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When a negative (charge) is
not a positive: sialylation and
its role in cancer mechanics
and progression
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Sialic acids and sialoglycans are critical actors in cancer progression and

metastasis. These terminal sugar residues on glycoproteins and glycolipids

modulate key cellular processes such as immune evasion, cell adhesion, and

migration. Aberrant sialylation is driven by overexpression of sialyltransferases,

resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor

aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a

protective barrier that fosters cancer cell detachment, migration, and invasion.

This bulky glycocalyx also increases membrane tension, promoting integrin

clustering and downstream signaling pathways that drive cell proliferation and

metastasis. They play a critical role in immune evasion by binding to Siglecs,

inhibitory receptors on immune cells, which transmit signals that protect cancer

cells from immune-mediated destruction. Targeting sialylation pathways

presents a promising therapeutic opportunity to understand the complex roles

of sialic acids and sialoglycans in cancer mechanics and progression, which is

crucial for developing novel diagnostic and therapeutic strategies that can

disrupt these processes and improve cancer treatment outcomes.
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Introduction

Sialylation, the enzymatic addition of sialic acid to glycoproteins and glycolipids, is a

key post-translational modification that plays a significant role in cancer biology. The sialic

acid moiety, often found at the terminal position of glycan chains on cell surfaces,

influences a wide range of biological processes, including but not limited to cell signaling

(1–5), proliferation (6–9), immune responses (10), and cellular interactions (11–14).

Aberrant sialylation has been recognized as a hallmark of cancer (15), contributing to

tumor progression, immune evasion (16), and metastasis (17).
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The molecular basis of sialylation involves a family of enzymes

known as sialyltransferases, which catalyze the transfer of sialic acid

to glycan structures. These enzymes are responsible for catalyzing

different linkages, such as a2,3-, a2,6-, and a2,8-sialylation, each
playing distinct roles in cellular behavior (18–26). In cancer,

dysregulated sialylation often results in hypersalivation, which can

mediate various oncogenic processes. For instance, the upregulation

of sialyltransferases ST6GAL1 has been linked to increased cancer

cell aggressiveness, enhanced survival, and resistance to apoptosis in

cancers such as breast, colon, prostate, and brain cancers (18, 23, 24,

27, 28).

New evidence of where sialylation occurs outside the cell

membrane has also emerged as an important factor in cancer.

This form of sialylation contributes to cancer cell proliferation and

metastasis by altering the glycocalyx, a dense layer of glycoproteins

and glycolipids on the cell surface (29, 30). A sialylated glycocalyx

not only provides a protective barrier against the immune system

but also mediates cancer cell detachment and migration (31) by

increasing mechanical tension at the cell membrane (32). The

mechanical properties of the glycocalyx, such as its stiffness and

bulk, influence membrane dynamics and signal transduction,

promoting cancer cell invasion and metastatic potential (33–35).

Sialylation also plays a critical role in immune evasion, with

sialic acid residues acting as ligands for Siglecs, a family of immune

inhibitory receptors. By engaging Siglecs on immune cells, cancer

cells can transmit inhibitory signals that prevent immune-mediated

destruction (16, 36). For example, hypersialylated cancer cells

expressing CD24 can bind to Siglec-10 on macrophages,

effectively creating a “don’t eat me” signal that prevents

phagocytosis (10, 16, 37–40). This immune evasion mechanism

underscores the potential of targeting sialylation pathways as a

therapeutic strategy in cancer treatment. Given its widespread

impact on cancer biology, sialylation serves as a promising

biomarker for cancer diagnosis and prognosis. Aberrant

sialylation patterns have been associated with more aggressive

tumor phenotypes and poor patient outcomes (27, 41–43),

making it a valuable target for early detection and therapeutic

intervention (44–46). Overall, this review aims to highlight the

multifaceted roles of sialylation in cancer, emphasizing its

contribution to tumor progression, immune evasion, and

potential as a therapeutic target.
The molecular basis of sialylation

Sialylation is a well-regulated biological process that involves

the addition of negatively charged sialic acid sugar residues to the

glycoproteins and glycolipids at the terminal position of the glycan

(N-, O-linked glycan or glycolipids) to mediate protein stability,

cell–cell communication, and immune response (47). Sialic acids

are a family of a-keto acids with unique structural features,

containing nine-carbon backbone sugar molecules with an amino

group at position 5 and a carboxyl group at position 1 (48). More

than 50 sialic acid isoforms have been found in nature, with the

most abundant being N-acetylneuraminic acid (Neu5Ac) (49, 50).

N-acetylneuraminic acid (Neu5Ac) is derived from cytidine
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monophosphate sugar nucleotide CMP-Neu5Ac and can undergo

acetylation, methylation, and other modifications. Sialylation is

mediated by sialyltransferases that catalyze the transfer of sialic

acid from the charged donor molecule, cytidine monophosphate–

sialic acid (CMP–sialic acid), to the growing glycan chains in either

an a2,3, a2,6, or a2,8 linkage depending on the activity of the

sialyltransferases and the substrate glycan (48, 51).

