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machine learning for pancreatic
cancer patients: a population-
based study and an
external validation
Buwei Teng1, Xiaofeng Zhang1, Mingshu Ge1, Miao Miao1,
Wei Li1* and Jun Ma2*

1Department of Hepatobiliary Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical
University/The First People’s Hospital of Lianyungang, Lianyungang, China, 2Department of Imaging,
The Affiliated Huai’an Hospital of Xuzhou Medical University and the Second People’s Hospital of
Huai’an, Huai’an, China
Purpose: The overall survival of patients with pancreatic cancer is extremely low.

We aimed to establish machine learning (ML) based model to accurately predict

three-year survival and prognosis of pancreatic cancer patients.

Methods: We analyzed pancreatic cancer patients from the Surveillance,

Epidemiology, and End Results (SEER) database between 2000 and 2021.

Univariate and multivariate logistic analysis were employed to select variables.

Recursive Feature Elimination (RFE) method based on 6 ML algorithms was

utilized in feature selection. To construct predictive model, 13 ML algorithms

were evaluated by area under the curve (AUC), area under precision-recall curve

(PRAUC), accuracy, sensitivity, specificity, precision, cross-entropy, Brier scores

and Balanced Accuracy (bacc) and F Beta Score (fbeta). An optimal MLmodel was

constructed to predict three-year survival, and the predictive results were

explained by SHapley Additive exPlanations (SHAP) framework. Meanwhile, 101

ML algorithm combinations were developed to select the best model with

highest C-index to predict prognosis of pancreatic cancer patients.

Results: A total of 20,064 pancreatic cancer patients from SEER database was

consecutively enrolled. We utilized eight clinical variables to establish prediction

model for three-year survival. CatBoost model was selected as the best

prediction model, and AUC was 0.932 [0.924, 0.939], 0.899 [0.873, 0.934] and

0.826 [0.735, 0.919] in training, internal test and external test sets, with 0.839

[0.831, 0.847] accuracy, 0.872 [0.858, 0.887] sensitivity, 0.803 [0.784, 0.825]

specificity and 0.832 [0.821, 0.853] precision. Surgery type had the greatest

effects on three-year survival according to SHAP results. For prognosis

prediction, “RSF+GBM” algorithm was the best prognostic model with C-index

of 0.774, 0.722 and 0.674 in training, internal test and external test sets.
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Conclusions: Our ML models demonstrate excellent accuracy and reliability,

offering more precise personalized prognostic prediction to pancreatic

cancer patients.
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Introduction

Pancreatic cancer is a highly lethal disease with a dismal

prognosis, and the 5-year survival rate is merely 9% (1). Only 1% of

patients survive for 3 years or more after diagnosis of metastatic

pancreatic cancer, while the incidence continues to climb steadily.

Surgical resection is the only potential curative treatment, yet only a

small proportion of pancreatic cancer patients are eligible for surgery

at the time of initial diagnosis (2). This is largely because pancreatic

cancer often lacks symptoms in its early stages, leading to most cases

being diagnosed at an advanced stage (3). While some individuals may

detect the disease through routine physical examinations and undergo

early surgery, many patients still experience relapse and ultimately

succumb to the disease (4). The treatment of pancreatic cancer mainly

includes surgical resection, radiotherapy, chemotherapy and targeted

therapy, but the overall efficacy is limited due to its high aggressiveness

and the norm of late detection. Novel drugs targeting the KRAS gene,

such as sotorasib and adagrasib, have demonstrated efficacy and

tolerability in treating solid tumors, including pancreatic cancer, in

clinical trials (5). Consequently, it is critical to promptly and early

identify pancreatic cancer patients at high risk to optimize their

treatment and improve prognosis. And exploring the prognostic risk

factors for pancreatic cancer patients is crucial to assess their

survival prospects.

Several biomarkers for prognosis prediction in pancreatic

cancer have been identified in recent years, including CA19-9,

circulating tumor DNA (ctDNA), microRNAs (miRNAs), and

tumor mutational burden (TMB) (6). However, CA19-9 is not

specific to pancreatic cancer and can be elevated in other conditions

such as cholangitis, leading to false positives. Meanwhile, ctDNA

analysis is limited by the low abundance of tumor DNA in the

bloodstream, particularly in early-stage cancers, which may result in

false negatives. And the clinical application of miRNAs is still in the

early stages, and their stability in circulation poses challenges for

reliable detection (7). Furthermore, TMB’s predictive value is still

under investigation, and its utility may vary depending on the

genetic landscape of the tumor and the therapeutic context (8).

Recently, nomogram based on Cox model has been widely utilized

in cancer prognosis prediction, but its sensitivity and specificity

may be insufficient, calling an urgent need for predicting prognosis

more accurately and specifically. Machine learning (ML) approach,

a subset of artificial intelligence, has become increasingly popular
02
due to its ability to handle complex, non-linear relationships,

particularly effective with vast datasets and loosely structured

information (9). With the advent of big data analytics and ML,

new approaches for screening risk factors affecting prognosis have

become feasible. Several predictive models leveraging these

technologies have shown excellent performance and are

increasingly being integrated into clinical settings (10, 11), while

there is no ML-based sophisticated model to predict prognosis in

pancreatic cancer so far, necessitating development and validation

of a novel ML model.

The Surveillance, Epidemiology, and End Results (SEER)

database (https://seer.cancer.gov/) is particularly valuable in this

context, which encompasses a wide range of patient data, offering

comprehensive clinicopathological statistics and follow-up

information. This rich, real-world database is an ideal resource

for developing and testing ML models in the medical field.

However, it appears that there is still a gap in research specifically

focused on developing models for three-year survival prediction

and prognosis forecast of pancreatic cancer patients. Our study was

committed to firstly developing and validating predictive and

prognostic models utilizing multiple ML algorithms. This

approach leverages extensive population data and the capabilities

of ML, which is competent in providing personalized predictive

tools that assist clinicians in effectively assessing the risk and

prognosis of pancreatic cancer patients.
Materials and methods

Data source and characteristics

Clinicopathological data of patients with site recode ICD-O-3/

WHO 2008 “pancreas” and AYA site recode 2020 Revision “9.3.9.2

Pancreas – adenocarcinoma” between 2000 and 2021 was retrieved

from the SEER database. Additionally, clinicopathological

information of pancreatic The First People’s Hospital of

Lianyungang (2015–2024) was retrospectively collected through

electronic medical record system. The study was conducted

according to the guidelines of the Declaration of Helsinki and

was approved by the Ethics Committee of The First People’s

Hospital of Lianyungang (protocol code: KY-20210910004,

approved on 2021-09-10). Informed consent was obtained from
frontiersin.org

https://seer.cancer.gov/
https://doi.org/10.3389/fonc.2024.1488118
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Teng et al. 10.3389/fonc.2024.1488118
all subjects involved in this study. Inclusion criteria comprised

individuals with ICD-O-3/WHO 2008 “pancreas” and AYA site

recode 2020 Revision “9.3.9.2 Pancreas – adenocarcinoma” which

are older than 18 years old. Exclusion criteria comprised patients

lacking follow-up information of survival months and death cause,

not diagnosed with positive histology, no surgery information, not

first malignant tumor, without TNM stage or grade details. In SEER

database, metastasis is characterized by spreading to distant organs

during the initial cancer diagnosis. And we define the outcome of

predictive model as three-year survival, indicating that patients are

still alive at the timepoint of 36 months follow-up. The positive

outcome was death of patient in three-year follow-up.

