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Bladder cancer (BC) is a serious and common malignant tumor of the urinary

system. Accurate and convenient diagnosis and treatment of BC is a major

challenge for the medical community. Due to the limited medical resources, the

existing diagnosis and treatment protocols for BC without the assistance of

artificial intelligence (AI) still have certain shortcomings. In recent years, with the

development of AI technologies such as deep learning and machine learning, the

maturity of AI has made it more and more applied to the medical field, including

improving the speed and accuracy of BC diagnosis and providing more powerful

treatment options and recommendations related to prognosis. Advances in

medical imaging technology and molecular-level research have also

contributed to the further development of such AI applications. However, due

to differences in the sources of training information and algorithm design issues,

there is still room for improvement in terms of accuracy and transparency for the

broader use of AI in clinical practice. With the popularization of digitization of

clinical information and the proposal of new algorithms, artificial intelligence is

expected to learn more effectively and analyze similar cases more accurately and

reliably, promoting the development of precision medicine, reducing resource

consumption, and speeding up diagnosis and treatment. This review focuses on

the application of artificial intelligence in the diagnosis and treatment of BC,

points out some of the challenges it faces, and looks forward to its

future development.
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1 Introduction

Bladder cancer (BC) is the fourth most common type of cancer

among men and the second most common urological reproductive

system tumor. The American Cancer Society projects that in 2024, a

total of 83,190 people will be diagnosed with BC, and 16,840 will die

as a result (1). More than 95% of BCs are uroepithelial carcinomas.

At diagnosis, approximately 75% of cases will be non-muscle

invasive BC (NMIBC), with the remainder being muscle-invasive

BC (MIBC) or metastatic disease (2, 3). BC has one of the highest

lifetime costs of treatment per patient disease and represents a

major challenge for oncology given its wide range of disease risks,

management options, and complications (4).

Artificial intelligence (AI) is a machine’s ability to mimic

human intelligence to perform tasks involving decision-making

and problem-solving. With the rapid development of AI in recent

years, its use in healthcare has become increasingly widespread. The

more common AI techniques in clinical medicine include deep

learning (DL) and machine learning (ML). ML refers to the ability

of a machine to develop algorithms that make predictions about

data based on trends and patterns in previous data (5). DL is a

subset of ML that involves hierarchical and model learning through

neural networks and allows predictions to be made in unstructured

environments (6). AI will play an essential role in addressing the

unmet needs of a BC visit, including imaging tests, pathologic

diagnosis, molecular biomarkers, risk stratification, treatment

assessment, and outcome prediction, among many others.

The goal of this review is to review existing technologies and

current research and discuss the role that AI currently plays in the

BC diagnostic and treatment process.
2 AI in the diagnosis of bladder cancer

2.1 Cystoscopy

Cystoscopy is a standard tool for diagnosing and monitoring BC

and plays an essential role in diagnosing and treating BC. However,

it is reported that the misdiagnosis rate of white light cystoscopy is

up to 30% (7), and the sensitivity and specificity of diagnosis under

white light imaging (WLI) are 60% and 70%, respectively (8). Given

that AI can recognize pixel-level features that cannot be detected by

the human eye and has a solid autonomous learning ability, it has

the potential to be applied in the medical diagnosis field and

improve the accuracy rate. Table 1 describe some of the

applications of AI in cystoscopy.

Wu et al. (9) built the Cystoscopy AI Diagnostic System

(CAIDS) framework using a pyramid scene parsing network

(PSPNet) trained on ImageNet and the training set. To compare

the performance of CAIDS and urologists in identifying BC, 69,204

images of 10,729 patients were used to develop CAIDS, and finally a

subgroup of 260 images in complex lesions was used for the test. In

the comparisons, the CAIDS showed high accuracy and sensitivity

(accuracy = 0.939, 95% confidence interval (CI) = 0.902 to 0.964;

sensitivity = 0.954, 95% CI = 0.902 to 0.983). With a latency of 12
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seconds, the CAIDS is more accurate and quicker than expert

urologists. Ikeda et al. (10) jointly developed a convolutional

neural network (CNN) -based tumor classifier using 431 tumor

lesion images obtained from 124 bladder resections performed on

109 patients, plus 1671 standard tissue images. The test results

showed that the area under the curve (AUC) value was 0.98, the

sensitivity was 89.7%, and the specificity was 94.0%. Du et al. (11)

used the Caffe DL framework and the EasyDL platform for model

construction and training. Cystoscopy was performed on 175

patients, and 1002 photos of normal bladder tissue and 734

photos of bladder tumors were taken. The training results showed

that the accuracy rate of neural networks based on the Caffe

framework in identifying BC is 82.9%, and the data on the

EasyDL platform is 96.9%. Shkolyar et al. (12) aimed to develop a

DL algorithm for enhancing the detection of BC by cystoscopy.

Shkolyar et al. constructed an image analysis platform named

CystoNet based on CNNs for automatic BC detection. The

algorithm was trained using the development dataset of 95

patients and tested with 5 patients. As the per-frame sensitivity

and specificity were 90.9% (95% CI, 0.903 to 0.916) and 98.6% (95%

CI, 0.985 to 0.988), DL-enhanced cystoscopy may improve tumor

localization, intraoperative navigation, and surgical resection of BC.

Freitas et al. (13) confronted two methods for classifying bladder

lesions shown in white light cystoscopy images: the classic method,

namely the feature-feeding pattern recognition system based on

manual design, and the method based on modern DL. They found

that with more robust models, elaborately hand-designed features

can perform similarly to traditional DL-based models and deep

capsule networks, improving accuracy from 94.6% to 96.9% and

making it more conducive to clinical applications.

Eminaga et al. (14) used neural network models such as

ResNet50, VGG - 19, VGG - 16, InceptionV3, and Xception to

classify cystoscopic images, and developed two convolutional neural

network architectures. They trained, validated, and evaluated the

models by randomly generating a training set (60%), a validation set

(10%), and a test set (30%). The results showed that the Xception

model had the highest F1 score (99.52%), followed by the ResNet50

model (99.48%) and the model based on the concept of harmonic

sequence (99.45%). The introduced models could accurately

identify malignant urological results and distinguish between

interstitial cystitis, other types of cystitis, and carcinoma in situ.

Lorencin et al. (15) used MLP with different activation functions

and optimizers to train and test bladder cancer images of various

sizes, obtained the AUC value and training time through ROC

analysis to determine the optimal hidden layer design and image

size. Except for the 30×30 images, the maximum AUC can be

achieved using MLP models with medium complexity. The highest

AUC values can be obtained with 50×50 and 100×100 input images,

which are 0.99 and 0.99, respectively; the AUC values of 30×30 and

200×200 input images are 0.96 and 0.92, respectively. Lorencin et al.

(18) used the two widely used CNN architectures, AlexNet and

VGG16, and fine-tuned them to adapt to grayscale images to study

the impact of GAN-based image data augmentation on the urinary

bladder cancer diagnosis system. The results show that GAN-based

augmentation influences the classification and generalization

performances of CNNs. For AlexNet, this approach improves the
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average and median performances, makes the network behavior

more stable, and significantly enhances the generalization

performance. Yang et al. (16) collected 1200 cystoscopic cancer

images from 224 patients with bladder cancer and 1150 cystoscopic

images from 221 patients without bladder cancer and used three

classic deep learning networks (LeNet, AlexNet, and GoogLeNet)

and the EasyDL platform to build the model. The accuracy rates of

all three models were relatively high, and there was no overfitting

phenomenon. GoogLeNet had the highest accuracy rate, and

EasyDL had the highest F1 score in the V2 round, with an
Frontiers in Oncology 03
accuracy rate of 96.9% then. VISIOCYT1 (17) was a French

prospective clinical trial conducted in 14 centers. The main

objective is to evaluate the diagnostic performance of the

VisioCyt test, including sensitivity and specificity, and to assess

the sensitivity of tumor grading, T staging, and the trial groups. The

overall sensitivity is 80.9%, and the specificity is 61.8%; the

sensitivity in high-grade tumors is 93.7%, and in low-grade

tumors, it is 66.7%.

Cystoscopy generally has problems such as high cost,

invasiveness, and dependence on the operator. For young doctors,
TABLE 1 Artificial intelligence in cystoscopy.