Sialic acid biosynthesis progresses through a four-step process

involving three different enzymes. GNE is the bifunctional enzyme

that catalyzes the initial two steps in the biosynthesis pathway

(Figure 1). This pathway begins in the cytosol with the formation of

N-acetylmannosamine (ManNAc) from UDP-GlcNAc using the

epimerase function of the GNE, followed by the subsequent

phosphorylation of ManNAc to N-acetylmannosamine-6-

phosphate (ManNAc-6-P) and conversion to N-acetylneuraminic

acid-9-phosphate (Neu5Ac-9-P). Dephosphorylation of Neu5Ac-9-

P produces free Neu5Ac, which is then transported to the nucleus

for subsequent activation into CMP-Neu5Ac by CMP–sialic acid

synthetase (CMAS) (51). After transport to the Golgi, the active

CMP-Neu5Ac donors are used by sialyltransferases to catalyze the

addition of sialic acid to the glycoconjugates. Subsequent secretion

of these sialylated glycans to the cell surface significantly contributes

to the biophysical properties of cells through the negative charge

carried by the sialic acid (52).

Post-glycosylation modifications in a-linked sialoglycoconjugates

are common in mammalian cells, with O-acetylation of N-

acetylneuraminic acid (Neu5Ac) being the most frequent. O-

acetylation is an important modification, occurring at positions C4,

C7, C8, and C9 on N-acetylneuraminic acid (Neu5Ac) (53, 54). More

frequently, they occur at positions C7, C8, and C9 across various

species. However, it is also possible for O-acetylation to take place at the

C4 position, which is directly connected to the pyranosyl ring, though

this form is less common. These modifications influence the stability,

recognition, and function of glycoproteins and glycolipids, impacting

cellular interactions via immune modulation, pathogen binding, and

overall cell signaling processes in various biological systems (55). In

mammals, acetylation of sialic acid occurs at position C7 or C9 and is

mediated by the enzyme CASD1, which utilizes acetyl-CoA as the

acetyl donor. Following acetylation, sialyltransferases transfer O-

acetylated sialic acids onto glycoproteins and glycolipids, which are

then processed through the secretory pathway. Notably, some O-

acetylated glycoproteins and glycolipids carrying sialic acids may

remain within the Golgi for reasons not yet defined. However,

deacetylation is carried out by the sialic acid esterase (SIAE), which

is found both inside and outside of cells (54).

There are several reports of an increased O-acetylated sialic acid

in cancers, which are implicated in tumor progression by inhibiting

immune surveillance and enhancing oncogenic signaling. An O-

acetylated sialyl-Tn has been reported to be involved in ovarian

cancer-associated antigenicity. It was shown that modification of

Sia with O-acetyl groups was critical for the recognition (56). 9-O-

Ac-GD3, a modified ganglioside, is also found in several other

cancers, including neuroblastoma (57), acute lymphoblastic

leukemia (ALL) (58, 59), medulloblastoma (60), and breast cancer

(61), but are typically rare in healthy adult tissues. Furthermore,

sialic acids exist with different other modifications in which the
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hydroxyl groups may either be methylated or esterified with acetyl,

lactyl, phosphate, or sulfate groups (62). It is critical to note that

methylation of sialic acids plays a crucial role in cancer progression

including signaling and cancer migration. Methylated sialic acid

affects cancer cell adhesion and detachment mechanisms that are

critical for metastasis. Specifically, they contribute to the

mechanical stress and electrostatic forces that influence cancer

cell migration. Recent findings highlight the association between

the elevated production of sialic acids and increased methylation in

cancer cells. This methylation alters the sialic acid’s role in cell-

surface interactions, facilitating cancer cells’ ability to evade

immune detection and promoting metastatic behavior (63, 64).

Several sugars make up both N-, O-linked, and glycolipid

glycans, among which N-acetylneuraminic acid (Neu5Ac) is the

most common sialic acid in humans (65–67) and holds great

importance since they are termed “terminal” or capping sugars.

Sialyltransferases catalyze the bond between sialic acid and glycan

receptors, mediating the glycosidic bond formation between the

sialic acid donor at Carbon-2 and the glycan receptor at Carbon-3,

Carbon-6, or Carbon-8 hydroxyl positions, and are thus named

ST3, ST6, or ST8, respectively, depending on the carbon number of

the glycan onto which sialic acid is added (48, 65, 68) (see Table 1).
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The level of 2,6 sialylation is an important marker of cancer

progression as a2,6-galactoside sialyltransferase 1 (ST6Gal1) (90)

upregulation has been linked to aggressiveness of cancer cells (18,

27, 33, 44, 91–93) including colorectal (92, 94), gastric carcinoma

(95), lungs (96), and brain (18). Additionally, another 2,6

siayltransferase, ST6GalNAc1, has been reported to regulate

cancer cell adhesion and invasion in prostate cancer (46, 91).

Sialic acids are critical in various physiological and pathological

processes, including cell–cell interaction (11, 12), protein stability,

regulation of immune responses (16), pathogen recognition and

infection, cell migration, and cancer progression (49, 65, 97). There

are several reported cases where abnormal expression of

sialyltransferases has led to aberrant expression of sialoglycans on

glycoproteins, influencing various pathological conditions (98, 99),

such as sialuria and hereditary inclusion body myopathy (HIBM).

