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Segmentation of glioblastomas
via 3D FusionNet
Xiangyu Guo, Botao Zhang, Yue Peng, Feng Chen
and Wenbin Li *

Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University,
Beijing, China
Introduction: This study presented an end-to-end 3D deep learning model for

the automatic segmentation of brain tumors.

Methods: The MRI data used in this study were obtained from a cohort of 630

GBM patients from the University of Pennsylvania Health System (UPENN-GBM).

Data augmentation techniques such as flip and rotations were employed to

further increase the sample size of the training set. The segmentation

performance of models was evaluated by recall, precision, dice score, Lesion

False Positive Rate (LFPR), Average Volume Difference (AVD) and Average

Symmetric Surface Distance (ASSD).

Results:When applying FLAIR, T1, ceT1, and T2 MRI modalities, FusionNet-A and

FusionNet-C the best-performing model overall, with FusionNet-A particularly

excelling in the enhancing tumor areas, while FusionNet-C demonstrates strong

performance in the necrotic core and peritumoral edema regions. FusionNet-A

excels in the enhancing tumor areas across all metrics (0.75 for recall, 0.83 for

precision and 0.74 for dice scores) and also performs well in the peritumoral

edema regions (0.77 for recall, 0.77 for precision and 0.75 for dice scores).

Combinations including FLAIR and ceT1 tend to have better segmentation

performance, especially for necrotic core regions. Using only FLAIR achieves a

recall of 0.73 for peritumoral edema regions. Visualization results also indicate

that our model generally achieves segmentation results similar to the

ground truth.

Discussion: FusionNet combines the benefits of U-Net and SegNet,

outperforming the tumor segmentation performance of both. Although our

model effectively segments brain tumors with competitive accuracy, we plan

to extend the framework to achieve even better segmentation performance.
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Introduction

Brain is an organ that functions as the central hub of the nervous

system, composed of various cell types and a complex

microenvironment. According to the Global Burden of Disease

Study 2019, brain and central nervous system tumors are among

the most common types of cancers, with an estimated 350,639 cases

and 252,814 cancer-related deaths in 2019 (1). Due to intricated

biology and microenvironment of the brain, each type of tumor has

its own characteristics, posing a challenge for clinicians to accurately

describe the classification, location, and size of tumors (2, 3). Medical

experts usually detect brain tumors through neurological exams,

imaging practices, and biopsies. Among imaging tests, Magnetic

Resonance Imaging (MRI) plays a crucial role in identifying the

lesion location, extent of tissue involvement, and the resultant mass

effect on the brain, ventricular system, and vasculature, due to its

superior performance in visualizing organs and soft tissues (4, 5).

Compared to regular X-rays and CT scans, MRI provides clearer

images of non-bony parts such as the brain, spinal cord, nerves, and

muscles. Since MRI does not use X-rays or other radiation, it is the

preferred imaging test when frequent imaging is required for

diagnosis or therapy, especially for brain imaging.

Gliomas, one of the most common types of brain cancer, often

intermingle with healthy brain tissue and develop within the

substance of the brain. Glioblastoma (GBM) constitutes the

majority of WHO grade 4 gliomas and is one of the most lethal

and recurrence-prone malignant solid tumors, accounting for 57%

of all gliomas and 48% of primary central nervous system malignant

tumors (6). Because of its unclear morphological structures, it is

challenging for physicians to accurately identify the lesion location,

extent of tissue involvement, and level of malignancy. Therefore, a

series of computer-aided diagnostic (CAD) tools have been applied

to assist in the more accurate diagnosis of cancer (7–9).

Tumor segmentation, the process of accurately separating

tumors from their background, is one of the crucial steps in

radiomics, diagnosis and treatments of brain tumors (10, 11).