Year
of

Study

Model Training set Test set and
validation set

Result Reference

2022 Pretrained pyramid-scheme
parsing network fine-tuned
with cystoscopy dataset

5,013 tumor images and
46,054 normal images

1,261 tumor images and
11,124 normal images

(internal validation); 647
tumor images and 5,105
normal images from1,427

patients (external validation)

Accuracy = 0.939, 95% CI = 0.902 to 0.964;
sensitivity = 0.954, 95% CI = 0.902 to 0.983

(9)

2020 Pretrained GoogleNet with
fine-tuned

cystoscopy dataset

344 tumor images and
1,336 normal images

87 tumor images and 355
normal images (test)

The AUC value was 0.98, the sensitivity
was 0.897, and the specificity was 0.94

(10)

2021 A deep learning network-
assisted bladder tumor
recognition under

cystoscopy based on Caffe
deep learning framework
and EasyDL platform

734 tumor images from 72
patients and 1,002 normal
images from 103 patients

4 untrained images of
cystoscopy (validation)

The accuracy rate of the neural network to
recognize the bladder cancer based on

Caffe framework was 0.829, and the data
on the EasyDL platform were 0.969

(11)

2019 CystoNet, an image analysis
platform based on CNNs
for automatic BC detection

95 patients 5 patients (test) and 54
patients (validation)

Per-frame sensitivity = 0.909, 95% CI =
0.903 to 0.916; specificity = 0.986, 95% CI

= 0.985 to 0.988

(12)

2022 Feature fusion, transfer
learning and CapsNets

90% of the digital atlas (256
normal frames from 12
patients, 144 T1 tumor

frames from 6 patients and
53 T1 tumor frames from

5 patients)

The accuracy rate increased from 0.946
to 0.969

(13)

2018 Deep CNN models
(ResNet50, VGG-19, VGG-

16, InceptionV3,
and Xception)

60% of the digital atlas (479
images from 44

cystoscopy results)

10% of the digital atlas
(validation) and 30% of the

digital atlas (test)

The Classification Accuracy of the
Xception-based model was 0.9952, followed
by models that were based on ResNet50

(0.9948) and the harmonic-series
concept (0.9945)

(14)

2020 Dataset Description,
Laplacian edge detector,
Image Resizing, MLP with
Laplacian of an image

1,500 tumor images and
500 normal images

497 tumor images and 486
normal images (test)

The AUC were 0.99 (50×50 input images),
0.99 (100×100 input images), 0.96 (30×30
input images) and 0.92 (200×200 input

images) respectively.

(15)

2021 three classic deep learning
networks (LeNet, AlexNet,
and GoogLeNet) and the

EasyDL platform

80% of the digital atlas
(1,200 tumor images from
224 patients and 1,150
normal images from

221 patients)

20% of the digital atlas (1,200
tumor images from 224

patients and 1,150 normal
images from 221 patients)

The accuracy was 0.969 of EasyDL, 0.9254
of GoogLeNet, 0.8336 of the neural
network and 0.8409 (p > 0.05) of

medical expert

(16)

2023 VISIOCYT1 391 patients (170 patients
with BC and 149 patients

without BC)

Overall sensitivity = 0.809, 95% CI = 0.739
to 0.864; specificity = 0.618, 95% CI 0.534
to 0.695; sensitivity = 0.937, 95% CI = 0.86
to 0.973 in high-grade tumors and 0.667,

95% CI 0.552 to 0.765% in low-
grade tumors

(17)
BC, bladder cancer; CNN, convolutional neural network; CI, confidence interval; AUC, area under curve.
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it is challenging to interpret the results of cystoscopy, and it relies on

the examiner’s skills. Artificial intelligence can be used to objectively

evaluate cystoscopy images, with high sensitivity and specificity,

and can assist in diagnostic classification. For example, CystoNet,

convolutional neural networks, and deep learning models can be

applied in diagnostic support, image classification, tumor detection,

and performance evaluation, which is expected to improve the

accuracy of bladder cancer diagnosis and treatment, reduce the

examination time, and overcome the limitations of human expert

opinions. However, the algorithm is sensitive to the amount of

input data, and collecting medical data is challenging, usually

requiring data augmentation. High-quality input data and image

preprocessing are crucial for developing a powerful diagnostic

classification model. In the future, AI-assisted cystoscopy should

be integrated into clinical routines and may be extended to other

clinical endoscopic applications. More cystoscopy data and a more

robust network structure are needed to explore the highest accuracy

of convolutional neural networks in bladder tumor recognition.
2.2 Computed tomography (CT)

In recent years, AI has made some achievements in CT imaging

detection, which makes people realize the great prospect of ML and

DL models based on CT images in the pathological grading and

invasive evaluation of BC (19). ML and DL techniques use CNNs to

discover complex structures and patterns in CT images (20). ML

and DL carry out image recognition diagnosis and personalized

medicine to improve diagnostic accuracy and speed up the clinical

diagnosis and treatment. Garapati et al. (21) used an objective

computer-aided system to assess the BC stage. The data set of 84 BC

lesions indicated promise as a classification tool for stratifying BC

into two staging categories. The ML algorithm prediction model

developed in their study demonstrated the feasibility of ML for

predicting the extent of BC infiltration. Zhang et al. (22) developed

a DL model based on CT images for predicting the muscle invasion

status of BC. The model had good predictive ability for the

preoperative muscle invasion status of BC.

AI can enhance the clinical value of CT image reports. Cha et al.

(23) compared deep learning convolution neural networks (DL-

CNN) with auto-initialized cascaded level sets (AI-CALS). Their

results showed that DL-CNN can produce accurate BC

segmentation. Gresser et al. (24) compared radio histological

analyses of manual and automated lymph node (LN)

segmentation for detecting LN metastases in BC in 1354 BC

patients undergoing radical cystectomy combined with LN

dissection. The study found that models based on manual LN

segmentation were superior to fully automated methods. There is

currently less research in this area, and further research is needed on

the role of AI in this area.

Moreover, CT imaging histology-based modeling in objective

clinical benefits performs well. Borrelli et al. (25) used CT-based AI-

powered software to evaluate objective clinical benefits in 2021. The

outcomes of clinical benefit in 66 patients with BC showed a

positive association with the observed anthropometric features.
Frontiers in Oncology 04
2.3 Magnetic resonance imaging (MRI)

Combining AI and MRI, especially in BC staging using

multiparametric MRI (mpMRI), gives AI a powerful ability to

identify cancer-invasive muscle and pathological grading.

Predicting the degree of muscle infiltration of BC by DL-CNN is

a helpful method for the diagnosis and treatment of BC.

The MRI-based AI model can improve the detection rate of BC

(14). Zhang et al. (26) described textural features of different grades

of BC from diffusion-weighted images and apparent diffusion

coefficient maps. The selection of optimal texture features

improved the ability to differentiate BC from normal bladder wall

tissue and facilitate image-based BC grading preoperatively. The

MRI-based AI model can also save the cost of the doctors’ time. Ye

et al. (27) used semi-automated and manual segmentation results to

differentiate between NMIBC and MIBC in radiomics analyses. The

outcomes showed they had a similar diagnostic performance, but

the semi-automatic segmentation method was less time-consuming

and required fewer manual interventions.

Compared to CT, MRI has better soft tissue resolution and can

be used to assess the extent of BC infiltration (28). Xu et al. (29)

studied T2 weighted MR images (T2WI) of 68 patients with BC.

The outcome showed that T2WI and its higher-order derivative

maps could reflect muscle invasiveness in BC. Xu et al. (30)

evaluated the discriminatory performance of preoperative mpMRI

radiomics features for the precise identification of NMIBC and

MIBC in the follow-up study, demonstrating the advantages of

mpMRI. Li et al. (31) constructed a T2WI-based radiomics model, a

single-task DL model, and a multi-task DL model and predicted

MIBC status. The study showed that multi-task DL paid more

attention to the diseased tissue area and was more reliable for the

clinical references. AI can improve the sensitivity and specificity of

tumor detection by analyzing MRI images of BC patients and by

analyzing different texture features in response to various tissue

types of BC lesions. Meanwhile, AI-assisted MRI diagnosis can

more accurately assess the degree of muscle infiltration of BC and

provide an important basis for developing clinical treatment plans

based on whether it is MIBC.
2.4 Ultrasound

Ultrasound has high sensitivity and specificity in diagnosing BC

(32). Moreover, as ultrasound is a non-invasive, recognized, and

cost-effective diagnostic technique, it has advantages in some cases

compared with the invasive operation of cystoscopy (33). The

application of AI in ultrasound for BC is helpful. It can improve

the diagnostic accuracy. The AI algorithm can conduct a more

detailed and precise analysis of the ultrasound images, helping to

identify the subtle lesions in the early stage of BC, reduce the

subjectivity and error of human judgment, and provide doctors with

a more objective and consistent diagnostic basis. Gao et al. (34)

established a radiomics model based on ultrasound images. A total

of 157 patients were included for analysis; 104 cases were used to

evaluate the tumor stage, and 143 cases were used to assess the
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pathological grade. For the tumor stage prediction model, the AUC,

sensitivity, and specificity in the training set were 0.94, 0.77, and

0.98, respectively; the AUC, sensitivity, and specificity in the

validation set were 0.84, 0.77, and 0.89, respectively. For the

pathological grade prediction model, the AUC, sensitivity, and

specificity in the training set were 0.84, 0.80, and 0.78,

respectively; the AUC, sensitivity, and specificity in the validation

set were 0.75, 0.87, and 0.60, respectively. All models showed good

predictive ability, which was helpful for effective risk stratification

for patients. It is expected to provide a non-invasive, economical,

reliable, and effective preoperative prediction tool for tumor staging

and pathological grading, helping doctors make accurate diagnoses,

choose appropriate individualized treatment plans, and improve the

prognosis of patients.
2.5 Urine cytology

Urine cytology (35) is a method of observing various cells in the

urine sediment with a microscope and evaluating their significance.