The latter is caused by mutations in the bifunctional GNE enzyme

(UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine

kinase), which plays a crucial role in the biosynthesis of sialic

acids (100). Following the sialylation of glycolipids and

glycoproteins, they are released into the lysosome by sialidases

and then to the cytosol for recycling or broken down by Neu5Ac

lyase into ManNAc and pyruvate (101). Mutation in neuraminidase
FIGURE 1

This figure depicts the sialylation pathway, illustrating the sequential biochemical steps involved in the synthesis and recycling of sialic acids. The
pathway begins with the nucleotide sugar UDP-GlcNAc, produced via the hexosamine pathway, which is converted to ManNAc by UDP-GlcNAc 2-
epimerase (GNE). ManNAc serves as the metabolic precursor for sialic acid synthesis, leading to the production of Neu5Ac in the cytosol. Neu5Ac
then enters the nucleus, where it is converted into CMP-Neu5Ac. CMP-Neu5Ac is subsequently transported into the Golgi apparatus, where it is
utilized by various sialyltransferases (ST3GAL1-6, ST6GAL1-2/ST6GALNAC1-6, and ST8SIA4) to synthesize a-2,3-, a-2,6-, and a-2,8-linked
sialoglycoproteins or gangliosides. The final step in the pathway involves the recycling of sialosides by neuraminidases, which break them down into
sialic acid monomers for reuse. This comprehensive depiction highlights the critical processes of sialic acid biosynthesis, modification, and recycling
in cellular glycosylation.
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TABLE 1 Sialyltransferases and related genes.

Gene name Protein name Function Expressed in Reference

GNE/Gne Glucosamine (UDP-N-acetyl)-
2-epimerase

Bifunctional enzyme that initiates and regulates the
biosynthesis of N-acetylneuraminic acid (NeuAc).
Catalyzes the conversion of UDP-GlcNAc to ManNAc

Liver and colon (69)

GNE/Gne N-acetylmannosamine kinase Catalyzes the conversion of ManNAc to ManNAc-6P Liver and colon (69)

NANS/Nans N-acetylneuraminate synthase Catalyzes the formation of NeuAC-9-P from
ManNAc-6P

Colon and prostate (70)

NANP/Nanp N-acetylneuraminic
acid phosphatase

Involved in N-acetylneuraminate biosynthetic process.
Convert Neu5Ac

Adrenal, testis, kidney (71, 72)

CMAS/Cmas cytidine monophosphate N-
acetylneuraminic
acid synthetase

Encodes an enzyme that converts N-acetylneuraminic
acid (NeuNAc) to cytidine 5’-monophosphate N-
acetylneuraminic acid (CMP-NeuNAc)

Testis and colon (73)

ST3GAL1/St3gal1 ST3 beta-galactoside alpha-2,3-
sialyltransferase 1

Catalyzes the transfer of sialic acid from CMP–sialic acid
to galactose-containing substrates in an alpha 2,3 linkage

Thyroid, kidney, and heart (74)

ST3GAL2/St3gal2 ST3 beta-galactoside alpha-2,3-
sialyltransferase 2

Appendix and spleen (75)

ST3GAL3/St3gal3 ST3 beta-galactoside alpha-2,3-
sialyltransferase 3

Testis and fat (76, 77)

ST3GAL4/St3gal4 ST3 beta-galactoside alpha-2,3-
sialyltransferase 4

Adrenal and ovary (78)

ST3GAL5/St3gal5 ST3 beta-galactoside alpha-2,3-
sialyltransferase 5

Liver, ovary adult and
adrenal adult

(79)

ST3GAL6/St3gal6 ST3 beta-galactoside alpha-2,3-
sialyltransferase 6

(21, 22)

ST6GAL1/St6gal1 ST6 beta-galactoside alpha-2,6-
sialyltransferase 1

Catalyzes the transfer of sialic acid from CMP–sialic acid
to galactose-containing substrates in an alpha 2,6 linkage

Liver and lymph node (80)

ST6GAL2/St6gal2 ST6 beta-galactoside alpha-2,6-
sialyltransferase 2

Catalyzes the transfer of sialic acid from CMP–sialic acid
to galactose-containing substrates in an alpha 2,6 linkage

Thyroid and brain (81)

ST6GALNAC1/
St6galnac1

ST6 N-acetylgalactosaminide
alpha-2,6-sialyltransferase 1

Colon and small intestine (82)

ST6GALNAC2/
St6galnac2

ST6 N-acetylgalactosaminide
alpha-2,6-sialyltransferase 2

Skin and testis (19, 20)

ST6GALNAC3/
St6galnac3

ST6 N-acetylgalactosaminide
alpha-2,6-sialyltransferase 3

Thyroid, kidney and fat (83, 84)

ST6GALNAC4/
St6galnac4

ST6 N-acetylgalactosaminide
alpha-2,6-sialyltransferase 4

Bone marrow and spleen (84, 85)

ST6GALNAC5/
St6galnac5

ST6 N-acetylgalactosaminide
alpha-2,6-sialyltransferase 5

Lungs and brain (86)

ST6GALNAC6/
St6galnac6

ST6 N-acetylgalactosaminide
alpha-2,6-sialyltransferase 6

Colon and fat (87)

ST8SIA1/St8sia1 ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 1

Brain, adrenal (25, 88)

ST8SIA2/St8sia2 ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 2

Catalyzes the transfer of sialic acid from CMP–sialic acid
to GM3 to produce gangliosides GD3 and GT3 with an
alpha 2,8 linkage

Brain and heart (23)

ST8SIA3/St8sia3 ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 3

Catalyzes the transfer of sialic acid from CMP–sialic acid
to GM3 to produce gangliosides GD3 and GT3 with an
alpha 2,8 linkage