With the growing demands of clinical applications and scientific

research, image segmentation has become increasingly important in

the field of medical imaging processing. However, fully manual

medical image segmentation is time-consuming and requires

expertise. The advancement of CAD techniques has made it

easier to complete tasks more efficiently. Image segmentation can

be performed using numerous techniques, ranging from

conventional methods to advanced deep learning approaches. In

traditional techniques, the most common types are thresholding,

region-based segmentation, edge-based segmentation, and

clustering (12–18). Various machine learning methods, such as

support vector machines, have also been effectively applied to

medical imaging segmentation (19, 20). The emergence of deep

learning has markedly boosted the precision and speed of image

segmentation processes. These deep learning methods include

generative adversarial networks (GANs), recurrent neural

networks (RNNs), diffusion models and convolutional neural
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networks (CNNs) (21–25). Of the different deep learning

techniques, CNNs continue to be the most widely used method

for brain tumor segmentation (26). A study utilized a cascaded 3D

Fully Convolutional Network (FCN) to automatically detect and

segment brain metastases with high accuracy. This method was also

effective in distinguishing brain metastases from high-grade gliomas

(27). U-Net and SegNet are two commonly used network

architectures for semantic segmentation. Skip connections in U-

Net aid in better recovering details and boundary information in

segmentation tasks (28). Conversely, SegNet uses pooling indices

for upsampling, which may lose some details but offers lower

memory consumption and higher computational efficiency (29).

U-Net 3+ incorporates multiple improvements over the U-Net

structure, enabling it to better capture image details and

contextual information, making it suitable for more complex and

diverse segmentation tasks (30, 31).

In this study, to fully utilize the advantages of both networks, we

developed a 3D FusionNet that combines the features of U-Net and

SegNet. This end-to-end trainable model aims to achieve better

segmentation performance in medical images.
Methods

Data collection

The MRI data used in this study were obtained from a cohort of

630 GBM patients from the University of Pennsylvania Health

System (UPENN-GBM) (32). This dataset, which includes imaging

data, clinical data, and radiomic data, is available through the

Cancer Imaging Archive (TCIA) at the National Cancer Institute

(33, 34). All MRI data were obtained prior to surgery using 3T MRI

scanners and included T1, T2, ceT1, FLAIR, and related

segmentation labels. Of the 630 patients, 611 with complete MRI

data were used in this study. The MRI data consist of Glioblastoma

patient scans, meticulously annotated by clinical experts to

highlight sub-regions such as the necrotic core (NC), peritumoral

edema (ED), and enhancing tumor (ET).
Data augmentation

The MRI data from UPENN-GBM were already well-

preprocessed, so no additional preprocessing steps were

performed. To better adapt to the network structure, we applied

zero-padding to the images before data augmentation, expanding

their sizes from the original 240*240*155 voxels to 256*256*256

voxels. We selected 80 samples from the 611 as the test set, 31

samples as the validation set, and the remaining samples as the

training set. Subsequently, we employed a series of data

augmentation techniques, including horizontal flip, vertical flip,

and 90-, 180-, and 270-degrees rotations, to further increase the

sample size of the training set to 3,000 samples.
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Proposed network

The proposed end-to-end network architecture is shown in

Figure 1. It comprises the following components: a shared encoder

with 13 convolutional layers, mirroring the convolutional layers of

the VGG16 network; two distinct decoders, one for U-Net and

another for SegNet; and an optional joint output layer for the two

decoders, offering additive (A), elementwise multiplicative (M), and

concatenation (C) operations. Unlike traditional ensemble learning

methods, our approach employs a shared encoder that enhances

parameter efficiency, feature reusability, and model generalization.

This design simplifies the architecture and promotes stable training

by enabling both decoders to leverage the same robust feature

extraction process. The additive (A) operation sums the outputs

from the two decoders, harnessing the strengths of both

architectures to enhance overall feature representation. The

elementwise multiplicative (M) operation multiplies the outputs

from the decoders elementwise, allowing for a more nuanced

interaction between their outputs and effectively emphasizing

areas of consensus. Finally, the concatenation (C) operation

merges the outputs along the channel dimension, preserving the

unique features from both decoders and enabling the model to

leverage diverse representations.

Given the 3D structure of both the volumetric data and the

network, which demands substantial computational memory, we

had to reduce the number of channels in the convolutional layers.

The specific sizes and channels of the feature maps at various stages

are illustrated in Figure 1.