Extracted data were gathered on demographic data (age, gender,

race, marital status household location and income), cancer

characteristics (pathological grade, summary stage, TNM stage,

tumor size, tumor primary location, pathology, metastasis

information), therapeutic information (surgery, lymph node

surgery, positive lymph node, radiotherapy, chemotherapy) and

follow-up information (overall and cancer-specific survival status,

survival months). Two continuous variables, age and tumor size,

were divided into categorical variables. The age was split into five

groups: “<50”, “50-59”, “60-69”, “70-79” and “>=80”. The tumor

size was split into “<2cm”, “2-3.9cm”, “4-5.9cm”, “6-7.9cm”,

“>8cm” and “Unknown”. “Metastasis” was defined as “yes” with

metastasis either in brain, bone, liver, lung, and distant lymph

nodes, as well as tumor categorized as M1 stage. The missing rate

for each categorical variable is calculated and reported. For those

classified data that is unknown, we classify its missing value into the

“unknown” category. This processing ensures data integrity and

avoids information loss due to missing data. We determined the

minimum sample size needed for an external validation cohort by

formula of Riley et al. (12).
Establishment and validation of predictive
model for three-year survival

In the preliminary analysis, variables with P < 0.05 in the

univariate and multivariate logistic analysis in the training set

were included for the feature selection process. Subsequently, we

employed Recursive Feature Elimination (RFE) method based on 6

ML algorithms, involving categorical boosting (CatBoost), random

forest (RF), support vector machine (SVM), extreme gradient

boosting (XGB), decision tree (DT) and gradient boosting

machine (GBM), combined with 5-fold cross-validation, to sift

through the clinical features. RFE works by building a model and

identifying the most significant features in feature selection phase.

This selection process is then iteratively repeated on the subset of

remaining features until all features have been evaluated and ranked

(13). Then Robust rank aggregation (RRA) algorithm was utilized

to integrate the rank of variable importance from six ML algorithms

utilized in RFE method to obtain a comprehensive ranking of all

variables (14). We set random seed as “2024” in our analysis. In

model development phase, we applied 13 ML algorithms, including

CatBoost, RF, SVM, XGB, DT, GBM, k-nearest neighbor (KNN),

logistic regression (LR), naive bayes classifier (NBC), linear
Frontiers in Oncology 03
discriminant analysis (LDA), quadratic discriminant analysis

(QDA), neural network (NNET) and generalized linear model

(GLM) to predict three-year survival via “mlr3” R package (15).

This approach allows us to compare the performance of various

models and select the best predictive model. To tackle the issue of

class imbalance, which could significantly skew performance

metrics, we implemented the Synthetic Minority Over-sampling

Technique (SMOTE) for training our model (16). We further

refined our approach by employing nested resampling, which

involved a two-tiered k-fold cross-validation process: one for

optimizing model hyperparameters and another nested within it

for model selection. Meanwhile, we utilized a 1000-evaluation

random search across a 5-fold cross-validation framework,

repeated five times for each model. Subsequently, area under the

curve (AUC), area under precision-recall curve (PRAUC), accuracy,

sensitivity, specificity, precision, cross-entropy, Brier scores and

Balanced Accuracy (bacc) and F Beta Score (fbeta) were calculated

to select the best ML model. Internal validation was carried out

through 5-fold cross-validation. Precision-recall curve (PRC) was

employed to evaluate the performance of classification models in

handling imbalanced datasets. Calibration curve was utilized to

appraise model’s discriminative ability, and decision curve analysis

(DCA) was applied to verify the clinic benefit of ML model via

“runway” R package (https://github.com/ML4LHS/runway/). We

set the selection criteria of our best model: highest AUC, highest

PRAUC, and lowest Brier score, while also ensuring a good

calibration curve, as well as outperforming balanced accuracy and

F Beta Score. To quantify the impact of each variable, we calculated

its mean contribution to the AUC as a percentage relative to the full

model via “DALEX” R package (17). SHapley Additive exPlanations

(SHAP) value were used to explain the best model predictions and

to interpret the black-box ML model via “shapviz” R package

(https://github.com/ModelOriented/shapviz) (18).
Prognostic model based on integrative
machine learning algorithms

Univariate and multivariate cox analysis were employed to

define clinical variables with significant prognosis value in overall

survival (OS). We integrated 10 ML algorithms involving random

survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise

Cox, CoxBoost, partial least squares regression for Cox (plsRcox),

supervised principal components (SuperPC), GBM and survival

support vector machine (survival-SVM) to predict prognosis (in

terms of OS) of pancreatic cancer patients. Altogether 101

prognostic ML algorithm combinations were trained in the

training cohort, to develop the prognostic ML model according to

the leave-one-out cross-validation (LOOCV) framework. Models

with <3 clinical variable were removed. Subsequently, the

concordance index (C-index) of every ML combination in

training, testing and external validation cohorts was obtained

(19). The top five ML combinations yielding the highest average

C-index across three cohorts were selected for model evaluation via

k-fold cross-validation, to mitigate overfitting and ensure the

robustness and generalizability of model. Logarithmic loss, recall
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and decision calibration were utilized to select the best prognostic

ML combination via “mlr3proba” R package (20). We incorporated

variables from various feature selection patterns to compute risk

scores using a linear combination function for each prognostic ML

combination. The median risk score from the training cohort was

chosen as the threshold to categorize patients in training, testing

and external validation cohorts into high or low-risk groups. We

utilized the Kaplan-Meier (KM) survival analysis and the log-rank

test on these groups, using the “survival” and “survminer” R

packages. AUC, time-dependent receiver operating characteristic

(ROC) curves, calibration curves and DCA were employed to

evaluate the precision, discrimination and clinical benefit of

the model.
Results

Demographic composition and clinical
baseline information

In the predictive model for three-year survival, a total of 20064

pancreatic cancer patients from SEER database and 103 patients

from The First People’s Hospital of Lianyungang were included. We

divided patients from SEER database randomly into training and

internal validation sets in a 7:3 ratio, respectively. And pancreatic

cancer patients from The First People’s Hospital of Lianyungang

were assigned as the external validation set. In the trainset from

SEER database, 2579 cases (18.3%) were alive at three-year follow-

up, while 11548 cases (81.7%) did not. Detailed clinical information

regarding the training and validation sets to predict three-year

survival can be found in Table 1. For the outcomes (in terms of OS)

of prognostic model, 13157 cases (93.1%) were dead at the time of

follow-up, while 970 cases (6.87%) were alive (Table 1). In the

training, internal validation and external validation sets, the median

follow-up time was 12.0 [5.00;26.0], 12.0 [5.00;27.0] and 16.0

[6.00;30.5] (Table 1). The specific selection process of patients

from SEER database is shown in Figure 1.
Feature selection for the predictive model

We utilized “autoplot” function in “mlr3” R package to visualized

the correlation coefficients of the baseline characteristics with three-

year survival, which revealed that “AJCC stage” had the most

significant correlation with three-year survival (Figure 2A). Based

on our clinical experiences, we selected 24 variables for the logistic

regression analysis (Table 2), while the variable with a correlation

coefficient > 0.6 was removed. Subsequently, we performed univariate

and multivariate logistic regression analysis in the training cohort to

find the effective variables to predict three-year survival, which

revealed that “Age” (OR 1.67(1.35-2.06)), “Marital_Status” (OR 1.27

(1.14-1.42)), “Household_Income” (OR 0.75(0.68-0.83)), “Histology”

(OR 0.5(0.43-0.59)), “Grade” (OR 2.4(1.59-3.72)), “Summary_Stage”

(OR 3.12(2.27-4.31)), “Tumor_Size” (OR 2.63(2.08-3.34)),

“AJCC_Stage” (OR 1.59(1.09-2.35)), “Surgery_Type” (OR 0.15(0.11-

0.2)), “Radiotherapy” (OR 0.79(0.72-0.87)), “Chemotherapy” (OR
Frontiers in Oncology 04
0.57(0.52-0.64)), “Lung_Metastasis” (OR 0.2(0.06-0.99)), “M_Stage”