Brain (25)

ST8SIA4/St8sia4 ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 4

(89)

(Continued)
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1, NEU1 (sialidase 1), a lysosomal enzyme that plays a crucial role in

the catabolism of sialo-glycoconjugates, leads to lysosomal storage

disorder sialidosis, while abnormal NEU1 activity has been

implicated in cancer progression, inflammation, and immune

response (102, 103). Aside from lysosomal sialidase NEU1 (102),

other human sialidases have been identified to include the cytosolic

sialidase NEU2 (104), the plasma membrane-associated sialidase

NEU3 (105), and mitochondrial membrane-associated sialidase

NEU4 (106) (see Figure 1). Overall, this highlights the critical

role of proper sialic acid biosynthesis and how dysregulation of

this process at any step can lead to a wide variety of diseases and a

more malignant phenotype in cancer (43, 107).
Extrinsic sialylation

In addition to the classic intracellular pathway of sialylation,

there is new evidence to suggest that sialyltransferases can

“extrinsically” catalyze the addition of sialic acid residues outside

of the cell membrane (108), and this plays a role in a wide variety of

cell processes including cancer progression (109). It has been long

known that sialyltransferases (and other glycosyltransferases) exist

outside the cell membrane (110), but extrinsic glycosylation was

thought to be impossible due to a lack of activated sugar donors. It

was not until the Lau Lab demonstrated that the activated sugar

donors (29, 30), along with the glycosyltransferases (111)

themselves, needed to complete the extrinsic glycosylation

reaction could be found in abundance in platelets (29, 112).

Subsequent work has implicated extrinsic sialylation in the

maintenance of hematopoietic stem cells (113), the production of

granulocytes through sialylation of the M-CSF receptor (93, 114),

the proper development of B cells in the spleen (115–117),

protection against radiation-induced gastrointestinal damage

(118), and IgG sialylation (119, 120).
Neu5Gc and its incorporation into
the glycocalyx

It is crucial to note that humans lack the ability to produce N-

glycolylneuraminic acid (Neu5Gc) due to an inactivating mutation

in the CMAH gene, which is irreversible. CMAH is the only enzyme

responsible for the biosynthesis of Neu5Gc in deuterostome (121).

Furthermore, note that no human genes have homology to CMAH.
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However, small amounts of Neu5Gc have been found in human

tissues, including cancer cells (122–124). This is because humans

can incorporate Neu5Gc from dietary sources, especially red meat

and dairy products, into their cell surface glycoconjugates (125–

127). This incorporation is most prominent in rapidly dividing

tissues, such as epithelial cells and carcinomas (127). Once ingested,

Neu5Gc is metabolically incorporated into the glycocalyx of cancer

cells. The presence of Neu5Gc in cancer cells contributes to changes

in their immunogenicity, making them susceptible to interactions

with circulating anti-Neu5Gc antibodies (126). Despite the absence

of endogenous Neu5Gc synthesis, most humans possess natural

antibodies (IgA, IgM, and IgG) targeting Neu5Gc. These antibodies

are formed in response to dietary Neu5Gc, making Neu5Gc a Xeno-

autoantigen (126, 127). The presence of these antibodies is thought

to be a response to dietary exposure or to bacteria scavenging

Neu5Gc from the diet and incorporating it into their glycolipids.

Anti-Neu5Gc antibodies can contribute to chronic inflammation

when they recognize and bind to Neu5Gc present in the human

glycocalyx, particularly in cancer cells in a process called

xenosialitis, and may promote tumor progression or influence the

inflammatory tumor microenvironment (128). Since humans

cannot synthesize Neu5Gc, the presence of this non-human sialic

acid on cancer cell surfaces renders these cells immunogenic, and

become recognizable by the immune system as foreign, potentially

leading to immune-mediated destruction of cancer cells. However,

chronic inflammation is a well-known driver of cancer progression.

The release of inflammatory cytokines such as IL-6, TNF-a, and IL-
1b creates a tumor-promoting environment that favors cancer cell

survival and growth (129, 130).
Aberrant sialylation as a hallmark
of cancer

For many years, the onset of many cancer types has been

recognized to stem from genetic mutations, but more recent

emphasis has been placed upon post-translational hallmarks from

alterations in biochemical pathways such as sialylation (20, 27, 35,

48, 131–133). Sialylation is a post-translational addition of sialic

acid residue to glycoproteins as terminal monosaccharide, which

modifies its structure, activity, and longevity and dictates many

aspects of a cell’s interactions with the extracellular matrix (ECM)

(46, 134). Sialic acids attach in either an a-2,3, a2,6, or a 2,8 linkage

to galactose, usually terminating the glycans of glycoconjugates that
TABLE 1 Continued

Gene name Protein name Function Expressed in Reference

ST8SIA5/St8sia5 ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 5

Brain adrenal (26)

ST8SIA6/St8sia6 ST8 alpha-N-acetyl-
neuraminide alpha-2,8-
sialyltransferase 6

(24)
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cover the surface of cancer cells, creating a dense covering of

sialylated glycans such as sialyl Lewis-A, -X, sialyl Tn antigen, or

the GM2 ganglioside (SLeA, SLeX, STn, and GM2) (45).

