generalizability. (2) To ensure more robust and reliable analysis, a

larger dataset is necessary. Although feature integration reduces the
FIGURE 8

The summary of the best CML model, best DL model, best DLR model, and DLRN model in terms of ROC (A), calibration curves (B), DCA curves (C),
and Delong test (D) on training and validation cohorts is as follows.
FIGURE 7

DLRN model. The predicted predictor values (ResNet 18 signature and CML-LR signature) can be transformed into risk points. The sum of the risk
points of the predictors on the total score axis can then be mapped to the risk axis to derive the probability of SNSCC.
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risk of overfitting associated with single feature sets, overfitting may

still occur with increased model complexity. (3) This study focused

solely on modeling DCE-MRI sequences without comparing other

sequences. (4) Manual segmentation was used instead of automatic

segmentation, which is time-consuming and susceptible to

subjective biases, potentially leading to poor segmentation

consistency. (5) Due to the limited sample size, we distinguished

only between all lymphomas and squamous cell carcinomas without

further subgroup analysis of different lymphoma subtypes.
5 Conclusion

This paper discusses the application value of integrating

radiomics and deep learning features in differentiating SNSCC

from SNL. The findings indicate that the feature integration models

based on DCE outperform those using features independently.

Among these, the post-fusion model (DLRN), which integrates

CML and DL scores into a nomogram, demonstrated superior

performance, effectively distinguishing between SNSCC and SNL

with significant potential for clinical decision support.

The radiomics feature integration approach used in this study

captures complementary information from different data types,

reducing biases associated with single features, thereby maintaining

good performance and stability under various conditions, thus

enhancing the accuracy of disease diagnosis and providing a

scientific basis for personalized treatment plans.

Future studies should explore automatic segmentation

algorithms for nasal and paranasal sinus tumors to overcome the

limitations of manual extraction. To overcome the limitations of a

single theoretical model, it is necessary to expand the sample size

and integrate other MRI sequences or omics data. Beyond

differential diagnosis between the two nasal conditions, the

applicability of this method in other head and neck diseases

should be considered. The complex anatomical structure of the

head and neck and the interplay of various diseases highlight the

broad application potential of the feature integration approach.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author/s.
Frontiers in Oncology 10
Author contributions

ZZ: Conceptualization, Data curation, Investigation,

Methodology, Software, Validation, Writing – original draft,

Writing – review & editing. DZ: Conceptualization, Data

curation, Methodology, Software, Validation, Writing – original

draft, Writing – review & editing. YY: Data curation, Formal

analysis, Validation, Visualization, Writing – original draft,

Writing – review & editing. YL: Data curation, Formal analysis,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing. JZ: Supervision, Validation, Writing –

original draft, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

The authors extend their heartfelt gratitude to the esteemed

clinicians and skilled technicians within our institution’s radiology,

otolaryngology, and pathology departments, whose invaluable

expertise and guidance have significantly contributed to this

work, ensuring its authenticity and depth.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Kuan EC, Wang EW, Adappa ND, Beswick DM, London NR Jr, Su SY, et al.
International consensus statement on allergy and rhinology: sinonasal tumors. Int
Forum Allergy Rhinol. (2024) 14:149–608. doi: 10.1002/alr.23262

2. Lv J, Jiang Y, Yu T, Gao S, Yin W. Clinical characteristics and prognostic analysis
of primary extranodal non-Hodgkin lymphoma of the head and neck. Aging (Albany
NY). (2024) 16:6796–808. doi: 10.18632/aging.205726

3. Sun Z, Hu S, Ge Y, Jin L, Huang J, Dou W. Can arterial spin labeling perfusion
imaging be used to differentiate nasopharyngeal carcinoma from nasopharyngeal
lymphoma? J Magn Reson Imaging. (2021) 53:1140–8. doi: 10.1002/jmri.27451
4. Birkenbeuel JL, Pang JC, Lee A, Nguyen ES, Risbud A, Goshtasbi K, et al. Long-
term outcomes in sinonasal squamous cell carcinoma arising from inverted papilloma:
Systematic review. Head Neck. (2022) 44:1014–29. doi: 10.1002/hed.26995

5. Maitra M, Singh MK. A comparative study on clinico-radiological differentiation of
sino-nasal squamous cell carcinoma (SCC) and sino-nasal non-Hodgkins lymphoma (NHL).
Indian J Otolaryngol Head Neck Surg. (2022) 74:142–5. doi: 10.1007/s12070-020-02091-6

6. Kawaguchi M, Kato H, Tomita H, Mizuta K, Aoki M, Hara A, et al. Imaging
characteristics of Malignant sinonasal tumors. J Clin Med. (2017) 6:116. doi: 10.3390/
jcm6120116
frontiersin.org

https://doi.org/10.1002/alr.23262
https://doi.org/10.18632/aging.205726
https://doi.org/10.1002/jmri.27451
https://doi.org/10.1002/hed.26995
https://doi.org/10.1007/s12070-020-02091-6
https://doi.org/10.3390/jcm6120116
https://doi.org/10.3390/jcm6120116
https://doi.org/10.3389/fonc.2024.1489973
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1489973
7. Osie G, Darbari Kaul R, Alvarado R, Katsoulotos G, Rimmer J, Kalish L, et al. A
scoping review of artificial intelligence research in rhinology. Am J Rhinol Allergy.
(2023) 37:438–48. doi: 10.1177/19458924231162437

8. Wang X, Dai S, Wang Q, Chai X, Xian J. Investigation of MRI-based radiomics
model in differentiation between sinonasal primary lymphomas and squamous cell
carcinomas. Jpn J Radiol. (2021) 39:755–62. doi: 10.1007/s11604-021-01116-6

9. Zhang Y, Lin N, Xiao H, Xin E, Sha Y. Differentiation of sinonasal NKT from
diffuse large B-cell lymphoma using machine learning and MRI-based radiomics. J
Comput Assist Tomogr. (2023) 47:973–81. doi: 10.1097/RCT.0000000000001497

10. Lin N, Shi Y, Ye M, Wang L, Sha Y. Multiparametric MRI-based radiomics
approach with deep transfer learning for preoperative prediction of Ki-67 status in
sinonasal squamous cell carcinoma. Front Oncol. (2024) 14:1305836. doi: 10.3389/
fonc.2024.1305836
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