The loss function employed in this network is cross-entropy

loss, which measures voxel-wise similarity between the prediction

and ground truth. Each voxel in the image is treated as an

independent classification task, and the cross-entropy loss is

computed across all voxels in the image, as show in the Equation 1:

L = − 1
H*W*Do

H

h=1
o
W

w=1
o
D

d=1
o
C

c=1
yh,w,d,c log (ŷ h,w,d,c) (1)

where yh,w,d,c is the true label for the pixel at position (h,w, d) for

class c, ŷ h,w,d,c is the predicted probability for voxel (h,w, d)

belonging to class c, given by the model. The loss is averaged over
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all voxels to obtain a single scalar value representing the loss for the

entire image.
Perfomance metrics

In this study, the segmentation performance of models was

evaluated by recall, precision, dice score, Lesion False Positive Rate

(LFPR), Average Volume Difference (AVD) and Average

Symmetric Surface Distance (ASSD) (35–37). Recall measures the

ability of the model to correctly identify positive instances as show

in the Equation 2.

Recall = TP
TP+FN (2)

Precision measures the accuracy of the positive predictions as

show in the Equation 3.

Precision = TP
TP+FP (3)

Dice Score is the harmonic mean of precision and recall,

providing a single metric to evaluate the balance between the two

as show in the Equation 4.

Dice =
2*TP

TP+FN+TP+FP
(4)

Lesion False Positive Rate (LFPR) measures the proportion of non-

lesion areasmistakenly identified as lesions by themodel as show in the

Equation 5. The LFPR values are small because the background

occupies a large proportion. Due to the excessively low LFPR values,

we performed normalization.

LFPR = FP
FP+TN (5)

Average Volume Difference (AVD) assesses the difference in

volume between the predicted lesions and the ground truth lesions

as show in the Equation 6.

AVD = 1
No

N

i=1
Vpred,i − Vtrue,i

�
�

�
�=Vtrue,i (6)

Average Symmetric Surface Distance (ASSD) quantifies the average

distance between the surfaces of the predicted and ground truth lesions
FIGURE 1

The network structure of FusionNet. Note: Here, for example, 2563*8 indicates that the feature map size is 256, and the channel count is 8. The
symbol * represents multiplication.
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as show in the Equation 7.

ASSD = 1
2 (

1
Npred o

p∈P
d(p,G) +

1
Ntrue

o
g∈G

d(g, P)) (7)

True Positive (TP) means the number of instances correctly

predicted as positive; false positive (FP) means the number of

instances incorrectly predicted as positive; true negative (TN)

means the number of instances correctly predicted as negative;

false negative (FN) means the number of instances incorrectly

predicted as negative; N represents the number of lesion regions;

Vpred,i denotes the volume of the i-th predicted region; Vpred,i

indicates the volume of the i-th ground truth region; Npred

represents the number of points on the predicted surface; Ntrue

represents the number of points on the ground truth surface; d(p,G)

refers to the distance from each point on the predicted surface to the

nearest point on the ground truth surface; while d(g, P) signifies the

distance from each point on the ground truth surface to the nearest

point on the predicted surface.
Results

Implementation details

In this study, we utilized four standard MRI modalities along

with their corresponding expert-annotated segmentation maps to

train the network. Both training and testing were conducted on an 80

GB NVIDIA A100 Tensor Core GPU using the Torch backend. The

model’s initial parameters were obtained through PyTorch’s default

initialization, and the network parameters were updated using the

stochastic gradient descent optimization algorithm. We divided the

611 samples from UPENN-GBM into a training set (500 samples,

82%), which was augmented to reach a total of 3,000 samples, a

validation set (31 samples, 5%), and a test set (80 samples, 13%).

Specifically, the learning rate decays exponentially, with an initial

value set to 0.01 and a decay factor of 0.8. The training was conducted

over 20 epochs with a batch size of 5.
Segmentation performance with
different methods

First, we compared the segmentation performance of the

proposed network with U-Net, SegNet, and U-Net3+ using

FLAIR, T1, ceT1, and T2 MRI modalities. Due to limited

computational memory, U-Net3+ with reduced channels

performed poorly and was not included in the results table.