Altered sialylation of several glycoproteins has been implicated

in several health issues and diseases including cancer (45, 97, 135,

136). Hypersialylation plays a significant role in cancer

development and progression by promoting cancer aggression

and metastasis, immune evasion enhancing cancer cell survival,

and resistance to therapy (41, 131, 137–139). The increase in a2,6
sialylation of N-glycans is driven by the sialyltransferases ST6GAL1,

which is overexpressed in numerous cancer types and are

fundamental for tumor growth, metastasis, immune evasion, and

drug resistance (27). Overexpression of ST6GALNAC1 in the

MDA-MB-231 breast cancer line has also been shown to promote

the invasion and migration of breast cancer cells via the EMT

pathway (140) while higher levels of ST8SIA4 promote

tumorigenicity in the same cancer cell line (141). Blockade of

ST6GAL1 has been shown to inhibit the metastatic spread of

prostate cancer to bone (142). Overexpression of a(2-6)-sialic
acids in pancreatic adenocarcinoma cell lines mediates increased

adhesion to ECM while overexpressed a(2-3)-sialic acids contribute
to increased migration (31). In human thyroid cancer, there is an

increased expression of sialylated fibronectin (143) and SLeA

antigen (144). Adrenal cancer also shows an overall increase in

total cellular, cytoplasmic, and total plasma sialic acid content (145)

(146). Aberrant upregulation of polysialylation on the neural cell

adhesion molecule and serum sialic acids (147, 148) is critical in the
Frontiers in Oncology 06
progression of pituitary and brain cancer (149) (see Table 2). In the

brain, there is still limited information on what sialic acid is

relatively overexpressed and on which glycan is the sialylation

phenotype prominent.

Sialic acid mediates immune evasion
in tumors; masking selectin and
Siglec binding

The presence of sialic acids on cell surfaces influences various

cellular behaviors that are crucial for cancer metastasis, including

cell adhesion, signaling, and, most importantly, immune evasion.

Heavy aberrant O-glycosylation on the surface of mucin residues

correlates with metastatic invasion and immune evasion of tumor

cells (99, 178–180). Hypersialylated cancer cell surfaces are prime

ligands for sialic acid binding lectins (known as Siglecs) on immune

cells. The hypersialylated cell surface protein CD24 binds with

Siglec-10 on macrophages to prevent tumor cells from undergoing

phagocytic death by acting as a “don’t eat me” signal (37). Increased

sialyl Lewis antigens on tumor surfaces make the immune system

recognize them as migrating leukocytes, not cancer, enabling them

to evade the system and colonize other tissues and organs (45). In

addition, aberrant expression of sialic acids on cancer cells prevents

complement activation, extending longer on the cell surface and

serving as a physical barrier to prevent NK cells from accessing their

receptors on the cell surface. This, in turn, disables major killing
TABLE 2 Sialyltransferase expression in various cancer.

Enzyme Cancer type (altered/overexpressed) Effect References

ST3GAL1 Breast, melanoma, ovarian, and colorectal cancers Promotion Cell proliferation, invasion and metastasis, immune
evasion, angiogenesis, stemness

(150–155)

ST3GAL3 Colorectal cancers Promotion Cell proliferation, invasion, and metastasis (150, 152)

ST3GAL3 Glioma Inhibition Proliferation, invasion and metastasis, immune evasion (154)

ST3GAL4 Colorectal and gastric cancer Promotion Invasion and metastasis, immune evasion (150, 156)

ST3GAL5 Pediatric leukemia, breast cancer Promotion Cell proliferation (157)

ST3GAL6 Lung and multiple myeloma Promotion Invasion and metastasis (3, 156)

ST6GAL1 Pediatric leukemia, colon, ovarian pancreatic, prostate,
colorectal and brain

Promotion Cell proliferation, invasion and metastasis, stemness (18, 18, 27, 28,
157–162)

ST6GAL1 Glioma and colon Inhibition invasion and metastasis, immune evasion,
angiogenesis, stemness

(154, 163)

ST6GAL2 Breast and brain Promotion Cell proliferation, invasion and metastasis (19, 164)

ST6GALNAC1 Breast, prostate, and liver cancers Promotion Cell proliferation, invasion and metastasis, stemness (91, 140, 165)

ST6GALNAC2 Breast cancer Promotion Invasion and metastasis (166)

ST6GALNAC4 Liver cancer Promotion Cell proliferation (167, 168)

ST6GALNAC5 Glioma Inhibition Cell proliferation (169, 170)

ST8SIA1 Breast and melanoma Promotion invasion and metastasis, angiogenesis, stemness (171, 172)

ST8SIA4 Breast and thyroid carcinoma Promotion Cell proliferation, invasion and metastasis (141, 141,
173, 174)

ST8SIA6 Breast, liver, and lung adenocarcinoma Promotion Cell proliferation, invasion and metastasis (175–177)
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mechanisms of cytotoxic T cells, modulates macrophage function,

and dampens dendritic cell activation and function.