It is mainly used to detect malignant cancers in the urinary system

and is the first non-invasive diagnostic method for BC that is widely

used in clinical practice. Table 2 describes the application of various

AI models in Urine cytology.

The most readily available and widely used urine biomarker is

urine cytology, but urine cytology lacks sensitivity. Combining

urine cytology with AI can significantly improve the accuracy of

digitized urine cytology slide analysis. Levy et al. (36) reported on

AutoParis-X (AP-X), a DL tool that facilitates rapid semi-

autonomous examination of urine cytology specimens. AP-X

iterated previous algorithms for urine cytology assessment to
Frontiers in Oncology 05
address many of the remaining complexities. It has been validated

on a large scale and has improved the sensitivity of urine cytology.

Lebret et al. (17) evaluated the diagnostic performance of the

VisioCyt test in terms of sensitivity by urine cytology. The in-

vitro diagnostic medical device VisioCyt uses whole-section

digitization and AI algorithms to identify cancer cells. The results

showed a significant increase in the overall sensitivity of the

VisioCyt test for detecting BC. According to their study, VisioCyt

is reproducible and reliable. Tsuji et al. (37) developed an

automated AI system that analyzed 536 consecutive urine

cytology slides from 382 patients. AI had 63% sensitivity for

high-grade urothelial carcinoma (HGUC) histological prediction,

superior to a pathologist’s cytology. The AI predicted histological

HGUC from digitized urine cytology slides with great sensitivity

and maintained specificity and accuracy (39). Wu et al. (38)

conducted a large multi-center cohort study to develop and

validate an AI diagnostic system, which was termed PUCAS for

urine cytology. PUCAS consists of three stages: patch extraction,

feature extraction, and classification diagnosis. It may improve the

sensitivity of urine cytology and avoid unnecessary endoscopy.

The significance of AI in urinary cytology diagnosis of BC not

only improves the sensitivity and specificity of diagnosis, the AI

software system VisioCyt assay offers a significant increase in

sensitivity compared to conventional cytological tests, but also by

analyzing urine samples for specific markers or changes in cell

morphology, achieves non-invasive detection and reduces the pain

of patients. Katims et al. (40) found in a retrospective study that

genome sequencing was successful in 45 of 48 patient samples with

urine cytology, and all patients with negative urine cytology and

low-grade tissue had successful cytological sequencing. Chauhan

et al. (41) found that DNA minimal residual disease detection for
TABLE 2 Application of artificial intelligence in urine cytology.

Year
of

Study

Model Training
set

Test set Result Reference

2023 AutoParis-X, an improved
semiautonomous urine cytology

assessment tool

47 urine
specimens
(total: 1303

urine
specimens

from
140 patients)

1252 urine specimens (total:
1303 urine specimens from

140 patients)

AutoParis-X can accurately determine urothelial cell
atypia and aggregate a wide variety of cell-related and
cluster-related information across a slide to yield an

atypia burden score

(36)

2023 VisioCyt, an in-vitro diagnostic
medical device

391 patients (170 patients
with BC and 149 patients

without BC)

Sensitivity = 0.809, 95% CI = 0.739 to 0.864;
specificity = 0.618, 95% CI = 0.534 to 0.695

(17)

2024 A fully automated artificial
intelligence system used DL to
predict histologically advanced
urothelial carcinoma from

digitized urine cytology slides

181
consecutive

urine
cytology slides

39 consecutive urine
cytology slides (cell-level)
and 315 consecutive urine
cytology slides (slide-level)

The sensitivity of histological HGUC to predict AI
was 63%, which was superior to the sensitivity of
cytology by pathologists (46%) (p = 0.0037).

(37)

2024 Precision Urine Cytology AI
Solution (PUCAS)

2,641 images
of

urine cytology

2,335 images of urine
cytology (retrospective

validation cohort) and 400
images of urine cytology

(prospective
validation cohort)

The sensitivity of PUCAS ranged from 0.922 to 1.000
in retrospective validation cohorts and was 0.896
(0.837-0.939) in prospective validation cohort.

PUCAS reduced the use of endoscopes by 57.5% with
a negative predictive value of 96.4%.

(38)
AI, artificial intelligence; PUCAS, Precision Urine Cytology AI Solution; CI, confidence interval; DL, deep learning; HGUC, high-grade urothelial carcinoma.
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radical cystectomy for bladder cancer was significantly associated

with pathological response through a deep sequencing urothelial

cancer personalized analysis study, which may be helpful for

patients opting for bladder preservation therapy. In the future, it

is expected that genomic sequencing technology will be used to

obtain genetic information of urinary cells and combined with AI

technology to quickly and accurately analyze a large amount of

genomic data to analyze whether there are any genetic variants

related to bladder cancer, etc.
2.6 Molecular biology

AI models developed based on molecular biology information

also have multiple uses in diagnosing and treating BC; one of the

applications is to use ML analysis of BC molecular markers related

to metabolism. Shao et al. (42) profiled metabolite profiles of 87

samples from BC patients and 65 samples from hernia patients and

built an ML model, decision trees, based on the metabolomic

profiles and six marker candidates. Further studies by Lee et al.

(43) demonstrated that the use of surface-enhanced Raman

spectroscopy (SERS) combined with ML algorithms to analyze

nano-biomarkers in a single drop of urine has the potential to

improve the accuracy of early BC diagnostics. In their study, the

combination of SERS and ML achieved an accuracy greater than or

equal to 99.6% in diagnosing both early- and polyp-stage bladder

tumors in a rat model.
2.7 The staging of bladder cancer

NMIBC frequently recurs or progresses with five-year rates of

31-78% and 1-45% (44). It is prone to lymphatic metastasis and is

less sensitive to chemotherapy, seriously threatening the health of

the nation. Through AI technology, precise staging of BC will be

achieved, thereby promoting individualized and precise treatment

for patients. This can significantly reduce the workload of clinicians,

improve the speed and accuracy of diagnosis, make up for the

unbalanced distribution of medical resources, promote the

standardization and homogeneity of BC diagnosis and treatment,

and solve the problem of low-level diagnosis and treatment of BC in

grassroots hospitals.

Wu et al. (45) established a lymph node metastasis diagnostic

model (LNMDM) based on whole-slide images. A total of 1,012 BC

patients who received radical cystectomy and pelvic lymph node

(LN) dissection from five hospitals between January 1, 2013, and

December 31, 2021, were included. These patients had complete LN

section images available for model development. The results

showed that the diagnostic accuracy of this model was 97.8% -

99.8%. In the validation sets of the 5 hospitals, the AUC for accurate

diagnosis by LNMDM ranged from 0.978 (95% CI 0.960 - 0.996) to

0.998 (95% CI 0.996 - 1.000). Furthermore, the diagnostic

sensitivity of this model significantly exceeded that of both junior

and senior pathologists. The AI assistance enhanced the diagnostic

sensitivity of both junior and senior pathologists. In conclusion,

LNMDM shows excellent potential for clinical application in
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improving the accuracy and efficiency of the work of pathologists.

Qureshi et al. (46) hypothesized that MRI/RNA-seq-based radio

genomics and AI can stage BC more accurately. A total of 40 MRI

and matched formalin-fixed paraffin-embedded (FFPE) tissues were

available for their analysis, among which 28 sets were used for

training analysis and 12 sets for validation. Overall, the model’s

average sensitivity, specificity, and accuracy in differentiating

intravesical cancer from extravesical cancer were 94%, 88%, and

92%, respectively. Compared with the genetics-based and

radiomics-based models alone, the proposed model improved by

17%, 33%, and 25%, respectively, on the three substrates, and by

17%, 16% and 17% respectively, which meant that it could provide

insights into the discriminative features for more accurate staging of

BC. Yin et al. (47)provided an ML-enabled, feature-centric, and

interpretable diagnostic system to facilitate the precise staging of

non-invasive Ta and superficially invasive T1 diseases. 1177

hematoxylin-and eosin-stained (H&E-stained) images of BC

tissues were collected by Yin et al., including 460 non-invasive

(Ta stage) and 717 invasive (T1 stage) tumors. The features

extracted from the images were analyzed using ML methods. By

reducing the feature set, they successfully distinguished 1177 Ta or

T1 images through six supervised learning methods, with an

accuracy rate of 91-96% (47). In contrast, the CNN model that

automatically extracts features from images yielded an accuracy rate

of 84%. This indicates that the feature extraction driven by domain

knowledge is superior to the automatic feature extraction based

on CNN.