Overall, the models were more likely to accurately segment

peritumoral edema regions and enhancing tumor areas compared

to necrotic core regions. In terms of FusionNet, recall, precision,

and dice scores for peritumoral edema regions and enhancing

tumor areas generally achieve around 0.75 to 0.80. However, the

metrics for necrotic core regions were only around 0.50. As shown

in Table 1A, our proposed method, which combines the benefits of

U-Net and SegNet, achieved comparable tumor segmentation

performance to both U-Net and SegNet in terms of recall,
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precision, and dice scores. U-Net performs best in recall (0.66)

for the necrotic core regions but fails in the enhancing tumor areas.

SegNet does not perform best in any region or metric. FusionNet-A

excels in the enhancing tumor areas across all metrics (0.75 for

recall, 0.83 for precision and 0.74 for dice scores) and also performs

well in the peritumoral edema regions (0.77 for recall, 0.77 for

precision and 0.75 for dice scores). FusionNet-M has good

performance in the peritumoral edema regions (0.77 for recall,

0.70 for precision and 0.70 for dice scores) but does not lead in any

specific metric. FusionNet-C has balanced performance, achieving

the best precision and dice scores in the necrotic core regions (0.60

for precision and 0.54 for dice scores) and the best precision in the

peritumoral edema regions (0.81). In summary, when applying

FLAIR, T1, ceT1, and T2 MRI modalities, FusionNet-A and

FusionNet-C emerged as the top-performing models overall.

FusionNet-A particularly excelled in the segmentation of

enhancing tumor areas, while FusionNet-C demonstrated strong

performance in segmenting the necrotic core and peritumoral

edema regions. U-Net has the best recall for the necrotic core

region but lacks in other areas. SegNet only performs reasonably

well in the segmentation of peritumoral edema regions but is

significantly worse than the other models overall.

On the other hand, we compared different models based on

LFPR, AVD, and ASSD (Table 1B). In terms of LFPR, FusionNet

models significantly outperformed U-Net and SegNet across all

three sub-regions. Among the FusionNet models, FusionNet-C

excelled in segmenting the necrotic core, peritumoral edema

regions, and enhancing tumor areas, achieving values of 0.01,

0.02, and 0.01, respectively. Additionally, FusionNet-C

demonstrated the best AVD index, with a value of 0.34.

Moreover, it achieved the best ASSD scores across all three sub-

regions, with 1.31 for the necrotic core, 0.94 for peritumoral edema,

and 0.85 for enhancing tumor regions, highlighting its superior

overall segmentation performance.
Segmentation performance with different
combinations of MRI modalities

Next, we assessed the effectiveness of segmentation results from

various combinations of MRI modalities based on FusionNet-A. As

shown in Table 2, reasonable segmentation results can be achieved

using various combinations of MRI modalities. Notably, we found

that FLAIR and ceT1 are crucial components in segmentation tasks.

Combinations including FLAIR and ceT1 tend to have better

segmentation performance, especially for necrotic core regions.

Additionally, using either FLAIR or ceT1 alone can still yield

somewhat satisfactory results, although slightly less effective

compared to combinations of multiple modalities. From Table 2,

we can see that using only FLAIR achieves a recall of 0.73 for

peritumoral edema regions, and using only ceT1 achieves a recall of

0.50 for necrotic core regions (the best recall for necrotic core

regions among all combinations of MRI modalities is 0.51). On the

other hand, some combinations of two or three MRI modalities also

achieve better performance in specific metrics than using all four

MRI modalities. Using FLAIR, T1 and ceT1 results in the best recall
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of 0.81 for enhancing tumor regions, the best precision of 0.81 for

peritumoral edema regions and the best dice scores of 0.77 for

peritumoral edema regions among all combinations of MRI

modalities. The combination of FLAIR, ceT1, and T2 achieves the

best recall of 0.51 for necrotic core regions and the best precision of

0.89 for enhancing tumor regions. The combination of T1, ceT1,

and T2 achieves the best precision of 0.63 for necrotic core regions.