(OR 1.26(1.07-1.48)) were significantly powerful to predict three-year

survival (P < 0.05, Table 2). The correlation analysis between the

variables and three-year survival showed that “AJCC_stage” is the

most influential factor (Figure 2B). Due to high correlation between

“AJCC_stage” and “Summary_Stage”, we only choose “AJCC_stage”

in the following analysis. Afterwards, we utilized Recursive Feature

Elimination (RFE) method based on six ML algorithms (GBM, SVM,

RF, DT, XGB and CatBoost), combined with 5-fold cross-validation,

to sift through the clinic features (Figures 2C–H). Feature selection

based on RFE found that the optimal selection was according to GBM

algorithm, remaining 12 variables, with the highest AUC (0.819,

Figure 2C). We utilized RRA algorithm to obtain the

comprehensive ranking of the clinic variables in six ML algorithms,

with the “AJCC_stage” considered most important (Supplementary

Table 1). We finally select eight variables with frequencies more than

4, which indicates that these variables are important in most of theML

selection process, into the following procedures of model development

(Supplementary Table 1).
Development and validation of predictive
model for three-year survival

To establish a precise model to predict three-year survival, we

utilized the eight variables (“AJCC_Stage”, “Chemotherapy”, “Age”,

“Grade”, “Lung_Metastasis”, “M_Stage”, “Surgery_Type”,

“Tumor_Size”) selected by RFE and RRA. A total of 13 ML

models, comprising CatBoost, RF, SVM, XGB, DT, GBM, KNN,

LR, NBC, LDA, QDA, NNET and GLM algorithms, were developed

by incorporating the above selection of eight variables in the

training set. Hyperparameters were fine-tuned by performing 5-

cross validation and random searches. Then we evaluated the 13ML

models in the internal validation and external validation cohorts,

respectively. Finally, ROC curves analysis found that CatBoost

model had the highest AUC in the training (0.932 [0.924, 0.939]),

internal validation (0.899 [0.873, 0.934]) and external validation

(0.826 [0.735, 0.919]) cohorts (Figures 3A, 4A, 5A). CatBoost model

has the accuracy of 0.839 [0.831, 0.847], sensitivity of 0.872 [0.858,

0.887], specificity of 0.803 [0.784, 0.825] and precision of 0.832

[0.821, 0.853]. After grid search in hyperparameter tuning, the best

hyperparameter metric of CatBoost was depth, 5; learning_rate,

0.01678325; iterations, 548; 12_leaf_reg, 7.409126. The precision-

recall curves (PRC) revealed that CatBoost model was powerful in

handling imbalanced datasets (Figures 3B, 4B, 5B). Calibration plots

showed that CatBoost algorithm had the best fitting ability and

could accurately predict three-year survival (Figures 3C, 4C, 5C).

This indicates that the model’s probability estimates are reliable and

well-calibrated, as it ensures that the risk estimates provided by the

model can be trusted to reflect the true likelihood of patient

outcomes. DCA curves suggested that CatBoost algorithm had the

best clinical application value and could effectively help predict

three-year survival (Figures 3D, 4D, 5D). This implies that using the

CatBoost model to guide clinical decision-making would result in

more effective identification of patients who are likely to benefit

from certain interventions, such as more aggressive treatment or
frontiersin.org
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TABLE 1 Clinicopathological characteristics of patients with pancreatic cancer in the training, internal validation and external validation cohorts.

Training
Cohort N=14127

Validation
Cohort N=5937

External Validation
Cohort N=103

p.overall

Sex 0.997

Male

Female 7162 (50.7%) 3013 (50.7%) 52 (50.5%)

Age 0.046

<50 1048 (7.42%) 419 (7.06%) 11 (10.7%)

50-59 2928 (20.7%) 1223 (20.6%) 21 (20.4%)

60-69 4567 (32.3%) 1963 (33.1%) 17 (16.5%)

70-79 3936 (27.9%) 1654 (27.9%) 38 (36.9%)

>=80 1648 (11.7%) 678 (11.4%) 16 (15.5%)

Race <0.001

White 11343 (80.3%) 4772 (80.4%) 0 (0.00%)

Black 1558 (11.0%) 641 (10.8%) 0 (0.00%)

Other 1226 (8.68%) 524 (8.83%) 103 (100%)

Marital_Status 0.378

Married 8571 (60.7%) 3614 (60.9%) 69 (67.0%)

Unmarried 1782 (12.6%) 720 (12.1%) 14 (13.6%)

Widowed or divorced 3365 (23.8%) 1418 (23.9%) 20 (19.4%)

Unknown 409 (2.90%) 185 (3.12%) 0 (0.00%)

Year_of_Diagnosis <0.001

2000-2010 7649 (54.1%) 3221 (54.3%) 78 (75.7%)

2011-2020 6478 (45.9%) 2716 (45.7%) 25 (24.3%)

Household_Location 0.684

Rural 1587 (11.2%) 656 (11.0%) 9 (8.74%)

Urban 12540 (88.8%) 5281 (89.0%) 94 (91.3%)

Household_Income <0.001

<$70,000 4765 (33.7%) 1974 (33.2%) 9 (8.74%)

>=$70,000 9362 (66.3%) 3963 (66.8%) 94 (91.3%)

Tumor_Primary_Site 0.519

Pancreas Head 9330 (66.0%) 3924 (66.1%) 63 (61.2%)

Pancreas Body or Tail 2910 (20.6%) 1259 (21.2%) 24 (23.3%)

Other 1887 (13.4%) 754 (12.7%) 16 (15.5%)

Histology 0.633

Adenomas and adenocarcinomas 9285 (65.7%) 3940 (66.4%) 73 (70.9%)

Ductal and lobular neoplasms 3769 (26.7%) 1586 (26.7%) 23 (22.3%)

Cystic, mucinous and
serous neoplasms 854 (6.05%) 329 (5.54%) 6 (5.83%)

Other 219 (1.55%) 82 (1.38%) 1 (0.97%)

(Continued)
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TABLE 1 Continued

Training
Cohort N=14127

Validation
Cohort N=5937

External Validation
Cohort N=103

p.overall

Grade 0.629

Well differentiated I 1673 (11.8%) 709 (11.9%) 13 (12.6%)

Moderately differentiated II 6606 (46.8%) 2783 (46.9%) 48 (46.6%)

Poorly differentiated III 5645 (40.0%) 2376 (40.0%) 39 (37.9%)

Undifferentiated anaplastic IV 203 (1.44%) 69 (1.16%) 3 (2.91%)

Summary_Stage 0.186

Localized 1341 (9.49%) 533 (8.98%) 16 (15.5%)

Regional 8635 (61.1%) 3636 (61.2%) 57 (55.3%)

Distant 4151 (29.4%) 1768 (29.8%) 30 (29.1%)

AJCC_Stage 0.360

I 1341 (9.49%) 533 (8.98%) 16 (15.5%)

II 8000 (56.6%) 3392 (57.1%) 54 (52.4%)

III 1448 (10.2%) 590 (9.94%) 10 (9.71%)

IV 3338 (23.6%) 1422 (24.0%) 23 (22.3%)

T_Stage 0.459

T1 633 (4.48%) 284 (4.78%) 7 (6.80%)

T2 2352 (16.6%) 964 (16.2%) 22 (21.4%)

T3 8764 (62.0%) 3718 (62.6%) 56 (54.4%)

T4 2378 (16.8%) 971 (16.4%) 18 (17.5%)