The application of artificial intelligence in the staging of bladder

cancer can improve the staging accuracy while maintaining

objectivity and being fast and efficient. Currently, some studies

are attempting to use artificial intelligence technologies, such as

deep learning algorithms, to analyze the imaging images of bladder

cancer (such as CT, MRI, etc.) to achieve more precise staging.

Some studies have shown that artificial intelligence has a certain

potential to stage bladder cancer and can assist doctors in making

decisions. However, problems such as large data requirements,

complex models, and insufficient clinical validation still need to

be solved. In the future, optimizing the data and carrying out multi-

modal fusion to promote its clinical application is necessary.
2.8 Histopathology

Within the field of BC histopathology, the application of AI has

benefited from the development of digital pathology techniques,

mainly using digitized whole section images (WSIs) and

immunohistochemistry (IHC) images. Based on these

histopathologic images and additional clinical information, we

can use various algorithms to make more reliable choices in

many dimensions of the clinical diagnosis and management of

BC, which include differential diagnosis, grading classification,

molecular staging, and prognosis.

Aided by AI models, trained with the WSIs of diagnosed

patients, physicians can make a fast and accurate preliminary

differential diagnosis of BC in conditions where medical resources

are limited. Jansen et al. (48) trained a U-Net segmentation AI
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based on the DL technique by scanning 328 tumor specimens from

three different centers, which can accurately distinguish

uroepithelial carcinoma from atypical uroepithelial lesions. Chen

et al. (49) constructed an ML-based automated diagnostic model to

distinguish normal bladder tissue from BC, with an AUC value of

94.1% in the external validation cohorts. In addition, the team’s

model could also discriminate between BC and glandular cystitis,

with an AUC value of 93.4% in the patient cohort from Shanghai

General Hospital. Using these models can eliminate the variations

caused by subjective factors to a certain extent and obtain more

accurate results. However, many of these models are limited by the

differences in how slides are produced in clinical settings across

hospitals, and their performance in clinical simulations is generally

inferior to that in training cohorts.

Most AI models used for BC grading are based on H&E-stained

sections. Noorbakhsh et al. (50) used DL to analyze the Cancer

Genome Atlas (TCGA) database of 27,815 H&E-stained WSIs of

different types of cancer. They analyzed them with an accuracy of

over 98% for BC classification. In addition, the U-Net segmentation

neural network AI trained by Jansen et al. (48) enables automatic

detection of NMIBC grading. Pan et al. (51) reported a pathological

AI diagnostic model (PAIDM) for BC. This PAIDM was developed

using a training set based on the DL algorithm ScanNet, which

performed well in diagnosing muscle invasion and identifying

histologic grade at the patch level and WSI level. Based on the

InternImage-B model with 128 M parameters, Ceachi et al. (52)

used the UperNet method to design an AI-based automated

approach to detect lymphovascular invasion in urothelial

carcinoma by analyzing scans of H&E-stained sections. In their

study, their model outlined lymphovascular invasion on H&E-

stained slides more efficiently than human examiners. Some other

models use different histopathologic images, such as IHC images.

Using several CNN-based computational methods, Khosravi et al.

(53) built a standalone pipeline to efficiently classify different

histopathology images and discriminate subtypes of different

types of cancers, including BC. The team provided algorithms for

bladder biomarker discrimination up to 99% and Score

discrimination in the bladder up to 77%. Lee et al. (54) used the

AI-powered product from Lunit, Lunit SCOPE PD-L1, to assist

pathologists in completing the assessment of PD-L1 expression

levels. Their study demonstrated that AI assistance could improve

the consistency of combined positive score results in BC between

pathologists and might have the potential to assist in developing

multicenter telepathology reading. Using 363 H&E-stained WSIs

from the TCGA cohort, Woerl et al. (55) developed the DL model

mibCNN to pred ic t molecu lar subtypes (basa l - l ike ,

tubulointerstitial, P53-like, and all-negative) in MIBC patients.

The AUC value of this model reached 85.00%. In addition, the

team used class activation map visualization techniques to identify

which histopathological features are most relevant to the model to

call a certain molecular subtype, which solves the black-box

problem to some extent and facilitates the clinical use of

such models.

Similarly, Velmahos et al. (56) extracted imaging biomarkers

from H&E-stained WSIs computationally. They used 418 genomic

profiles and WSIs of BC cases from TCGA to build a CNN to
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identify tumor-infiltrating lymphocytes (TIL). The percentage of

the tissue containing TIL was then used to predict FGFR activation

status with a logistic regression model. Their model can identify

patients with any FGFR gene aberration using CNN-based TIL

percentages and shows high sensitivity and specificity in predicting

patients with only FGFR2/FGFR3 mutation. Loeffler et al. (57)

trained a DL network to detect FGFR3 mutations on 327 digitized

MIBC sections and validated the algorithm in the “Aachen” cohort,

with respectively AUC values of 0. 701 and 0.725, outperforming

urologic pathologists. But for now, there is a lack of data from a

larger, multicenter, muscle-invasive BC cohort to validate the

network further. Noorbakhsh et al. (50) also used a CNN model

to distinguish between TP53 mutant/wild-type BC with an AUC

value of 0.61. Yan et al. (58) proposed a WSI-based mutation

prediction framework that could well predict five clinically relevant

mutations (ATM, PIK3CA, ERBB2, FGFR3, ERCC2, with a

predicted AUC value of 0.83 or more). They utilized the

hierarchical deep multi-instance learning method with a two-

stage attention mechanism to identify patches that are highly

correlated with gene mutations, improving the interpretability of

the model. Using the information extracted from histopathology

imaging by such AIs, physicians can initially plan a patient’s

treatment cost-effectively.
3 AI in the treatment of
bladder cancer

3.1 Radiation therapy

Radiation therapy (RT) is one of the mainstays of BC treatment.

RT is used as the primary treatment for BC in patients with MIBC

when preferred surgical intervention is not possible (59, 60) or as a

palliative treatment option to relieve symptoms and improve

quality of life in patients with advanced or metastatic disease (61).

RT has undergone tremendous technological advances in the last

three decades, among which the development of AI has significantly

benefited RT, including imaging, treatment planning, quality

assurance, and outcome prediction. The rapid development of DL

has dramatically accelerated the research of AI and its application in

RT. Table 3 mainly introduces AI’s contribution in each RT stage.
3.1.1 Image reconstruction in radiation therapy
For image reconstruction in radiotherapy, DL has been used to

reconstruct low-dose CT images with remarkable success (62, 63).

Chen et al. (64) demonstrated a low-dose CT reconstruction

method that combines a self-encoder and a CNN. This method

extracts fixed-sized plaques from paired low-dose and normal-dose

CT images. These patches are transferred to the feature space in a

fully connected convolutional layer using a rectified linear cell

activation function. In this process, image noise is suppressed. In

the decoder step, an inverse convolutional layer is used to recover

image details from the extracted features. Cone-beam computed

tomography (CBCT) images for image-guided radiation therapy

(IGRT) used to verify the patient’s position have lower soft-tissue
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contrast and higher noise ratios than CT images, which affects the

accuracy of image alignment (79). The DL neural network also

effectively improves the quality of CBCT by correcting its shading

artifacts. It has been shown that deep residual convolutional neural

networks (DRCNN) can perform scatter correction by learning to

compensate for shadowing compensation maps (80, 81). It is also

worth mentioning that there is a technique for online adaptive

radiation therapy currently being used in practice in the field of RT,

whereby image acquisition, treatment planning (modification), and

irradiation of treatment beams are done while the patient is lying on

the treatment bed. This technique can be used with MRI-equipped

and CT (or CBCT)-equipped devices. Since CT value data from the

former are critical for dose calculation, techniques for generating

virtual CT images from MRI scans using AI have been developed

and implemented in a clinical setting (82).

Although DL shows exciting potential for low-dose CT images,

some challenges remain. One of the major criticisms is that for

image reconstruction of new patients, deep learning-type

reconstruction algorithms may introduce image distortion and

artifacts that are difficult to distinguish from the actual

anatomical features (83). Therefore, it is critical to investigate

further the biological basis of imaging features (84).

3.1.2 Bladder segmentation
Currently, manual segmentation of the primary tumor and

affected lymph nodes is one of the most time-consuming yet

critical tasks for radiation oncologists (85). The accuracy of

tumor segmentation can directly affect the results: an incorrect

tumor segmentation may result in underdose or overdose. Tumor

segmentation is subject to the individual judgment of the physician,

which can lead to differences in the quality of the treatment plan
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with an impact on survival outcomes (86). In pelvic imaging

research, bladder segmentation is also called automatic

differentiation between the bladder and its surrounding anatomy.