Using FLAIR and ceT1 achieves the best recall of 0.84 for

peritumoral edema regions among all combinations of MRI

modalities. Another interesting finding was that combinations

with T1 might reduce segmentation performance in necrotic core

and enhancing tumor regions. Using T1 alone or in combinations

without ceT1, metrics for necrotic core and enhancing tumor

regions were significantly lower than others, sometimes even

falling below 0.10.
Visualization of brain tumor segmentation

Moreover, we visualized the brain tumor segmentation results from

various models, excluding SegNet due to its comparatively poor

performance relative to the other models. We randomly selected a

subject’s T2 MRI modality with various colors representing different

tumor regions. Figures 2–4 show T2 MRI modality slices from the axial,

coronal, and sagittal planes, respectively. In these figures, red indicates

necrotic core regions, yellow represents enhancing tumor regions, and

green denotes peritumoral edema regions. From left to right, the images
Frontiers in Oncology 05
display the original T2 image, the ground truth, and the segmentation

results from U-Net, FusionNet-A, FusionNet-M and FusionNet-C. U-

Net shows poor segmentation performance in the enhancing tumor

areas, mistakenly classifying some of these regions as part of the necrotic

core. This misclassification contributes to U-Net achieving the best recall

for the necrotic core regions. Conversely, FusionNet-M tends to

mistakenly identify necrotic core regions as peritumoral edema or

enhancing tumor areas, leading to less precise segmentation in those

regions. FusionNet-A and FusionNet-C generally achieve segmentation

results that closely resemble the ground truth, although there are slight

discrepancies in the segmentation of necrotic core regions compared to

the manual annotations.
Discussion

Brain tumors are among the most lethal diseases in humans.

MRI images are a crucial diagnostic tool for identifying tumors by

providing detailed pictures of soft tissues. Advanced methods for

identifying and quantifying tumor lesions are vital in cancer

treatment. Image analysis, one of these methods, offers critical

information, such as lesion location, volume, count, extent of

tissue involvement, and the resultant mass effect on the brain. A

variety of state-of-art machine learning and deep learning models

have been developed to automate the process of segmentation and

classification of tumors. Many deep learning methods primarily

focus on handling two-dimensional slices, which require less GPU
TABLE 1A Summary of commonality performance metrics for different methods.

Methods
Recall Precision Dice

NC ED ET NC ED ET NC ED ET

U-Net 0.66 ± 0.30 0.75 ± 0.17 0 0.28 ± 0.18 0.71 ± 0.21 0.12 ± 0.24 0.33 ± 0.18 0.72 ± 0.19 0

SegNet 0 0.36 ± 0.16 0 0 0.51 ± 0.24 0 0 0.40 ± 0.18 0

FusionNet-A 0.43 ± 0.25 0.77 ± 0.18 0.75 ± 0.26 0.57 ± 0.24 0.77 ± 0.17 0.83 ± 0.19 0.45 ± 0.23 0.75 ± 0.17 0.74 ± 0.24

FusionNet-M 0.05 ± 0.04 0.77 ± 0.22 0.71 ± 0.29 0.40 ± 0.27 0.70 ± 0.23 0.78 ± 0.13 0.08 ± 0.06 0.70 ± 0.23 0.70 ± 0.24

FusionNet-C 0.54 ± 0.22 0.71 ± 0.21 0.70 ± 0.25 0.60 ± 0.24 0.81 ± 0.17 0.75 ± 0.16 0.54 ± 0.21 0.74 ± 0.19 0.69 ± 0.20
The evaluated metrics are presented as mean ± standard deviation. NC, Necrotic Core; ED, Peritumoral Edema; ET, Enhancing Tumor.
Bold values indicate the best value for each specific metric within each category.
TABLE 1B Summary of differences in performance metrics for different methods.

Methods
LFPR

AVD
ASSD

NC ED ET NC ED ET

U-Net 0.04 ± 0.03 0.03 ± 0.03 0 1.35 ± 0.94 1.81 ± 1.43 1.24 ± 1.81 13.07 ± 4.53

SegNet 0 0.04 ± 0.02 0 0.80 ± 0.08 Nan 2.36 ± 2.18 Nan

FusionNet-A 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.12 0.46 ± 1.01 2.02 ± 2.91 1.22 ± 2.19 1.68 ± 5.82

FusionNet-M 0 0.05 ± 0.12 0.01 ± 0.01 0.55 ± 0.38 2.95 ± 3.26 2.56 ± 6.09 1.15 ± 2.52