N_Stage 0.758

N0 6526 (46.2%) 2776 (46.8%) 47 (45.6%)

N1 7601 (53.8%) 3161 (53.2%) 56 (54.4%)

M_Stage 0.839

M0 10789 (76.4%) 4515 (76.0%) 80 (77.7%)

M1 3338 (23.6%) 1422 (24.0%) 23 (22.3%)

Tumor_Size 0.297

<2cm 1084 (7.67%) 472 (7.95%) 11 (10.7%)

2-3.9cm 6743 (47.7%) 2798 (47.1%) 47 (45.6%)

4-5.9cm 3896 (27.6%) 1657 (27.9%) 29 (28.2%)

6-7.9cm 1050 (7.43%) 427 (7.19%) 10 (9.71%)

>8cm 470 (3.33%) 211 (3.55%) 6 (5.83%)

Unknown 884 (6.26%) 372 (6.27%) 0 (0.00%)

Surgery_Type 0.180

No Surgery 5646 (40.0%) 2408 (40.6%) 41 (39.8%)

Local or partial pancreatectomy 6947 (49.2%) 2829 (47.7%) 48 (46.6%)

Total pancreatectomy 1534 (10.9%) 700 (11.8%) 14 (13.6%)

Lymph_Nodes_Surgery 0.743

No or biopsy only 5696 (40.3%) 2441 (41.1%) 42 (40.8%)

(Continued)
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TABLE 1 Continued

Training
Cohort N=14127

Validation
Cohort N=5937

External Validation
Cohort N=103

p.overall

Lymph_Nodes_Surgery 0.743

1-3 regional lymph nodes removed 787 (5.57%) 342 (5.76%) 7 (6.80%)

4 or more regional lymph
nodes removed 7644 (54.1%) 3154 (53.1%) 54 (52.4%)

Regional_Lymph_Nodes 0.676

No nodes were examined 5302 (37.5%) 2277 (38.4%) 38 (36.9%)

Negative 3059 (21.7%) 1267 (21.3%) 25 (24.3%)

Positive 5729 (40.6%) 2384 (40.2%) 40 (38.8%)

Unknown 37 (0.26%) 9 (0.15%) 0 (0.00%)

Chemotherapy 0.911

None/Unknown 4666 (33.0%) 1945 (32.8%) 35 (34.0%)

Yes 9461 (67.0%) 3992 (67.2%) 68 (66.0%)

Radiation 0.328

None/Unknown 9995 (70.8%) 4174 (70.3%) 79 (76.7%)

Yes 4132 (29.2%) 1763 (29.7%) 24 (23.3%)

Metastasis 0.940

No 5859 (41.5%) 2465 (41.5%) 41 (39.8%)

Yes 8268 (58.5%) 3472 (58.5%) 62 (60.2%)

Bone_Metastasis 0.804

No 7530 (53.3%) 3180 (53.6%) 54 (52.4%)

Yes 97 (0.69%) 47 (0.79%) 0 (0.00%)

Unknown 6500 (46.0%) 2710 (45.6%) 49 (47.6%)

Brain_Metastasis 0.485

No 7620 (53.9%) 3227 (54.4%) 54 (52.4%)

Yes 5 (0.04%) 0 (0.00%) 0 (0.00%)

Unknown 6502 (46.0%) 2710 (45.6%) 49 (47.6%)

Liver_Metastasis 0.492

No 6381 (45.2%) 2667 (44.9%) 48 (46.6%)

Yes 1264 (8.95%) 569 (9.58%) 6 (5.83%)

Unknown 6482 (45.9%) 2701 (45.5%) 49 (47.6%)

Lung_Metastasis 0.778

No 7288 (51.6%) 3073 (51.8%) 51 (49.5%)

Yes 329 (2.33%) 154 (2.59%) 3 (2.91%)

Unknown 6510 (46.1%) 2710 (45.6%) 49 (47.6%)

Survival_Months 12.0 [5.00;26.0] 12.0 [5.00;27.0] 16.0 [6.00;30.5] 0.605

Vital_Status 0.848

Alive 970 (6.87%) 421 (7.09%) 7 (6.80%)

Dead 13157 (93.1%) 5516 (92.9%) 96 (93.2%)

(Continued)
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intensive monitoring. The accuracy, sensitivity, specificity,

precision, cross-entropy, Brier scores, Balanced Accuracy (bacc)

and F Beta Score (fbeta) of the 13 ML models were calculated to

comprehensively evaluate the model performance, which revealed
Frontiers in Oncology 08
that CatBoost model was robust in predicting three-year survival

(Figures 3E, 4E, 5E). The results of tenfold cross-validation

indicated that CatBoost exhibited the best performance

(Figure 3F). Confusion matrix displayed the outstanding
TABLE 1 Continued

Training
Cohort N=14127

Validation
Cohort N=5937

External Validation
Cohort N=103

p.overall

Cancer_Specific_Death 0.440

Not cancer specific death 1823 (12.9%) 799 (13.5%) 11 (10.7%)

Dead due to bladder cancer 12304 (87.1%) 5138 (86.5%) 92 (89.3%)

Other_Cause_Death 0.430

Not other cause death 13274 (94.0%) 5559 (93.6%) 99 (96.1%)

Dead due to other cause 853 (6.04%) 378 (6.37%) 4 (3.88%)

Three_Year_Survival 0.911

Alive 2579 (18.3%) 1097 (18.5%) 18 (17.5%)

Dead 11548 (81.7%) 4840 (81.5%) 85 (82.5%)
fr
FIGURE 1

The workflow diagram for study design and patient screening.
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predictive ability of CatBoost in the internal validation and external

validation cohorts (Figures 4F, 5F). Therefore, CatBoost was chosen

as the best model for the next step.
Model interpretation

We calculated the feature importance rankings of each ML

models and illustrated eight of them, including CatBoost, GBM,

GLM, NB, KNN, RF, NNET and SVM (Figure 6A). The importance

scores were determined by leveraging the inherent attributes of
Frontiers in Oncology 09
various ML algorithms, which revealed that the risk factors most

associated with three-year survival were “Surgery Type”, “AJCC

Stage” and “M Stage”. Subsequently, we utilized SHAP framework

to interpret CatBoost model. We illustrated all of the risk factors

evaluated by the mean absolute SHAP value, which revealed that

“Surgery Type” was the most impactful variable (Figure 6B).

Besides, beeswarm plot elucidated the influence of various risk

factors on three-year survival (Figure 6C). The y-axis denotes the

magnitude of the risk factors, while the x-axis represents their

impact on the model’s output, specifically three-year survival, as

measured by the SHAP value. It was observed that no surgery,
FIGURE 2

The process of feature selection. (A) The correlation coefficients of the baseline characteristics with three-year survival. (B) The heatmap of
Spearman’s correlation analysis of the clinic variables with three-year survival. The correlation index ranges from -1.0 to 1.0, with a brighter color
indicating a stronger correlation. (C–H) Feature selection process with Recursive Feature Elimination (RFE) method based on six ML algorithms
(GBM, SVM, RF, DT, XGB and CatBoost).
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TABLE 2 Univariate and multivariate logistics analysis of pancreatic cancer patients for 3-year survival in the training cohort.