It is the first necessary step to develop a computer-aided diagnosis

(CAD) system for BC (65). The bladder has a wide range of shape

and size changes and low contrast between the bladder wall and

surrounding soft tissue. This makes bladder segmentation a

challenging task in medical computer vision. Current semi-

automatic segmentation tools that incorporate prior knowledge of

reference images, such as segmentation atlas, are not widely

available due to their high cost and still require much manual

input (87). AI has the potential to significantly improve the

efficiency, repeatability, and quality of radiotherapy planning by

enabling almost or possibly even completely automated

segmentation methods (85). Cha et al. (88) developed a CNN

model comprising two convolutional layers, two local connection

layers, and a fully connected layer to discern patterns both within

and outside the bladder in CT urography images. The output of this

model is subsequently represented as a bladder diagram based on its

findings, achieving a Jaccard index of 0.76 on the test dataset. The

Jaccard index quantifies the similarity between two sets by

calculating the ratio of their intersection size to that of their union.

In subsequent research, Ma et al. (89) trained an end-to-end U-

net model utilizing the same dataset, thereby obviating the need for

user-defined regions of interest (ROI) or auxiliary level set methods

for post-processing; this resulted in an increase in the Jaccard index

value by 0.09 on the test set (from 0.76 to 0.85). In both studies (88,

89), experienced radiologists provided manual contours of CT slices

as reference standards. U-net is characterized by its distinctive U-

shaped architecture composed of two CNNs: one transforms input

images into features while the other processes these features to yield

segmented outputs (90). Similar deep learning models have also

been employed for bladder segmentation in MRI scans (91, 92).

3.1.3 Radiation therapy target sketch
Segmentation of the target and organs at risk (OARs) is one of

the most important and time-consuming steps in preparing,

delivering, and evaluating radiation therapy. Automated image

segmentation techniques combining degree learning, decision

forests, and generative adversarial neural networks have utility in

radiation oncology. 3U-Net was developed to enable automated

segmentation across multiple imaging modalities by using available

training data more efficiently and reporting localized information

about the features (69). DL-based automated contouring of organs

at risk reduces the total time required to generate acceptable

volumes, including manual editing. A study of automated

contouring of the bladder and rectum in 15 prostate cancer

patients found that a DL approach reduced the time radiation

oncologists spent on editing (4.7 minutes) compared to an atlas-

based approach (10.2 minutes) and was similar to a manual

approach (4.1 minutes) (70).

Inadequately, AI lacks standardization in image segmentation,

feature extraction, and outcome evaluation in RT applications (93).

The successful clinical integration of artificial intelligence

algorithms necessitates rigorous external validation across diverse
TABLE 3 The role of artificial intelligence in all stages of
radiation therapy.

Stages of
radiation
therapy

The contribution of artifi-
cial intelligence

Reference

Image
reconstruction

Reconstruct Low-dose CT images,
Accelerated image acquisition and improve

the image quality of CBCT

(62–64)

Bladder
Segmentation

DL model makes a significant contribution
to bladder segmentation

(65–68)

Target sketch Enable automatic segmentation across
multiple imaging modalities and reduce the

total time for OAR generation

(69, 70)

RT planning DL prediction of dose distribution (71, 72)

Quality
assurance

ML can predict the analysis results of IMRT
QA and automatically detect errors in the

treatment system

(73, 74)

Prognosis
of RT

Models based on results from structured and
unstructured datasets to predict whether

individual RT of patients has achieved tumor
local control or normal tissue toxicity

(75–78)
DL, deep learning; ML, machine learning; RT, radiation therapy; QA, quality assurance; CT,
Computed Tomography; CBCT, Cone-beam computed tomography; OAR, organ at risk;
IMRT, intensity modulated radiation therapy.
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cohorts and standardization of models and benchmarks. Numerous

studies on artificial intelligence conducted thus far, including

several cited in this article, have been limited to small cohorts

utilizing a single dataset, failing to capture the rich variability

inherent in patients and systems worldwide. Areas with limited

standardization of definitions include annotation and contour of

organs and nonmalignant tissues, RT techniques, nature and timing

of tumor recurrence, severity grading of toxicity, and evaluation

concepts and metrics for treatment planning, among others (94,

95). The creation of some medical data repositories (such as the

Cancer Imaging Archive) to help facilitate data sharing (96) and

attempts by professional organizations to standardize radiation

oncology ontologies have contributed to the standardization of AI

in RT (97, 98). However, more future work is still needed in this

area. It is also important to note that early AI studies in radiation

oncology often focused on easily measurable outcomes, such as

overall survival. Now, AI solutions will shift toward predicting

outcomes more directly related to radiotherapy (85), such as local

tumor control and radiation-induced toxicity. However, collecting

reliable outcome data remains a challenge.

3.1.4 Planning of radiation therapy
Similar to image segmentation, the research focus of AI in RT

planning is on planning automation, including beam direction and

dose distribution. AI has long been used for RT planning. It has

been reported that DL learns CT contours and dose distribution

inputs, automatically generates dose distributions by inputting new

contours, generates treatment plans comparable to knowledge-

based treatment plans, and is applied to RT planning for prostate

cancer (71, 72). Thus, it is possible that DL can fully automate

planning from segmentation to optimization in BC RT in the future

in hours, minutes, or even seconds. Patrik et al. (99) reported early

clinical experience with online adaptive radiotherapy in the pelvic

region using a novel AI-driven solution for CBCT. In the clinical

trial, treated bladder patients showed a median 42% reduction in

primary PTVS, demonstrating the potential for AI-driven

automated treatment planning to achieve reduced toxicity.

3.1.5 Quality assurance
The next step in planning is quality control (QC) and quality

assurance (QA) of the treatment plan. Dose validation is required

once the intensity modulated radiation therapy (IMRT) treatment

plan is complete. Currently, this is done using scales, films, or

multidimensional detectors to make the actual measurements,

which can take several hours of staff time (100). Recently, gamma

analysis results measured using 2D detectors were investigated

using ML to predict the gamma analysis results of IMRT QA

(73). It has also been shown that ML can automatically detect

errors occurring in the treatment system (74). Using DL for QA is a

critical, promising direction for clinical RT. It is worth mentioning

that machine quality assurance includes various assessments of the

function, accuracy, and precision of the processing machine on a

daily, weekly, monthly, or yearly basis. The large amount of data

obtained during these evaluations provides the means to develop AI
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algorithms capable of predicting trends and errors, such as

automatically detecting imaging artifacts, etc. (101), which may

provide ideas for data collection in AI in the field of RT. There are

still many preclinical and clinical studies in radiation oncology to

validate the early findings. These initial studies often face challenges

due to relatively small sample sizes, which may limit the

generalizations and robustness of their conclusions (102).

Collaboration and data-sharing programs among research

institutions are essential to address this issue. By pooling

resources and expertise, researchers can enhance the statistical

power of their analyses. In addition, a promising approach using

distributed learning techniques is proposed to train predictive

models based on aggregated data while ensuring patient privacy.

Distributed learning allows multiple institutions to participate in

model development without directly sharing sensitive patient

information. This approach allows for confidentiality and

researchers to access a more diverse data set that reflects diverse

demographics and treatment responses. In addition, fostering

partnerships between academic institutions, healthcare providers,

and technology companies can facilitate innovative data collection

and analysis approaches. Such collaborations may improve study

designs that integrate real-world evidence with findings from

traditional clinical trials. Ultimately, it is possible to accelerate the

validation process in early studies by adopting these collaborative

strategies and advanced analytical techniques in radiation oncology

research. This will significantly enhance our understanding of

treatment effects while facilitating advances in personalized

medicine based on comprehensive data sets from across the

medical community working together.

Currently, AI has been reported less in RT for BC compared to

other pelvic tumors such as prostate, rectal, and cervical cancers.

Still, AI is playing an increasingly significant role in the

development of RT. It can be foreseen that AI will play an

integral role in RT for BC in the future.
4 AI in the prognosis of
bladder cancer

Stratifying cancer patients according to their prognosis or

treatment response can suggest the best treatment plan, reduce

ineffective treatment, and improve overall survival and quality of

life through personalized patient management. So far, very few data

about BC prognosis. At the beginning of the 21st century, Catto

et al. (103) were the first to use machine learning models to predict

BC recurrence and progression using clinical and histopathological

data. Only recently have AI-based models been used again to

predict prognosis in BC (104). The application of artificial

intelligence technology to the diagnosis and prognosis of BC can

significantly improve the quality of life of patients by preventing

unnecessary radical cystectomy, which is the most expensive

malignancy to treat in a patient’s lifetime, while reducing the

financial burden of patients.
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4.1 Overall survival rate and the recurrence
rate of prediction

Prognosis prediction is an essential part of clinical oncology, as

the expected disease path and survival likelihood influence

treatment decisions (105). Lucas et al. (106) used a deep learning-

based model combining both clinical and histopathological data to

predict recurrence. In terms of muscle-invasive bladder cancer, AI

may bring more personalization and Patient based treatment. The

5-year survival rate of patients with NMIBC is about 90% (66).