FusionNet-C 0.01 ± 0.01 0.02 ± 0.02 0.01 ± 0.01 0.34 ± 0.31 1.31 ± 1.55 0.94 ± 1.72 0.85 ± 1.21
The evaluated metrics are presented as mean ± standard deviation. LFPR, Lesion False Positive Rate; AVD, Average Volume Difference; ASSD, Average Symmetric Surface Distance; NC, Necrotic
Core; ED, Peritumoral Edema; ET, Enhancing Tumor.
Bold values indicate the best value for each specific metric within each category.
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memory and computational resources, and benefit from abundant

available pre-trained weights (38–41). Compared to 2D models, 3D

models use entire 3D MRI volumes as inputs, fully utilize 3D spatial

information, better maintain the integrity of 3D structures, and
Frontiers in Oncology 06
provide more coherent segmentation results, but they require more

GPU memory, computational resources, and longer training times.

In this study, we proposed a 3D end-to-end FusionNet for brain

tumor segmentation using multiple MRI modalities, capable of
FIGURE 2

Segmentation results from a randomly selected subject in the axial plane. The first column shows the ground truths, the second column displays the
original images, and the third column presents the FusionNet-A predicted segmentation results. Each row corresponds to different slices of T2 MRI
images. Red indicates necrotic core regions, yellow represents enhancing tumor regions, and green denotes peritumoral edema regions.
TABLE 2 Summary of performance metrics for different combinations of MRI modalities based on FusionNet-A.

Modalities
Recall Precision Dice

NC ED ET NC ED ET NC ED ET

FLAIR/T1/T1c/T2 0.43 ± 0.25 0.77 ± 0.18 0.75 ± 0.26 0.57 ± 0.24 0.77 ± 0.17 0.83 ± 0.19 0.45 ± 0.23 0.75 ± 0.17 0.74 ± 0.24

FLAIR/T1/T1c 0.42 ± 0.25 0.71 ± 0.20 0.81 ± 0.23 0.58 ± 0.26 0.81 ± 0.18 0.80 ± 0.18 0.44 ± 0.24 0.73 ± 0.18 0.77 ± 0.23

FLAIR/T1/T2 0.12 ± 0.17 0.83 ± 0.15 0.07 ± 0.10 0.56 ± 0.33 0.53 ± 0.19 0.39 ± 0.24 0.17 ± 0.20 0.63 ± 0.19 0.10 ± 0.11

FLAIR/T1c/T2 0.51 ± 0.27 0.70 ± 0.17 0.49 ± 0.29 0.48 ± 0.25 0.72 ± 0.21 0.89 ± 0.15 0.44 ± 0.25 0.70 ± 0.18 0.57 ± 0.29

T1/T1c/T2 0.35 ± 0.25 0.68 ± 0.22 0.74 ± 0.25 0.63 ± 0.26 0.69 ± 0.19 0.80 ± 0.21 0.40 ± 0.25 0.66 ± 0.19 0.73 ± 0.24

FLAIR/T1 0.04 ± 0.06 0.74 ± 0.18 0.14 ± 0.16 0.38 ± 0.27 0.56 ± 0.22 0.44 ± 0.25 0.07 ± 0.09 0.62 ± 0.21 0.17 ± 0.18

FLAIR/T1c 0.34 ± 0.25 0.84 ± 0.18 0.58 ± 0.30 0.53 ± 0.25 0.64 ± 0.18 0.84 ± 0.21 0.35 ± 0.23 0.70 ± 0.17 0.61 ± 0.27

FLAIR/T2 0.39 ± 0.23 0.65 ± 0.17 0.33 ± 0.19 0.38 ± 0.22 0.64 ± 0.22 0.45 ± 0.19 0.34 ± 0.21 0.63 ± 0.18 0.32 ± 0.16

T1/T1c 0.35 ± 0.26 0.33 ± 0.21 0.69 ± 0.29 0.50 ± 0.26 0.54 ± 0.27 0.79 ± 0.26 0.36 ± 0.23 0.37 ± 0.21 0.70 ± 0.27