Siglec regulates immune surveillance of cancer, and one of the

main results of aberrant sialylation is the loss of Siglec expression in

cancer cells, preventing cancer cells from attack by the immune

system (33). Siglecs play a critical regulatory role in innate and

adaptive immune response via the recognition of mammalian

species-specific sialylated glycans (181), as well as regulating

cancer immune surveillance (182) (Figure 2). Hypersialylation on

cancer cells increases sialic acid-binding receptors, aiding immune

evasion, and helps to camouflage cancer cells by binding to Siglec

receptors on immune cells, transmitting inhibitory signals, and

promoting cancer cell survival and proliferation (15, 44). Some

Siglecs can also deliver activation signals that enhance antitumor

responses, and this interaction affects immune responses, including

inflammation (183). Cancer cells have a prominent glycocalyx (35),

and they need to evade the NK cells to proliferate, migrate, and

metastasize. Siglec-7 and Siglec-9 are inhibitory receptors that bind

sialic acid-containing ligands on tumors to dampen the activation

of NK cells. Increased expression of Siglec-7 and Siglec-9 ligands on

various cancer cells have been shown to decrease their susceptibility

to NK cell-mediated killing (36, 184). Siglec-15 on macrophages

suppresses the immune microenvironment in PD-L1-negative non-

metastatic lung adenocarcinoma (38). It was also reported that

inflammatory responses are attenuated or weakened when the

activity of sialic acid binding to Siglecs receptors is increased
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(185). Sialic acid is attached to the outermost glycolipids and

glycoproteins on the surface of tumor cells to bind receptors like

Siglecs (186).

It is critical to note that O-acetylation of sialic acids at position

C7, C8, or C9 of sialic acids on the surface of glycoproteins alters

their structural conformation and charge, effectively masking the

binding of these glycoproteins to key recognition molecules, such as

selectins and Siglecs (sialic acid-binding immunoglobulin-type

lectins). When sialic acids are O-acetylated, particularly at C9, it

sterically hinders or alters the conformation of the sialylated

glycans, masking the recognition motifs required for selectin

binding. This results in the inhibition of selectin–glycan

interaction. When sialic acids are deacetylated, they modulate

immune-mediated cytotoxicity via the sialic acid–Siglec pathway

(187, 188). Selectins (such as E-, P-, and L-selectins) typically

mediate cell adhesion in processes like leukocyte trafficking and

cancer metastasis by recognizing sialylated structures like sialyl

Lewis X (SLeX) (see Figure 3). However, O-acetylation at position

C9 of sialic acids can block the recognition of SLeX by selectins,

reducing cell adhesion and metastasis potential (189). This

modification confers a selective advantage to tumor cells by

enabling them to evade immune surveillance and promoting their

survival and mobility within the body. Similarly, Siglecs,

particularly those involved in immune suppression (like Siglec-7

and Siglec-9), depend on the recognition of sialylated glycans. O-

acetylation disrupts their ability to bind to these glycans, helping
FIGURE 2

This figure illustrates how various sialylated glycoproteins on the cell membrane interact with immune cell surface components, such as Siglecs, to
modulate immune responses. These interactions can protect cancer cells against cytotoxic activity, suppress T-cell activation, and promote the
expansion and secretion of modulatory cytokines. Additionally, sialylated glycoproteins create a physical barrier that impedes immune cell contact.
The figure also highlights the role of sialylated Fas receptor (FasR) in providing steric hindrance, preventing Fas ligand (FasL) access, and ultimately
disabling apoptosis in cancer cells. These mechanisms collectively contribute to immune evasion and cancer progression.
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cancer cells escape immune responses that would otherwise be

triggered by Siglec–sialic acid interactions.

Overall, O-acetylated sialic acids regulate the dynamics of

glycoproteins on the cell surface to influence the formation of

glycoprotein lattices and their association into signal-transducing

microdomains. By modulating the interaction of glycoproteins with

galectins and other lectins, O-acetylation influences how these

glycoproteins cluster and move within the plasma membrane to

allow for longer retention of sialic acids on the cell surface and, thus,

stable glycoprotein networks that aids cellular proliferation,

migration, and immune evasion. These microdomains are

sometimes referred to as glycosynapses and are very crucial for

organizing receptors and other signaling molecules into functional

complexes that can transduce signals across the cell membrane.
Sialic acids’ role as galectin
binding modifiers

Galectins are a family of b-galactoside-binding proteins. They

modulate various cellular processes, including cell–cell adhesion,

immune responses, and tumor progression. It is critical to note that

sialic acids play a crucial role in regulating galectin binding to

glycoproteins by modifying the exposure of galactose residues.

Galectins can be found both inside and outside the cell, with
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extracellular galectins exerting their functions via an interaction

with cell surface oligosaccharides.

Overexpressed sialic acids can inhibit galectin binding by

masking galactose residues on the glycan structures. This occurs

because galectins preferentially bind to galactose and N-

acetyllactosamine (LacNAc) sequences on glycans. When sialic

acids cap these sequences, it prevents galectin binding. This sialic

acid-mediated inhibition of galectin binding plays a role in cancer

progression (190). For example, tumors with high levels of

sialylation may avoid galectin-mediated cell–cell interactions,

promoting tumor immune evasion and metastasis (191, 192). In

contrast, reduction of sialylation can enhance galectin binding,

potentially promoting galectin-dependent signaling and tumor

cell apoptosis (193).