Patients with MIBC have dramatically decreased 5-year survival

rates due to tumor invasion into different levels of the bladder.

Patients with the same tumor stage can also have significant

differences in survival outcomes due to individual differences.

Therefore, the development of a model that can accurately

estimate the disease-specific death risk of individual patients will

help oncologists develop appropriate treatment strategies to assess

that cystectomy is a surgery with high mortality. Although there are

cases that have been treated by endoscopic resection or without

intravesical intervention, resection is still the first intervention for

bladder cancer patients with a high risk of progression. However,

more than 60% of patients develop at least one complication within

90 days after cystectomy and have poor tumor control long-term

after surgery (66). Even with negative surgical margins, the 5-year

overall survival rate for patients who did not receive neoadjuvant

chemotherapy was only about 47%. In one study, Song et al. (107)

used a machine learning model constructed from a dataset of 1228

patients to assess the 10-year survival of BC. The author in the

model design, in addition to the tumor grade, because of its lack of

reliability between the observers. The final model had an area under

the AUC of 0.77 and an F1 score of 0.78, which showed that the

final model could predict 10-year BC survival.

Approximately 30% of patients with NMIBC and MIBC relapse

after cystectomy (44). Therefore, accurate and reliable prediction of

tumor recurrence is essential for patients with NMIBC and MIBC.

Xu et al. (108) used a preoperative MRI dataset of 71 BC patients to

build a nonlinear support vector machine (SVM) classification

model to identify patients at risk of recurrence within two years

after surgery. The authors extracted 1872 image features from each

patient’s T2W, DW, apparent diffusion coefficient, and dynamic

contrast enhancement maps. They used a recursive feature

elimination scheme to select the optimal subset of features for the

classification task at hand. The final SVM model included 32

radiomics features, and the AUC was 0.8593 and 0.8216 in

training and validation, respectively (108). In a distinct study,

Hasnain et al. (109) utilized one of the largest single-institution

cystectomy datasets collected by the University of Southern

California Institute of Urology over 45 years (1971–2016) to

create fundamental classifiers for predicting recurrence at 1, 3,

and 5 years. This dataset includes comprehensive information on

3499 patients, encompassing demographic characteristics and

comorbidities before cystectomy, tumor markers and clinical

diagnostic data obtained during the surgical procedure. For each

predictive task in developing a meta-classifier across all timeframes

(1, 3, and 5 years), both sensitivity and specificity scores exceeded
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0.7.It is worth mentioning that Sun et al. (110) developed a method

based on clinical, radiomics, and deep learning descriptors to

improve survival prediction. The authors analyzed the clinical

data through Nomogram, the image data using radiological and

deep learning models, and the features of the three descriptors for

each condition were put into the backpropagation neural network

for survival prediction. The results showed that clinical, radiomics,

and deep learning have great potential in predicting the survival of

BC patients after cystectomy. Sun et al. (111) also combined AI and

large language models (LLMs) to extract clinical information and

improve image analysis. They evaluated the accuracy of LLM

retrieval by a multimodal prediction model based on clinical,

radiological, and deep learning descriptors developed by the

authors. The results showed that the performance of a model

using clinical descriptors extracted from LLM as nomogram input

for predicting 5-year bladder cancer survival after cystectomy was

comparable to that of a model using manually extracted

clinical descriptors.
4.2 The evaluation of response to therapy

DL of neural networks and the development of the group of

radiology imaging technology of the latest improvement can be

used to predict response to therapy (such as new adjuvant

chemotherapy). Cha et al. (112, 113) investigated the contribution

of post-neoadjuvant chemotherapy CT to assessing BC response

using deep learning convolutional neural networks. Kong et al.

(114) used web-based machine learning to evaluate different

biological markers in a bladder organ model to predict the

efficacy of anticancer drugs and ultimately found that the best

response to drugs was in a manner in which amino acid synthesis

and performance varied with each other. More recently, Manitz

et al. (115)used ML in the JAVELIN Bladder 100 phase 3 trial for

additional exploratory purposes in maintenance and prospective

studies, with final analyses identifying potential prognostic and

predictive factors for avelumab 1 L maintenance therapy in BC

patients. In the evaluation of neoadjuvant chemotherapy response

to bladder cancer, the practice of AI is still progressing.

In addition, computerized decision support systems (CDSS-T)

may improve diagnostic accuracy. Cha et al. (113) evaluated pre -

and post-chemotherapy CTU scans of 123 patients (157 pre - and

post-treatment cancer pairs) for bladder cancer treatment response

without CDSS-T and with CDSS-T and showed that CDSS-T

improved CT performance in identifying complete response of

muscle-invasive bladder cancer to neoadjuvant chemotherapy.

Another study by Sun et al. (116)also showed that CDSS-T can

improve the diagnostic accuracy of CT urography in assessing the

response to treatment of bladder cancer, especially in multi-

specialty and multi-institutional Settings, resulting in more

consistent diagnostic performance among physicians.

In the domain of bioinformatics, gene expression analysis is

investigated as a tool for predicting treatment responses, including

neoadjuvant chemotherapy and immunotherapy, among others

(117). Kong et al. (114) utilized the pharmacogenomic data of 3D
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colorectal cancer (n = 19) and bladder cancer (n = 9) organoids

from the STRING database to construct a protein-protein

interaction (PPI) network. They developed a machine-learning

framework to identify biomarkers to predict patients’ responses to

drugs. This research addresses the issues confronted by preclinical

models and computational methods in predicting cancer drug

responses, which typically stem from the insufficient validity of in

vitro models and the data availability constraints of training

algorithms. The foundation of this approach lies in the fact that

genes associated with similar phenotypic outcomes usually exhibit

close connections in the PPI network, and through extended

analysis, biomarkers of specific drug responses might also have

close associations in the interaction network (118). The study’s

outcomes emphasize the necessity of appropriate in vitro drug

screening models, network analysis’s benefits in identifying strong

predictors of responses, and the capacity of network-based ML

models to effectively predict which patients may or may not

respond to specific drug treatments (119).
4.3 Pathological evaluation of prognosis

AI models can improve predictive accuracy by combining

digital images and other clinical information. In 2002, Spyridonos

et al. (120) trained a neural network-based computerized diagnostic

prognostic system by combining histologic (subjective) features

assessed by pathologists and automatically extracted nuclear

features, achieving a prognostic assessment accuracy of 72.8%. In

2020, Harmon et al. (121) trained a DL model that could predict LN

metastasis based only on digitized pathologic images of primary BC,

with an AUC value of 0. 866, which outperformed the

clinicopathologic multivariate logistic regression model with

clinical pathology features. In 2022, Lucas et al. (106) found that

a DL-based model that combines digital histopathology sections

with clinical data improved the prognostic accuracy of the patient’s

prognosis, compared with models that use only clinical or image

data. These studies indicated that data from a DL-based model

trained with digital images and other clinical information may

improve the accuracy of recurrence prediction.

Also in 2022, Tokuyama et al. (122) successfully constructed a

system to predict the recurrence of NMIBC with high prognostic

accuracy by capturing only the nuclei of transurethral resection of

bladder tumors (TURBT) samples to eliminate the effect of

sampling conditions. In 2024, Van Rijthoven et al. (123)

proposed a method based on the multiresolution DL model

HookNet-TLS for automated, unbiased quantification of tertiary

lymphoid structures (TLS) and identification of germinal centers in

routine hematoxylin-and-eosin-stained digital pathology sections.

However, expansion of the BLCA cohort is needed to validate the

prognostic relevance of HookNet-TLS predicted regions.

In addition, some researchers have gone further by departing

from the classification criteria proposed by the World Health

Organization for prognostic purposes, using AI to create new

classification criteria, and utilizing the WSIs to accomplish more

accurate prognostic speculation. Chen et al. (49) developed an

integrated nomogram based on their model’s risk scores and
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clinicopathological features with higher predictive accuracy than

current tumor staging/grading systems, with AUC values of 77.7%,

83.8%, and 81.3%, respectively.
4.4 Genetics

BC is one of the most common diseases of the urinary system.

Changes in multiple genes and molecular pathways are related to its

occurrence. P53 is a tumor suppressor gene that plays an important

role in the human body. Its mutation will lead to the disorder of cell

apoptosis and DNA damage repair to promote the growth and

transfer of bladder cancer cells. Abnormal expression of the TERT

gene is also closely related to the occurrence of bladder cancer.

TERT is an enzyme that can keep cells dividing (9). Its expression

level in bladder cancer is often high. The research focus includes

targeted treatment of it.

Poirion et al. (124) identified two subtype populations in BC

patients with significantly different overall survival (OS) by using a

DL approach. In the aggressive subtype, KRT6 and KRT14, which

have already been reported as markers of basal subtype, were

upregulated. DLK1, TRH, and DEFB103B were the top genes

upregulated in this aggressive subtype. When compared with the

less aggressive subtype, the PI3K-Akt pathway was one of the most

activated pathways in the aggressive subtype (125).