Variable Univariable logistic analysis Multivariate logistic analysis

term OR (95%CI) p.value OR (95%CI) p.value

Sex: Male Reference

Female 0.92 (0.85-1) 0.064 \ \

Age: <50 Reference

50-59 1.12 (0.95-1.33) 0.185 1.05 (0.89-1.24) 0.568

60-69 1.15 (0.98-1.35) 0.089 1.18 (1.01-1.39) 0.04

70-79 1.51 (1.28-1.79) <0.001 1.41 (1.19-1.66) <0.001

>=80 2.46 (1.99-3.05) <0.001 1.67 (1.35-2.06) <0.001

Race: White Reference

Black 1.15 (1-1.33) 0.047 1.01 (0.88-1.16) 0.898

Other 1.02 (0.87-1.19) 0.841 1.04 (0.9-1.2) 0.604

Marital_Status: Married Reference

Unmarried 1.21 (1.06-1.38) 0.006 1.18 (1.03-1.34) 0.015

Widowed or divorced 1.47 (1.32-1.64) <0.001 1.27 (1.14-1.42) <0.001

Unknown 1.21 (0.94-1.59) 0.154 1.3 (1.02-1.68) 0.038

Household_Income: <$70,000 Reference

>=$70,000 0.81 (0.74-0.89) <0.001 0.75 (0.68-0.83) <0.001

Household_Location: Rural

Urban 0.84 (0.73-0.96) 0.014 0.94 (0.81-1.08) 0.386

Tumor_Primary_Site: Pancreas Head Reference

Pancreas Body or Tail 1.27 (1.14-1.42) <0.001 0.91 (0.79-1.05) 0.191

Other 1.51 (1.31-1.73) <0.001 1.05 (0.91-1.21) 0.488

Histology: Adenomas and
adenocarcinomas

Reference

Ductal and lobular neoplasms 0.55 (0.5-0.6) <0.001 1.05 (0.96-1.15) 0.3

Cystic, mucinous and serous neoplasms 0.41 (0.35-0.48) <0.001 0.5 (0.43-0.59) <0.001

Other 0.92 (0.64-1.34) 0.642 0.86 (0.62-1.2) 0.359

Grade: Well differentiated I Reference

Moderately differentiated II 1.56 (1.38-1.76) <0.001 1.77 (1.57-2) <0.001

Poorly differentiated III 3.12 (2.73-3.56) <0.001 2.75 (2.41-3.14) <0.001

Undifferentiated anaplastic IV 2.97 (1.97-4.68) <0.001 2.4 (1.59-3.72) <0.001

Summary_Stage: Localized Reference

Regional 2.55 (2.26-2.87) <0.001 1.74 (1.31-2.3) <0.001

Distant 15.52 (12.92-18.72) <0.001 3.12 (2.27-4.31) <0.001

AJCC_Stage: I Reference

II 2.34 (2.07-2.64) <0.001 1.11 (0.89-1.39) 0.336

III 8.99 (7.19-11.33) <0.001 1.17 (0.93-1.48) 0.179

IV 24.81 (19.71-31.56) <0.001 1.59 (1.09-2.35) 0.018

(Continued)
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TABLE 2 Continued

Variable Univariable logistic analysis Multivariate logistic analysis

term OR (95%CI) p.value OR (95%CI) p.value

T_Stage: T1 Reference

T2 3.5 (2.9-4.22) <0.001 1.11 (0.89-1.38) 0.374

T3 3.33 (2.83-3.93) <0.001 1.17 (0.92-1.47) 0.196

T4 15.41 (12.14-19.67) <0.001 1.59 (1.03-2.54) 0.051

N_Stage: N0 Reference

N1 1.26 (1.16-1.38) <0.001 1.1 (0.86-1.41) 0.448

M_Stage: M0 Reference

M1 10.69 (8.7-13.32) <0.001 1.26 (1.07-1.48) 0.005

Tumor_Size: <2cm Reference

2-3.9cm 2.75 (2.4-3.15) <0.001 1.74 (1.5-2.02) <0.001

4-5.9cm 4.57 (3.92-5.32) <0.001 2.19 (1.85-2.59) <0.001

6-7.9cm 5.8 (4.62-7.32) <0.001 2.63 (2.08-3.34) <0.001

>8cm 3.62 (2.77-4.79) <0.001 1.63 (1.22-2.19) 0.001

Unknown 9.43 (7.13-12.67) <0.001 1.72 (1.3-2.3) <0.001

Surgery_Type: No Surgery Reference

Local or partial pancreatectomy 0.07 (0.06-0.08) <0.001 0.15 (0.11-0.2) <0.001

Total pancreatectomy 0.08 (0.06-0.09) <0.001 0.15 (0.12-0.21) <0.001

Lymph_Nodes_Surgery: No or biopsy only Reference

1-3 regional lymph nodes removed 0.14 (0.11-0.17) <0.001 1.09 (0.76-1.54) 0.652

4 or more regional lymph nodes removed 0.09 (0.08-0.11) <0.001 0.74 (0.53-1.02) 0.067

Regional_Lymph_Nodes: No nodes
were examined

Reference

Negative 0.06 (0.05-0.07) <0.001 0.75 (0.51-1.12) 0.158

Positive 0.14 (0.12-0.17) <0.001 1.28 (0.88-1.86) 0.196

Unknown 0.19 (0.09-0.52) <0.001 0.53 (0.21-1.54) 0.205

Chemotherapy: None/Unknown Reference

Yes 0.57 (0.51-0.63) <0.001 0.57 (0.52-0.64) <0.001

Radiotherapy: None/Unknown Reference

Yes 0.55 (0.5-0.6) <0.001 0.79 (0.72-0.87) <0.001

Metastasis: No Reference

Yes 2.37 (2.17-2.58) <0.001 0.9 (0.6-1.4) 0.633

Bone_Metastasis: No Reference

Yes 12.58 (3.98-76.41) <0.001 2.29 (0.68-14.29) 0.262

Unknown 1.46 (1.34-1.59) <0.001 0.83 (0.05-21.63) 0.919

Brain_Metastasis: No Reference

Yes 2.92 (0-NA) 0.908 1766.26 (0-NA) 0.958

Unknown 1.44 (1.32-1.57) <0.001 0.96 (0.06-25.1) 0.984
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higher grade, older age, have lung metastasis, no chemotherapy,

higher AJCC stage and M1 stage are associated with an increased

likelihood of death in three-year follow-up. To illustrate the model’s

interpretability, we highlighted two representative cases. SHAP

values were used to understand the impact of each feature on the

model’s prediction. In our study, lower SHAP values indicate a

higher likelihood of three-year survival, while higher SHAP values

suggest a higher probability of death within the three-year follow-

up. We chose median value (0.0962) as the cut-off point for

predicting the low or high probability of three-year survival. For

instance, the first patient with three-year survival had a lower SHAP

value and a prediction score of 0.0276, indicating a higher

likelihood of three-year survival (Figure 6D). In contrast, the

second patient without three-year survival showed a higher SHAP

value and a prediction score of 0.187, suggesting a higher

probability of death in three-year follow-up (Figure 6E).
Prognostic model establishment
and performance

To explore the prognostic values of multiple variables, we

performed univariate and multivariate Cox analysis to found that

“Sex” (HR 0.934(0.907-0.963)), “Race” (HR 1.071(1.022-1.123)),

“Age” (HR 1.19(1.119-1.264)), “Marital_Status” (HR 1.137(1.086-

1.191)), “Household_Income” (HR 0.866(0.837-0.896)),

“Hou s e h o l d _ L o c a t i o n ” (HR 0 . 9 4 5 ( 0 . 8 9 9 - 0 . 9 9 3 ) ) ,

“Tumor_Primary_Site” (HR 0.946(0.91-0.983)), “Histology” (HR

0.706(0.66-0.755)) , “Grade” (HR 1.334(1.271-1.401)) ,

“Tumor_Size” (HR 1.325(1.238-1.417)), “AJCC_Stage” (HR 0.712

(0.643-0.789)), “T_Stage” (HR 1.127(1.024-1.242)), “Surgery_Type”