While there is considerable research interest in galectins,

relatively few studies have focused on a critical enzyme that

inhibits galectin signaling, namely, b-galactoside a2,6-
sialyltransferase (ST6Gal-I). ST6Gal-I catalyzes a2,6-linked sialic

acid to the terminal galactose of N-linked glycans, a modification

that prevents galectin from binding to b-galactosides, a mechanism

for tumor cell survival and immune evasion (190), and this enzyme

is highly expressed in various cancer types including colon (194,

195), breast (196), cervical (197), leukemia (157), and brain tumors

(198). High levels of ST6Gal-I are strongly associated with increased

tumor metastasis and poor clinical prognosis (199, 200).
FIGURE 3

This figure illustrates the critical role of hypersialylation in driving the metastatic cascade. Overexpression of sialoglycans on cancer cells increases
local mechanical tension within the primary tumor, leading to cell–cell and cell–matrix repulsion that facilitates tumor cell dissociation. These cells
intravasate into the vasculature, where sialyl Lewis X (SLex) on their surface binds to selectins on endothelial cells, mediating their capture, tethering,
and rolling along the vascular wall. This interaction precedes cellular migration and transmigration through the endothelium, culminating in
colonization at distal sites.
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Experimental evidence have shown that a2,6-sialylation of surface

receptors by ST6Gal-I prevents Galectin-3 (Gal-3) from binding

and initiating apoptotic pathways in epithelial tumor cells (201,

202). Notably, Gal-3, like ST6Gal-I, is also upregulated in various

cancers (203–207). This presents a paradox, as upregulation of

ST6Gal-I creates a sugar structure that inhibits Gal-3 binding,

raising the question of why tumor cells would upregulate both

Gal-3 and the sugar structures that block its interaction. To explore

this paradox, recent studies have forced the overexpression of

ST6Gal-I in SW48 cells (a colon epithelial cell line deficient in

both a2,3- and a2,6-sialyltransferases) and examined the effects of

recombinant Gal-3 exposure on apoptosis (208) and their results

demonstrate that ST6Gal-I-mediated a2,6-sialylation provides a

survival advantage to tumor cells by inhibiting Gal-3-induced

apoptosis, underscoring the enzyme’s role in tumor progression

and resistance to immune-mediated cell death.
Sialic acid as a cancer biomarker

Sialylation levels and patterns are altered during cancer

progression, indicating the potential of sialylated molecules as

cancer biomarkers (33). One contributing factor to increased

cancer cell signaling is the presence of sialic acid on the

glycocalyx. Sialic acid on glycoproteins and glycolipids is known

to mediate cell signaling (1). Multiple emerging studies have shed

light on the relationship between the presence of sialic acid on these

glycans and a more aggressive phenotype of specific cancers (18, 97,

99, 136, 140, 142, 209–211). Most evidently, sialylated glycans

regulate cell transduction pathways through its nature to adhere

to neighboring cells (through sialyl Lewis antigens and singles) for

direct cell–cell signaling, which serves as an essential function for

cancer progression (212). The sialic acid sugar also promotes overall

tumor progression, not just at the cellular level, but at other levels

that can prevent apoptosis, enhance metastasis, and develop

resistance to therapy (209). Because of this, sialic acid and sialic

acid binding proteins serve as potent biomarkers for all types of

cancer for metastasis or invasive cancer spread. In cancers like

glioblastoma, inflammation helps tumor cells invade secondary

tissues by breaking down the blood–brain barrier. Understanding

these mechanisms highlights the role of glycosylation in cancer and

suggests targeting hypersialylated glycans as a potential strategy for

more effective anti-cancer treatments (213).

Hypersialylation in cancer can be attributed to several

mechanisms such as aberrant overexpression of sialyltransferases,

varying sialidase/neuraminidase levels, and substrate availability,

which all contribute to the rates of sialyation in cancer cells (214).

Overexpression of these enzymes aids cancer cells in escaping

apoptosis because of the sialylation of specific receptors that

mediate apoptosis, such as the Fas receptor. Sialylation of the Fas

receptor inhibits the internalization of Fas, blocking the formation

of the complexes required for apoptosis (Figure 2) (65, 158).

Neuraminidases can cleave sialic acid residues from glycans on

the glycocalyx, and the overexpression of NEU 1 and NEU 2, found

in lysosomes and the cytoplasm, respectively, has been found to

inactivate apoptotic pathways of cancer cells (215). Higher sialic
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acid substrate availability on the glycans themselves leads to the

increased activity of sialic acid production pathways. This alteration

in metabolic sialic acid production can lead to increased amounts of

sialic acid in cancer cells, which can encourage metastasis (216).
Sialylation of the cancer glycocalyx
mediates aggression

In most cancer cells, glycocalyx signatures are usually

characterized by upregulated glycosylation (96, 132, 133, 217–

221), leading to increased proliferation, migration, and immune

evasion as well as invasive capacities (2, 6, 99, 220–222). The size

and structure of this glycocalyx are critical not only in defining the

tumor cell’s ability to proliferate, migrate, and metastasize but also

to evade immune surveillance (8, 99, 223, 224). Three enzymes are

crucial in the initiation and/or extension of the three main classes of

glycan on the glycoprotein or glycolipids in the cellular glycocalyx.

In mammalian cells, Core 1 b 1,3 Galactosyltransferase-specific

molecular chaperone (COSMC) and Alpha-1,3-Mannosyl-

Glycoprotein 2-Beta-N-Acetylglucosaminyltransferase gene

(MGAT1) are critical in catalyzing the chain extension of N- and

O-linked sugars, respectively, while UDP-glucose ceramide

glucosyltransferase (UGCG) catalyzes the initiation of

glycosphingolipid (GSL) sugars, all playing a crucial role in cell

signaling and metastasis (138, 225–227). Although the biosynthesis

of core glycans is different, chain extensions are similar and often

capped by terminal additions of sialic acid and/or fucose (228).