Tumor microenvironment (TME) plays a crucial role in cancer

progression, metastasis, and treatment response (126). The role of

the TME, particularly tumor-infiltrating B lymphocytes, was

assessed using an ML-based computational framework. The

signature based on long non-coding RNA of B lymphocytes in

the tumor environment can predict the survival outcome of BC

patients and correlate with the response to immunotherapy in

patients receiving BC anti-programmed death-1 therapy (anti-

PD1). It is worth mentioning that using DL to integrate multiple

omics data seems to be the BC survival risk stratification of patients

with significant progress. However, further efforts and validation

are still needed for clinical applicability (127).
4.5 Prognosis in molecular biology

Some studies have sought to employ ML to analyze

biomolecules to predict patients’ sensitivity to specific drugs. Zhu

et al. (128) used the SVM with radial basis function (RBF) kernel to

construct a specific drug response in a platinum-based

chemotherapy prediction model for 11 cancers, including BC.

In addition, AI is used for BC-related gene expression analysis

to obtain patient treatment and prognosis recommendations. Smith

et al. (129) developed a gene expression model (GEM) to predict the

pathological node status in primary tumor tissue from three

independent cohorts of patients who underwent cystectomy and

lymphadenectomy for BC. This GEM can predict pathologically

positive LNs based on a subset of transcripts detected by

microarrays to predetermine a patient’s risk of recurrence and aid

in selecting patients to receive neoadjuvant chemotherapy.

Ciaramella et al. (130) analyzed the expression profiles of specific
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DNA regions from surgically removed normal and BC tissues and

developed a methodology based on ML algorithms for the selection

of a predictive signature panel for BC onset. Bartsch et al. (131) used

an ML algorithm to identify the genes in a molecular signature in

patients with non-muscle invasive urothelial carcinoma at initial

presentation that was most predictive of recurrence. In their study, a

singular 3-gene rule was constructed that predicted recurrence with

80% sensitivity and 90% specificity in the training set and 71% and

67% in the test set, respectively. Wu et al. (132) proposed a

genomic-clinicopathologic nomogram for the preoperative

prediction of LN metastasis in BC based on a logistic regression

algorithm in ML. Combining a five-mRNA-based classifier with

three clinicopathological risk factors, the nomogram can predict LN

metastasis in BC patients with an AUC value of 0.7867. Fu et al.

(133) subtyped BC patients based on the expression patterns of

endothelial cell (EC) -related genes and constructed a diagnostic

signature and an endothelial cell prognostic index via ML

algorithms, which are useful for diagnosing BC patients,

predicting the prognosis of BC and evaluating drug sensitivity. In

2024, Li et al. (134) established a novel FRG index (FRGI) and CD8-

FRG isoforms by screening 54 essential fibroblast-associated genes

(FRG) associated with BC from a large-scale ML-based scRNA

sequence dataset. Although there is a lack of clinical phase 3

randomized controlled trials to validate patients’ prognosis and

treatment response based on defined FRG subtypes, their FRGI and

corresponding subtypes have performed well in multiple cohorts

representing bladder cancer. They can accurately predict clinical

outcomes and immunotherapy response of BLCA after surgery.

In addition to these direct clinical applications, AI algorithms

are also being used to study driver genes and mutations in BC. They

are expected to lead to the invention of new treatments in the future.

Ellrott et al. (135) proposed an approach for mutation calling of

tumor exomes using multiple genomic pipelines, including ML

algorithms. They reported that urothelial bladder carcinoma had

greater than 90% of the original variants rediscovered.

Subsequently, Bailey et al. (136) analyzed 9,423 tumor exomes

from the PanCancer Atlas using PanSoftware and made novel

predictions, including GNA13 in BC. Chen et al. (137) identified

SMAD6 as a hub gene contributing to the differences between two

novel subtypes of BC with completely different biological

characteristics, including immune microenvironment and drug

sensitivity with ML classifiers, and further investigated the role of

SMAD6 in BC in the single-cell transcriptome data. This study is

expected to improve the future understanding of the prognosis and

drug susceptibility of BC. Through a series of studies that performed

prognostic diagnosis and prediction of BC patients, the results of

the studies were overall promising. Still, major challenges remained

to be addressed before these models could be integrated into clinical

workflows. Poor ubiquity is probably the biggest obstacle to the

clinical translation of AI. This problem is manifested in the fact that

AI algorithms perform below par when evaluated on data collected

by institutions that are different from those that provide training

data. This requires promoting data sharing among medical

institutions and establishing a unified medical data platform.

Through data sharing, the training data of AI systems can be

enriched to improve their accuracy and generalization ability.
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4.6 The prognosis of radiotherapy

In the tumor treatment, patients with AI to predict individual RT

have been optimized for tumor local control or normal tissue toxicity

(75, 76). Models based on structured and unstructured data set results

prediction have gradually been applied. Luo et al. (77) observed that for

structured data, such as clinical and dosimetric data, random forests

and gradient-boosted machines produced the most accurate results,

while linear regression also performed well due to the relatively small

number of high-dimensional data points available in radiation

oncology studies. Deep neural networks have a role in generating

predictions for unstructured data, including the use of imaging or

medical records, but because models contain millions of parameters,

overfitting of small data sets remains a concern, and accuracy can

continue to improve withmore advanced algorithms and data sets (78).

On independent data sets strict test, the best is for prospective patients

with an accumulation of rigorous testing, the value of this to prove that

the AI in outcome prediction is very important.

CAD-AI refers to the application of CAD development and the use

of ML - and DL-based methods. Many relevant studies have been

published to date. However, most models in these studies still need to

be prepared for clinical deployment. The most important is to ensure

that clinical decision support tools are adequately trained and

rigorously validated for generalizability and robustness before they

are used in clinical patient care. Recommendations from the American

Association of Physicists in Medicine (AAPM) for practices and

standards development for the development and performance

evaluation of computer-aided decision support systems may improve

their generalizability and reliability and accelerate the adoption of

CAD-AI systems to support clinical decision-making (138).

The application of AI to outcome prediction in RT also faces

another major bottleneck, namely, the data used for training and

testing. Unlike tasks such as segmentation, image synthesis, or dose

prediction, a powerful network only needs to train less than 100

patients, and outcome prediction often requires a larger amount of

patient data for AI training. It is worth mentioning that the data

needed for outcome prediction are generally more difficult to

obtain. In AI research, the time and effort to acquire data are

often significantly greater than model construction and training.

However, with the high quality and quantity of patient data and the

opacity of deep learning neural networks, the robustness and

generalization of many models used for outcome prediction can

be further tested and improved. This means that there is an urgent

need to establish and enhance public databases in related fields,

such as the Cancer Genome Atlas and the Cancer Imaging Archive

(96, 139), which have profoundly contributed to the progress in the

fields related to omics and medical imaging.
5 Ethics and privacy in
artificial intelligence

Often heralded as a potential disruptor, AI has transformed the

traditional process of diagnosing and treating disease and is used in

many healthcare applications (140). However, as AI continues to
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evolve and become increasingly integrated into healthcare systems,

a range of key moral and ethical issues are gradually being

considered (141). These implications relate to privacy, data

security, accountability, transparency, fairness, and the

preservation of human autonomy, and there is an urgent need to

find solutions to realize the potential of AI in clinical care (142).

Among these moral and ethical issues, the most sensitive aspect

of patient data privacy is hardly addressed at present. Models such

as DL and ML of AI must have large datasets to appropriately

categorize and make predictions for accomplishing various tasks.

However, due to the confidentiality of patient data, AI cannot

readily use the relevant data required (143). Similarly, any leakage of

patient privacy-related data could have serious consequences for

patient trust and data integrity (142). Given the growing public

concern about data security, algorithmic bias, and ethical

considerations in using AI, a more thorough exploration of these

issues is essential.

It has been suggested that user trust and effective interaction

with AI systems can be achieved by increasing interpretability (i.e.,

the ability of an AI system to explain its decisions, processes, and

behaviors in a way that is understandable to humans) (144).

Transparent decision-making processes are critical in healthcare

AI, where patients and healthcare providers must understand the

rationale behind AI-driven recommendations, fostering trust and

accountability. A recent survey showed that patients were more

likely than doctors to believe doctors should be held responsible for

errors caused by medical AI, a view held by majorities in both

groups (145). So, there is also research that points to the need for

clear accountability for the actions of AI systems (146).

Determining who is responsible for errors or adverse events is

critical for ethical use and fostering trust. Additionally, healthcare

organizations using AI technologies must adopt responsible

practices for collecting, storing, and utilizing patient data. This

includes robust data anonymization techniques, encryption, and

secure data-sharing protocols to protect patient information (147).