(HR 0.491(0.45-0.535)), “Lymph_Nodes_Surgery” (HR 0.846

(0.761-0.94)), “Regional_Lymph_Nodes” (HR 0.709(0.65-0.774)),

“Radiotherapy” (HR 0.905(0.873-0.938)), “Chemotherapy” (HR

0.582(0.562-0.602)), “Bone_Metastasis” (HR 1.196(1.006-1.422)),

“Liver_Metastasis” (HR 1.338(1.224-1.463)), “Lung_Metastasis”

(HR 1.338(1.224-1.463)) and “Metastasis” (HR 0.781(0.709-

0.861)) were independent prognosis variables for predicting OS in

pancreatic cancer patients (P < 0.05, Table 3). Incorporating these

clinical variables, 101 prognostic ML algorithm combinations were

constructed via LOOCV framework. The C-index of each ML
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combination was calculated in training, internal validation and

external validation datasets (Figure 7A). Among top five ML

combinations with highest C-index across three cohorts,

logarithmic loss, recall and decision calibration were calculated to

assess the model performances, discovering the well calibration and

precision of “RSF+GBM” model (Supplementary Figure 1). The

best ML model combination was “RSF+GBM”, which was

established based on RSF algorithm in feature selection

(Figure 7B), and GBM algorithm in model construction

(Figure 7C), with the highest average C-index (0.723) across three

datasets (Figure 7A). Finally, a 20-variable “RSF+GBM” prognostic

ML model was accordingly established to predict OS of pancreatic

patients, with “Surgery Type” being the most significant variable

both in the feature importance visualization of RSF and GBM

model (Figures 7B, C). ROC curves of 1-, 3- and 5-year OS showed

well specificity of “RSF+GBM”model (Figure 7D). Time dependent

ROC curves indicated that the curve of “RSF+GBM” model was

upper than other curves at most of the time points, indicating that

“RSF+GBM”model remarkably outperformed conventional clinical

variables in capability of discrimination and prediction (Figure 7E).

Calibration curves (Figure 7F) and DCA curves (Figure 7G) showed

that “RSF+GBM” model is well-behaved in accuracy and clinical

benefit. Based on risk scores calculated by GBM algorithm, we

utilized the median risk score to divide patients in the training,

internal validation and external validation cohorts into low-risk and

high-risk groups, respectively. Obliviously, the low-risk group

owned a relatively longer OS than the high-risk group in the

training, internal validation and external validation cohorts,

respectively (Figure 7H). The K-M curves validated the capability

of risk stratification of “RSF+GBM” model. All these metrics

collectively indicated that “RSF+GBM” model demonstrated

stability and robustness in model performances. In conclusion, we

have successfully developed a “RSF+GBM” model to predict OS in

pancreatic cancer patients, which outperforming other models and

was well behaved in model performances.
Discussion

Pancreatic cancer is among the most invasive and deadly

malignancies, with projections suggesting it could become the
TABLE 2 Continued

Variable Univariable logistic analysis Multivariate logistic analysis

term OR (95%CI) p.value OR (95%CI) p.value

Liver_Metastasis: No Reference

Yes 10 (7.34-14.05) <0.001 1.03 (0.58-1.79) 0.930

Unknown 1.75 (1.6-1.91) <0.001 4.39 (0.42-24.26) 0.150

Lung_Metastasis: No Reference

Yes 9.75 (5.33-20.47) <0.001 1.06 (0.51-2.44) 0.877

Unknown 1.51 (1.38-1.64) <0.001 0.2 (0.06-0.99) 0.023
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second leading cause of cancer-related deaths by 2030 (21).

Although radical surgery offers a chance for a cure, high rates of

postoperative recurrence and mortality remain a significant concern

(22). Given these challenges, accurately predicting survival rates and

identifying prognostic risk factors is of critical importance for

pancreatic cancer patients. In this study, we focused on
Frontiers in Oncology 13
developing novel predictive and prognostic ML models to early

predict three-year survival, and to forecast the prognosis of

pancreatic cancer patients. By gathering clinical data on several

key variables and establishing ML models via benchmark

framework, we were able to calculate risk scores related to

prediction and prognosis, enabling us to precisely predict the
FIGURE 3

Establishment and evaluation of the ML models in the training set. (A) ROC curves of different ML models in the training set. (B) PR curves of
different ML models in the training set. (C) Calibration curves of different ML models in the training set. (D) DCA curves of different ML models in the
training set. (E) The performance of 13 ML models in terms of AUC, PRAUC, accuracy, sensitivity, specificity, precision, cross-entropy, Brier scores
and Balanced Accuracy (bacc) and F Beta Score (fbeta) in the training set. (F) Ten-fold cross-validation results of different ML models in the training
set. ML, machine learning; CAT, categorical boosting; LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting;
GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network;
GLMNET, generalized linear models with elastic net regularization; SVM, support vector machine; KNN, k-nearest neighbor.
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probability of three-year survival and the prognosis of patients. The

model analyzes various clinical and demographic features to

provide a risk score for three-year survival and prognosis, which

helps clinicians determine the intensity and type of treatment
Frontiers in Oncology 14
required for each patient, outperforming the existing models

without ML algorithms (23, 24).

The clinical importance of this work lies in its potential to

enhance patient management and treatment planning for those
FIGURE 4

Evaluation of the ML models in the internal validation set. (A) ROC curves of different ML models in the internal validation set. (B) PR curves of
different ML models in the internal validation set. (C) Calibration curves of different ML models in the internal validation set. (D) DCA curves of
different ML models in the internal validation set. (E) The performance of 13 ML models in terms of AUC, PRAUC, accuracy, sensitivity, specificity,
precision, cross-entropy, Brier scores and Balanced Accuracy (bacc) and F Beta Score (fbeta) in the internal validation set. (F) Confusion matrix of the
best ML model in the internal validation set. ML, machine learning; CAT, categorical boosting; LR, logistic regression; DT, decision tree; RF, random
forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear discriminant analysis; QDA, quadratic
discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization; SVM, support vector machine; KNN,
k-nearest neighbor.
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diagnosed with pancreatic cancer. By providing an accurate risk

stratification tool, our model can significantly aid clinicians in

making more informed, personalized treatment decisions. For

instance, patients identified as high-risk for three-year mortality
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could be prioritized for aggressive surgical interventions, adjuvant

therapies, and closer post-operative monitoring, which may

improve their chances of survival. Conversely, patients deemed

low-risk could benefit from less intensive treatments, thereby
FIGURE 5

Evaluation of the ML models in the external validation set. (A) ROC curves of different ML models in the external validation set. (B) PR curves of
different ML models in the external validation set. (C) Calibration curves of different ML models in the external validation set. (D) DCA curves of
different ML models in the external validation set. (E) The performance of 13 ML models in terms of AUC, PRAUC, accuracy, sensitivity, specificity,
precision, cross-entropy, Brier scores and Balanced Accuracy (bacc) and F Beta Score (fbeta) in the external validation set. (F) Confusion matrix of
the best ML model in the external validation set. ML, machine learning; CAT, categorical boosting; LR, logistic regression; DT, decision tree; RF,
random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear discriminant analysis; QDA, quadratic
discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization; SVM, support vector machine; KNN,
k-nearest neighbor.
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avoiding the potential side effects and complications associated with

overtreatment. Additionally, the model’s predictions can help the

selection of adjuvant therapies, the frequency of follow-up visits,

and the need for additional laboratory tests. By integrating the

prediction model into clinical workflows, we enable data-driven

decision-making that optimizes patient outcomes and resource

allocation. As a result, it helps in standardizing care across

different healthcare providers and institutions, potentially
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reducing variability in treatment approaches and outcomes for

pancreatic cancer patients.