T1/T2 0.09 ± 0.16 0.66 ± 0.18 0.18 ± 0.17 0.30 ± 0.32 0.50 ± 0.21 0.32 ± 0.22 0.11 ± 0.18 0.55 ± 0.20 0.19 ± 0.15

T1c/T2 0.45 ± 0.26 0.55 ± 0.19 0.76 ± 0.21 0.61 ± 0.27 0.75 ± 0.21 0.73 ± 0.21 0.47 ± 0.24 0.61 ± 0.20 0.70 ± 0.18

FLAIR 0.23 ± 0.16 0.73 ± 0.17 0.28 ± 0.18 0.31 ± 0.17 0.63 ± 0.22 0.50 ± 0.21 0.22 ± 0.14 0.66 ± 0.19 0.31 ± 0.18

T1 0 0.15 ± 0.14 0 0.24 ± 0.37 0.34 ± 0.31 0.14 ± 0.25 0.01 ± 0.01 0.19 ± 0.18 0.01 ± 0.01

T1c 0.50 ± 0.30 0.33 ± 0.18 0.57 ± 0.30 0.46 ± 0.26 0.58 ± 0.27 0.83 ± 0.25 0.40 ± 0.23 0.38 ± 0.21 0.62 ± 0.27

T2 0.30 ± 0.28 0.54 ± 0.23 0.08 ± 0.09 0.37 ± 0.31 0.52 ± 0.24 0.32 ± 0.23 0.26 ± 0.24 0.51 ± 0.23 0.11 ± 0.10
f

The evaluated metrics are presented as mean ± standard deviation. NC, Necrotic Core; ED, Peritumoral Edema; ET, Enhancing Tumor.
Bold values indicate the best value for each specific metric within each category.
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adaptively handling an arbitrary number of modalities. We

extensively explored the segmentation performance of our model

compared to other segmentation methods using MRI data from

UPENN-GBM. We utilize recall, precision, Dice score, LFPR, AVD,
Frontiers in Oncology 07
and ASSD to evaluate the segmentation performance, capturing

both commonalities and differences between the predicted

segmentation and the ground truth from two dimensions:

overlap-based and distance-based metrics. FusionNet combines
FIGURE 4

Segmentation results from a randomly selected subject in the sagittal plane. The first column shows the ground truths, the second column displays
the original images, and the third column presents the FusionNet-A predicted segmentation results. Each row corresponds to different slices of T2
MRI images. Red indicates necrotic core regions, yellow represents enhancing tumor regions, and green denotes peritumoral edema regions.
FIGURE 3

Segmentation results from a randomly selected subject in the coronal plane. The first column shows the ground truths, the second column displays
the original images, and the third column presents the FusionNet-A predicted segmentation results. Each row corresponds to different slices of T2
MRI images. Red indicates necrotic core regions, yellow represents enhancing tumor regions, and green denotes peritumoral edema regions.
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the benefits of U-Net and SegNet, achieving comparable tumor

segmentation performance to both in terms of recall, precision, and

dice scores with three different joint strategies. Overall, FusionNet-

A and FusionNet-C are the best-performing models in overlap-

based metrics, with FusionNet-A particularly excelling in the

enhancing tumor areas, while FusionNet-C demonstrates strong

performance in the necrotic core and peritumoral edema regions.

Additionally, FusionNet-A and FusionNet-C also outperform in

distance-based metrics, with FusionNet-C showing a slight edge

over FusionNet-A. We observed that some models with poor

performance in recall or Dice score had LFPR values approaching

zero. This indicates that these models were unable to effectively

segment the lesion areas, resulting in almost no false positive

outcomes. Although FusionNet achieves comparable tumor

segmentation results, its performance is limited due to the

constraints on channels and layers. The input image size of

256*256*256 voxels generates numerous large feature maps

during the learning process. Consequently, with limited memory

resources available for abundant weights, we had to reduce the

number of channels and layers. In future work, we will focus on

balancing the feature map size with the number of channels

and layers.

Compared to the performance of models on the Brain Tumor

Segmentation (BraTS) dataset, our results using the UPENN-GBM

dataset show lower index values (42, 43). While UPENN-GBM

primarily focuses on glioblastoma (GBM), the BraTS dataset

includes a wider variety of brain tumors, such as low-grade and

high-grade gliomas. Glioblastoma presents additional challenges

due to its indistinct boundaries and the unclear separation between

its sub-regions (44). This blending with surrounding brain tissue

makes segmentation tasks particularly difficult, which contributes to

the lower performance indices observed in our experiments.