Currently, research on addressing AI’s ethical and moral

limitations remains in the theoretical stage, and many new ideas

are beginning to be proposed. We need to be guided by existing

ethical frameworks and look for healthcare-specific, adaptable

guidelines to navigate this changing landscape created by AI’s

rapid development. Healthcare systems, technologists,

policymakers, and healthcare professionals must keep ethics and

morality at the forefront to ensure that AI realizes its vast potential

in healthcare.
6 Discussion

With the continuous progress of AI, the diagnosis and

treatment of BC have ushered in a new change, and precision

oncology has made significant breakthroughs.AI has made

significant progress in the diagnosis of bladder cancer, especially

in various aspects such as cystoscopy, imaging histology,

urocytology, and molecular biology. Through AI technology,

accurate staging of bladder cancer can be realized. In addition,
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deep learning models are also applicable to bladder segmentation in

MRI scans. The application of these diverse algorithms enables

clinicians to make more reliable choices when performing multiple

clinical dimensions such as differential diagnosis, grading and

classification, molecular staging, and prognostic assessment of

bladder cancer. AI also plays a role in treatment and prognosis.

For example, in radiation therapy, low-dose CT images have been

successfully reconstructed by deep learning techniques with

remarkable results. Recently improved radiological imaging

techniques based on deep learning and neural networks have also

been used to predict patient response to treatment.

Although AI has been successfully applied in several fields, it

still faces significant challenges. First, at the data level, most studies

on the application of AI in bladder cancer have limitations. Some

studies have small sample sizes due to difficulties in accessing

medical data. Improving the robustness of AI models, even if they

remain stable and reliable performance in the face of uncertainties

such as noise, outliers, and changes in data distribution, requires a

large amount of patient data to avoid the phenomenon of

overfitting (i.e., algorithms that perform well on the training set

but poorly on a new dataset) and to develop accurate and effective

models. Therefore, the establishment and improvement of open

medical databases and resource sharing are of great significance in

solving the data access problem. Different healthcare organizations

actively contribute to public databases, where the burden of data is

shared by the community, and the impact of data is multiplied. At

the same time, it should not be overlooked that most studies have

yet to improve the completeness and homogeneity of the patient

monitoring process to comprehensively assess treatment effects.

This implies that researchers need to strengthen the tracking

coverage during patient monitoring and the standardization of

data recording and collection at each step. In addition, special

attention should be paid to data preprocessing of image datasets

within the field of imaging research, such as removing artifacts,

which will help improve the accuracy of image analysis results.

Standardization is another important challenge that needs to be

overcome. Currently, the evaluation criteria for AI in clinical

applications have yet to be standardized, with image

segmentation, feature extraction, and outcome assessment in

radiation oncology being particularly prominent. This

phenomenon partly stems from the fact that relevant studies have

been limited to datasets from a single small cohort. Therefore,

current or future clinical studies should focus on how to effectively

utilize AI in different clinical settings to further validate and

evaluate the applicability of the model in different patient

populations. As mentioned earlier, open access to medical

databases can provide the necessary resources to address

standardization issues. In addition, enhancing the model’s ability

to adaptively learn during clinical implementation, continuously

monitoring its performance and updating it with new data would be

beneficial to enhance its utility in various scenarios in

different industries.

Ethical and privacy issues are equally important barriers that

limit the full potential of AI. Issues related to patient privacy

protection, informed consent requirements, data security
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safeguards, and the responsibility of healthcare professionals for

validating and interpreting AI-generated results are important

ethical issues that must be carefully considered prior to the

widespread implementation of AI. Interpretability and

transparency are important factors in ensuring that AI systems

can be trusted and used ethically, as they allow people to understand

and evaluate the decision-making process while ensuring

responsible and beneficial use of these systems. In addition, laws

and regulations governing the use of AI need to be improved to

ensure that accountability mechanisms are successfully

implemented and that the identity of those responsible for

adverse events is clarified in order to enhance patient trust.

Finally, scalability is key to realizing the clinical applicability of

AI algorithms, data, and models in the field of bladder cancer.

Current AI-based diagnostic tools are not yet optimized for the

scale, speed, and complexity required for chylomicron cancer

evaluation, which is a major obstacle to their widespread use in

clinical practice. At the same time, high-complexity machine

learning algorithms require considerable economic cost and

computational power to run. To date, implementing these

technologies in large-scale healthcare systems has been

challenging and requires a robust infrastructure to support their

widespread adoption.

Despite the limitations, it is foreseeable that as technology

develops and research progresses, AI will show great potential in

clinical applications such as chyloma diagnosis and treatment.
7 Summary

This article reviews the application of AI in the clinical diagnosis,

treatment, and prognosis of BC. Artificial intelligence and its subsets,

such as machine learning, deep learning, and artificial neural

networks, have become powerful tools in the field of bladder

cancer research and treatment, revolutionizing the current and

future landscape in terms of early detection, accurate diagnosis, and

personalized treatment, as well as predicting disease progression. AI

can help clinicians accomplish many clinical practices by analyzing

large amounts of data. However, there are still challenges to

overcome, such as data acquisition, standardization development,

and ethical considerations. However, with continuous research and

technological progress, these problems will be solved, and AI will play

its due potential in the BC field.
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139. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas
(TCGA): an immeasurable source of knowledge. Contemp Oncol. (2015) 19:A68–77.
doi: 10.5114/wo.2014.47136

140. Al Kuwaiti A, Nazer K, Al-Reedy A, Al-Shehri S, Al-Muhanna A, Subbarayalu
AV, et al. A review of the role of artificial intelligence in healthcare. J Pers Med. (2023)
13:951. doi: 10.3390/jpm13060951

141. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an
algorithm used to manage the health of populations. Science. (2019) 366:447–53.
doi: 10.1126/science.aax2342
frontiersin.org

https://doi.org/10.1016/j.phro.2020.12.004
https://doi.org/10.1002/acm2.13645
https://doi.org/10.1120/jacmp.v16i4.5363
https://doi.org/10.1016/j.prro.2020.06.001
https://doi.org/10.1016/S1569-9056(03)80262-2
https://doi.org/10.1177/0391560320987169
https://doi.org/10.2174/1568009614666140506111118
https://doi.org/10.1016/j.euf.2020.12.008
https://doi.org/10.1101/557470
https://doi.org/10.1101/557470
https://doi.org/10.1002/jmri.26749
https://doi.org/10.1002/jmri.26749
https://doi.org/10.1371/journal.pone.0210976
https://doi.org/10.3390/cancers15174372
https://doi.org/10.3390/cancers16132402
https://doi.org/10.3390/cancers16132402
https://doi.org/10.1038/s41598-017-09315-w
https://doi.org/10.1016/j.acra.2018.10.010
https://doi.org/10.1038/s41467-020-19313-8
https://doi.org/10.1002/cam4.v13.12
https://doi.org/10.3390/tomography8020054
https://doi.org/10.1038/s41585-023-00805-3
https://doi.org/10.1126/science.1257601
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1080/1463923021000043723
https://doi.org/10.1200/CCI.19.00155
https://doi.org/10.1038/s41379-021-00955-y
https://doi.org/10.1038/s41379-021-00955-y
https://doi.org/10.1038/s43856-023-00421-7
https://doi.org/10.1038/s43856-023-00421-7
https://doi.org/10.1097/MOU.0000000000000882
https://doi.org/10.1007/s40610-017-0073-7
https://doi.org/10.1038/s12276-020-0422-0
https://doi.org/10.1016/j.ygeno.2019.07.007
https://doi.org/10.1016/S1470-2045(10)70296-5
https://doi.org/10.1186/s12859-023-05167-6
https://doi.org/10.1016/j.juro.2015.09.090
https://doi.org/10.1016/j.ebiom.2018.03.034
https://doi.org/10.1016/j.ebiom.2018.03.034
https://doi.org/10.1111/jcmm.18155
https://doi.org/10.1097/JS9.0000000000001516
https://doi.org/10.1016/j.cels.2018.03.002
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1007/s00432-024-05798-z
https://doi.org/10.1002/mp.16188
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.3390/jpm13060951
https://doi.org/10.1126/science.aax2342
https://doi.org/10.3389/fonc.2024.1487676
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ma et al. 10.3389/fonc.2024.1487676
142. Elendu C, Amaechi DC, Elendu TC, Jingwa KA, Okoye OK, John OkahM, et al.
Ethical implications of AI and robotics in healthcare: A review.Med (Baltimore). (2023)
102:e36671. doi: 10.1097/MD.0000000000036671

143. Khan B, Fatima H, Qureshi A, Kumar S, Hanan A, Hussain J, et al. Drawbacks
of artificial intelligence and their potential solutions in the healthcare sector. BioMed
Mater Devices. (2023) 1:731–8. doi: 10.1007/s44174-023-00063-2

144. Inglada Galiana L, Corral Gudino L, Miramontes González P. Ethics and
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