Moreover, the highlight of our study lies in showcasing how

interpretable ML algorithms, particularly through the use of SHAP

values, can effectively decipher key factors contributing to predict

three-year survival. CatBoost algorithm is a gradient boosting

framework based on the symmetric decision tree (oblivious trees)

algorithm, which boasts high accuracy and requires fewer
FIGURE 6

ML model interpretation. (A) Importance ranking of features in eight ML prediction algorithms (CatBoost, GBM, GLM, NB, KNN, RF, NNET and SVM).
(B) The importance ranking of different variables according to the mean (|SHAP value|) using the optimal CatBoost model. (C) The importance
ranking of different risk factors with stability and interpretation using the optimal CatBoost model. The higher SHAP value of a feature is given, the
higher risk of distant metastasis the patient would have. The yellow part in feature value represents higher value. (D) SHAP value explanation in a
classical sample with three-year survival. (E) SHAP value explanation in a classical sample without three-year survival.
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TABLE 3 Univariate and multivariate cox regression analysis of pancreatic cancer patients for overall survival in the training cohort.

Variable Univariable cox analysis Multivariate cox analysis

term HR (95%CI) p.value HR (95%CI) p.value

Sex: Male Reference

Female 0.96 (0.94-0.99) 0.012 0.934 (0.907-0.963) <0.001

Age: <50 Reference

50-59 1.09 (1.02-1.16) 0.008 1.114 (1.045-1.188) 0.001

60-69 1.12 (1.06-1.19) <0.001 1.19 (1.119-1.264) <0.001

70-79 1.33 (1.25-1.41) <0.001 1.412 (1.326-1.502) <0.001

>=80 1.76 (1.64-1.88) <0.001 1.598 (1.487-1.717) <0.001

Race: White Reference

Black 1.12 (1.07-1.18) <0.001 1.071 (1.022-1.123) 0.004

Other 0.96 (0.91-1.01) 0.121 1.022 (0.97-1.077) 0.41

Marital_Status: Married Reference

Unmarried 1.11 (1.06-1.16) <0.001 1.137 (1.086-1.191) <0.001

Widowed or divorced 1.23 (1.19-1.27) 0 1.162 (1.121-1.206) <0.001

Unknown 1.07 (0.98-1.16) 0.151 1.07 (0.981-1.167) 0.126

Household_Income: <$70,000 Reference

>=$70,000 0.89 (0.87-0.92) <0.001 0.866 (0.837-0.896) <0.001

Household_Location: Rural

Urban 0.91 (0.87-0.95) <0.001 0.945 (0.899-0.993) 0.025

Tumor_Primary_Site: Pancreas Head Reference

Pancreas Body or Tail 1.17 (1.13-1.21) <0.001 0.946 (0.91-0.983) 0.005

Other 1.3 (1.25-1.36) <0.001 1.004 (0.96-1.051) 0.858

Histology: Adenomas and
adenocarcinomas

Reference

Ductal and lobular neoplasms 0.71 (0.68-0.73) <0.001 1.022 (0.986-1.059) 0.236

Cystic, mucinous and serous neoplasms 0.59 (0.55-0.63) 0 0.706 (0.66-0.755) <0.001

Other 0.89 (0.79-1) 0.05 0.876 (0.776-0.988) 0.032

Grade: Well differentiated I Reference

Moderately differentiated II 1.25 (1.2-1.32) <0.001 1.334 (1.271-1.401) <0.001

Poorly differentiated III 1.74 (1.66-1.83) <0.001 1.718 (1.635-1.806) <0.001

Undifferentiated anaplastic IV 1.74 (1.53-1.99) <0.001 1.485 (1.302-1.694) <0.001

Summary_Stage: Localized Reference

Regional 1.62 (1.53-1.71) <0.001 1.847 (1.641-2.079) <0.001

Distant 3.78 (3.56-4) <0.001 2.136 (1.935-2.357) <0.001

AJCC_Stage: I Reference

II 1.56 (1.48-1.65) <0.001 0.712 (0.643-0.789) <0.001

III 2.76 (2.58-2.95) <0.001 0.762 (0.687-0.846) <0.001

IV 4.59 (4.32-4.88) <0.001 NA (NA-NA) NA

(Continued)
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TABLE 3 Continued

Variable Univariable cox analysis Multivariate cox analysis

term HR (95%CI) p.value HR (95%CI) p.value

T_Stage: T1 Reference

T2 2 (1.84-2.17) <0.001 1.066 (0.969-1.172) 0.19

T3 1.85 (1.72-2) <0.001 1.127 (1.024-1.242) 0.015

T4 3.4 (3.13-3.69) <0.001 1.15 (1.029-1.285) 0.014

N_Stage: N0 Reference

N1 1.05 (1.02-1.08) 0.002 1.036 (0.988-1.087) 0.148

M_Stage: M0 Reference

M1 1.96 (1.9-2.02) <0.001 1.017 (0.962-1.075) 0.553

Tumor_Size: <2cm Reference

2-3.9cm 1.6 (1.51-1.7) <0.001 1.325 (1.238-1.417) <0.001

4-5.9cm 2.12 (1.99-2.25) <0.001 1.514 (1.41-1.625) <0.001

6-7.9cm 2.46 (2.28-2.65) <0.001 1.722 (1.581-1.875) <0.001

>8cm 2.22 (2.02-2.44) <0.001 1.629 (1.467-1.808) <0.001

Unknown 3.01 (2.78-3.26) <0.001 1.439 (1.318-1.572) <0.001

Surgery_Type: No Surgery Reference

Local or partial pancreatectomy 0.31 (0.3-0.32) <0.001 0.491 (0.45-0.535) <0.001

Total pancreatectomy 0.33 (0.31-0.34) <0.001 0.507 (0.462-0.556) <0.001

Lymph_Nodes_Surgery: No or biopsy only Reference

1-3 regional lymph nodes removed 0.41 (0.38-0.44) <0.001 0.991 (0.888-1.105) 0.868

4 or more regional lymph nodes removed 0.33 (0.32-0.35) <0.001 0.846 (0.761-0.94) 0.002

Regional_Lymph_Nodes: No nodes
were examined

Reference

Negative 0.25 (0.24-0.27) <0.001 0.709 (0.65-0.774) <0.001

Positive 0.41 (0.39-0.42) <0.001 1.03 (0.941-1.128) 0.524

Unknown 0.71 (0.53-0.94) 0.018 0.914 (0.682-1.225) 0.547

Chemotherapy: None/Unknown Reference

Yes 0.65 (0.63-0.67) <0.001 0.582 (0.562-0.602) <0.001

Radiotherapy: None/Unknown Reference

Yes 0.69 (0.67-0.71) <0.001 0.905 (0.873-0.938) <0.001

Metastasis: No Reference

Yes 1.58 (1.54-1.63) <0.001 0.781 (0.709-0.861) <0.001

Bone_Metastasis: No Reference

Yes 2.82 (2.39-3.33) <0.001 1.196 (1.006-1.422) 0.042

Unknown 1.19 (1.16-1.23) <0.001 1.186 (0.636-2.21) 0.591

Brain_Metastasis: No Reference

Yes 5.37 (2.23-12.9) <0.001 1.822 (0.747-4.446) 0.187

Unknown 1.18 (1.15-1.22) <0.001 0.909 (0.498-1.659) 0.756

(Continued)
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parameters, making it efficient and effective in handling categorical

features (25). CatBoost’s performance rivals that of other advanced

machine learning algorithms, demonstrating its superiority in many

applications. But the black-box feature of CatBoost model

necessitated its interpretation and explanation with vivid figures.