Additionally, we investigated segmentation performance with

different combinations of MRI modalities. FLAIR and ceT1 are vital

modalities for segmentation tasks; using either FLAIR or ceT1 alone

or in combination tends to result in better segmentation

performance, especially for necrotic core regions. However,

combinations involving T1 may reduce segmentation

performance in necrotic core and enhancing tumor regions.

FLAIR, T1, ceT1, and T2 MRI modalities each have unique

characteristics for glioma segmentation tasks. The FLAIR

sequence is particularly sensitive to peritumoral edema region,

presenting as high signal intensity, and assists in segmenting the

necrotic core area. The ceT1 sequence, after contrast agent

injection, clearly shows the enhancing tumor region, significantly

improving the segmentation of the necrotic core. The T1 sequence,

without enhancement, has lower contrast for the necrotic core and

enhancing tumor, resulting in poorer segmentation performance.

The T2 sequence is sensitive to tissues with high water content,

prominently highlighting the edema region and aiding in the

segmentation of both the necrotic core and enhancing tumor. We

will explore assigning different weights to the four sequences and

organically combining them to achieve more accurate segmentation

and evaluation of the different subregions in the future work.

To provide a more intuitive understanding of our model’s

segmentation effect, we visualized the segmentation results of
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models alongside the corresponding original image and ground

truth segmentation from the axial, coronal, and sagittal planes,

respectively. FusionNet-A and FusionNet-C generally achieve

segmentation results that closely resemble the ground truth

compared to other models, although it performs slightly worse in

the necrotic core regions. There are several reasons for this. First,

the borders between the necrotic core, enhancing tumor, and

peritumoral edema tissues are usually diffused and not clearly

defined. Second, the model learns from training samples of

original MRI images and their corresponding ground truth

annotations, which were made by different people. Due to the

unclear borders, each annotator may have a slightly different

interpretation of the boundaries between the different tumor

subregions. Lastly, global segmentation methods, such as semantic

segmentation models, are prone to being influenced by background

noise, especially when it comes to segmenting small targets, where

they often underperform. This is because, in the process of handling

the entire image, the features of small targets can easily be

overshadowed or diminished by background information, making

it difficult for the model to accurately capture the boundaries and

shapes of these regions.

Our study has some limitations. First, as a 3D model, FusionNet

requires more GPU memory and computational resources. Due to

the higher computational cost and large feature maps, FusionNet

must have limited channels and layers compared to its 2D

counterpart, which might constrain the performance of the

model. Second, the current model has slightly worse segmentation

performance on necrotic core regions compared to the other two

regions. To address the challenge of limited computing resources

and poor performance for small targets, we will explore two

approaches in future works. First, we will investigate the impact

of different MRI image sizes on segmentation model performance,

aiming to strike a reasonable balance between model depth and

computational efficiency. Second, we will employ region-based

segmentation, which involves initially locating and outlining the

entire brain tumor, followed by segmenting the tumor sub-regions

within this smaller, specific area.

The necrotic core (NC), enhancing tumor (ET), and

peritumoral edema (ED) regions are of significant clinical

importance (45, 46). The necrotic core is often associated with

high-grade malignancies and poor prognosis. The enhancing tumor

region indicates a disrupted blood-brain barrier and

neovascularization, making it a key target for surgery and

radiotherapy. The peritumoral edema reflects the tumor’s

pressure on surrounding brain tissue, leading to clinical

symptoms and impacting treatment planning. Assessing these

regions is crucial for diagnosis, treatment decisions, and

prognosis in brain tumor management. Although manual

segmentation can yield highly accurate results, it is time-

consuming and labor-intensive, especially in large-scale studies.

Automated segmentation methods can effectively address these

limitations, allowing for manual correction to ensure accuracy

while significantly improving segmentation efficiency.

In this paper, we presented an end-to-end deep learning model

for the automatic segmentation of brain tumors. Our model

effectively segments brain tumors with competitive accuracy.
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However, brain tumor segmentation remains a challenging task,

and we will further extend the framework of this model to achieve

better segmentation performance.
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