CatBoost’s SHAP summary plots and force maps serve as valuable

tools, offering clinicians a visual and intuitive means to understand

and identify the critical features influencing three-year survival,

which not only elucidates the pivotal risk factors but also improves

the interpretability of ML models in clinical settings. Meanwhile,

several advanced ML techniques, including feature selection

through RFECV, hyperparameter opt imiza t ion wi th

GridSearchCV, and addressing sample imbalance using SMOTE

oversampling, had significantly enhanced the prediction accuracy

for the probability of three-year survival. Overall, our precise ML

prediction model allowed clinicians to schedule personalized

treatment plans, helping them tailor therapy methods in time and

enhance prognosis of pancreatic cancer patients.

Researchers have previously shown that old age, high histological

grade, large tumor size, AJCC stage, surgery type and metastasis are

associated with poorer long-term survival outcomes for pancreatic

cancer patients (26, 27). In clinical practice, serum CA199 and CEA

levels are commonly used biomarkers in pancreatic cancer, and high

levels of CA199 are generally associated with a worse prognosis.

Meanwhile, the methylation status of NPTX2, BMP3 and SPARC

genes plays an important role in the prognosis of pancreatic cancer.

Researchers suggest that methylation of these genes could be used as

non-invasive biomarkers to assess prognosis and monitor disease

progression in patients with pancreatic cancer (28). In our analysis,

we performed univariate and multivariate logistic and cox regression

analyses to discover important predictive factors for three-year

survival, as well as independent risk factors for prognosis. Based on

clinical variables which can be easily obtained during clinical

practices, we succeeded in constructing a powerful CatBoost model

to early predict three-year survival.

In our research, we observed that patients with pancreatic

cancer who undergo surgical resection demonstrated significantly

improved survival rates, as supported by Hester et al.’s analysis of

the National Cancer Database (29). However, surgery alone is often

insufficient for achieving long-term survival, with median survival
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times typically ranging between 8 to 10 months, frequently

accompanied by tumor recurrence (30). Chemotherapy, both as a

neoadjuvant (preoperative) and adjuvant (postoperative) treatment,

has been identified through logistic and cox regression analyses as a

key independent factor in enhancing patient survival. Specifically,

adjuvant chemotherapy has been shown to double median survival

rates compared to patients who do not receive it, while neoadjuvant

chemotherapy improves overall survival and increases the

likelihood of R0 resection, making it a valuable treatment option

(31). Additionally, age is an independent risk factor, with older

patients exhibiting lower survival rates, likely due to diminished

immunity and physical decline, which is also common in other

types of cancer. Moreover, we found that race does play a role in

pancreatic cancer prognosis. African Americans have a higher rate

of pancreatic cancer than other racial groups, and their overall

survival rate is lower. This difference may be related to a variety of

factors, including socioeconomic status, access to and quality of

health care, and genetic and environmental factors (32).

Gender can influence the prognosis of pancreatic cancer,

though the impact is complex and varies depending on several

factors (33). Our analysis results show that women generally have a

slightly better overall survival (OS) compared to men. This

improved survival in women has also been observed in studies

analyzing the outcomes of both standard treatments and more

aggressive chemotherapy regimens like FOLFIRINOX (34).

Moreover, our analysis displayed that metastasis in pancreatic

cancer significantly affected prognosis, with different metastatic

sites influencing survival outcomes differently (35). Common sites

of distant metastasis in pancreatic cancer include the peritoneum

and liver, followed by the lungs, bones, and other organs (36). Liver

metastasis is the most common and is associated with the poorest

prognosis, often due to the liver’s role in filtering blood and its

involvement in the metabolism of cancer drugs. Lung metastasis,

while also serious and crucial, generally presents a slightly better

prognosis compared to liver involvement. Peritoneal metastasis

reflects a more extensive spread of the disease within the

abdominal cavity. This type of metastasis is particularly

challenging because it often leads to complications such as ascites

(the accumulation offluid in the abdomen), which can be difficult to

manage and severely impacts the patient’s quality of life. Overall,
TABLE 3 Continued

Variable Univariable cox analysis Multivariate cox analysis

term HR (95%CI) p.value HR (95%CI) p.value

Liver_Metastasis: No Reference

Yes 2.99 (2.84-3.15) <0.001 1.338 (1.224-1.463) <0.001

Unknown 1.34 (1.3-1.39) <0.001 1.753 (1.27-2.419) 0.001

Lung_Metastasis: No Reference

Yes 2.77 (2.52-3.04) <0.001 1.338 (1.224-1.463) <0.001

Unknown 1.22 (1.19-1.26) <0.001 1.753 (1.27-2.419) 0.001
frontiersin.org

https://doi.org/10.3389/fonc.2024.1488118
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Teng et al. 10.3389/fonc.2024.1488118
the presence of metastasis generally indicates an advanced disease

and a poor prognosis, due to the difficulty of achieving complete

surgical resection and the challenges in effectively targeting

metastatic sites with systemic therapies.

While this study boasts certain strengths, it also faces multiple

limitations. Firstly, we calculated the needed sample size for our
Frontiers in Oncology 20
external validation set, but we were unable to gather a large enough

external validation set due to the limited number of patients with

complete follow-up information. Although we recognize that large

sample sizes improve the reliability of model evaluations, we have

tried to collect the largest sample size available in the current

research environment. Despite the small set of external
FIGURE 7

Establishment and validation of prognostic model for pancreatic cancer patients. (A) A total of 101 kinds of prognostic models via a leave-one-out
cross-validation framework and further calculated the C-index of each model. (B) Feature selection process by RSF algorithm. (C) Model
construction by GBM algorithm and visualization of feature importance. (D) ROC curves of ML model in training, internal validation and external
validation cohorts. (E) Time dependent AUC values of ML model in training, internal validation and external validation cohorts. (F) Calibration curves
of ML model in training, internal validation and external validation cohorts. (G) DCA curves of ML model in training, internal validation and external
validation cohorts. (H) K-M curves of low-risk and high-risk groups divided by ML model in training, internal validation and external validation
cohorts. Left: training cohort, Middle: internal validation cohort, Right: external validation cohort.
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validations, we maximize the reliability of validation by using a 10-

fold cross-validation approach to assess the model’s ability to

generalize. In future studies, we plan to increase the sample size

of the external validation set, thereby further verifying the

universality and reliability of the model. Secondly, our study relies

on retrospective datasets sourced from the SEER database, causing

possibility of selection bias. Meanwhile, the inconsistent data

collection across multiple hospitals, as well as the retrospective

study design, led to some missing clinical feature data. Thirdly, the

absence of some key clinicopathological parameters is noted, due to

the unavailability of image data and laboratory test indicators from

the SEER database. The study predominantly utilizes baseline

characteristics and routine clinical data as variables, without some

important indicators such as CA199, CEA and KRAS gene

mutation. To enhance the model’s predictive accuracy and

identify risk factors, a broad range of features was included,

which somewhat complicates its practical application in a clinical

setting. Finally, the model has yet to be implemented in clinical

practice, thus necessitating prospective, multicenter, and large-scale

validations to fully ascertain its generalizability in the future.
Conclusions

In this study, we developed a CatBoost predictive model based

on ML benchmark framework, to more accurately predict three-

year survival for pancreatic cancer patients, surpassing traditional

models in effectiveness and performances. We successfully

identified significant predictive factors for three-year survival of

pancreatic cancer. Meanwhile, we establish a GBM prognostic

model to predict prognosis of pancreatic cancer patients for

achieving personalized medicine. This research laid a foundation

for future efforts aimed at enhancing three-year survival prediction

and prognosis forecasting, which could help clinicians in decision

making and therapy plan tailoring.
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