Overexpression of sialylated O-glycans is a feature of cancer cell

aggression (99), and its knockdown or knockout inhibits tumor

growth, invasion, metastasis, and immune evasion (4, 99, 229, 230).

Expression of ST8SIA4 in the MDA-MB-231 breast cancer line is

associated with breast cancer metastasis (141). N-glycans are also

heavily glycosylated in cancer to promote cell motility and loss of

contact inhibition (231, 232) and protected against immune

responses not only in pancreatic tumors but also in tumors of the

lung, ovary, and bladder (233). In the brain, GSLs are implicated in

tumor progression (234) as well as in immune evasion (10, 235,

236). Sialic acids are attached to either O-, N-linked glycolipid

glycans at their galactose (Gal) or N-acetylgalactosamine (GalNAc)

units via a-2,3 or a-2,6 bonds, or to other sialic acid moieties via a-
2,8 or a-2,9 bonds (Figure 4) by specific sialyltransferases

depending on the bond (47, 49).
Hypersialylated glycans mediate
prolonged survival in cancer

Cancer cells often have high levels of sialylation (237), which are

often associated with malignancy and poor prognosis in patients (94,

95). Increased sialylation can increase local negative charges (as sialic

acid is the only monosaccharide to carry a charge) on the cancer cell

membrane to physically disrupt cell–cell adhesion and promote

detachment from the tumor mass through electrostatic repulsion,

which ultimately leads to membrane bending (13) (Figure 5). In N-
frontiersin.org

https://doi.org/10.3389/fonc.2024.1487306
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Habeeb et al. 10.3389/fonc.2024.1487306
glycans, the mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-

acetylglucosaminyltransferase (MGAT) family of enzymes

including MGAT1, MGAT4A, and MGAT5A are upregulated in

many cancers, to fuel the loss of contact inhibition, increased cell

motility, invasion, and metastasis (42, 233, 238–243). MGAT1,

MGAT2, MGAT4, and MGAT5 sequent ia l ly add N-

acetylglucosamine (GlcNAc) residues to the core mannose residues

of N-glycans, resulting in highly branched complex and hybrid N-

glycans. Increased activity of MGAT enzymes leads to more complex

and branched N-glycan structures on glycoproteins to provide more

sites for sialyltransferases to add sialic acid residues. Increased

branching structures facilitate the attachment of multiple sialic

acids, leading to hypersialylation.

In O-glycans, COSMC is a specific molecular chaperone required

for the proper folding and function of the enzyme C1GALT1. In

cancers, dysregulation of COSMC has been reported to cause the

accumulation of Tn antigen to form the sialyl-Tn antigen.

Dysregulated COSMC causes T-synthase (C1GALT1) to be

misfolded and degraded, leading to aberrant glycosylation (244,

245). Mucin overexpression in epithelial cells increases the number

of glycosylation sites to increase sialylation and fuel resistance against

NK cells (99). Overexpression of COSMC in human colon cancer cells

significantly enhances cell migration, invasion, and cancer survival

(246–248).
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In cervical and breast cancer, overexpression of UDP-glucose

ceramide glucosyltransferase (UGCG) led to increased synthesis of

glucosylceramide and subsequently more complex GSLs to fuel cell

proliferation and glycolysis via the PI3K/AKT pathway (7, 9, 249).

The increased availability of precursor molecules facilitates the

synthesis of gangliosides, which are often hypersialylated in

cancer cells. GSLs are expressed in the brain with a bulk of sialic

acids to form gangliosides (250–252), and their aberrant expression

drives tumor growth and survival (252–254).
The composition of the cellular
glycocalyx modulates membrane
dynamics in cancer

The most consistent finding in glycobiology-based cancer

research is the priming of cell surface with a robust sugar

glycocalyx to mechanically foster cell growth and survival.

Upregulation of glycoproteins in cancer is a recurrent event (138,

225–227) to enhance integrin-dependent cell growth and survival

(228, 255) and promotes a mesenchymal-like phenotype (217). In

many cancer types (breast, brain, lungs, and prostate), glycosylation

events are increased to enable addition of more (bulkier) sugars on
FIGURE 4

This figure illustrates the various forms of glycosylated proteins present on the cell membrane, highlighting their structural diversity and attachment
modes. Depicted are glycoproteins with N-glycans and O-glycans, distinguished by their attachment to specific amino acid residues. N-glycans are
attached to asparagine residues, while O-glycans are linked to serine or threonine residues. The figure also includes proteoglycans, which have long,
unbranched glycosaminoglycan chains, GPI-anchored glycoproteins, which are tethered to the membrane via glycosylphosphatidylinositol anchors,
and glycolipids, which consist of carbohydrate moieties attached directly to ceramide lipids within the membrane. This comprehensive depiction
underscores the complex and varied nature of glycosylation on the cell surface, essential for numerous cellular functions and interactions.
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the glycan including the terminal sialic acid being the most

important. More “bulky” glycan structures on the glycocalyx

components help to mechanically apply tension the cell

membrane and provide local repulsive forces within the

membrane vicinity and between adjacent cells, leading to

membrane bulging and cell dissociation from matrix and from

other tumor cells. These more bulky glycans in many types of

cancer extend further (>50 nm) from the cell surface than the

integrins (~30 nm) (8), and because of the desirability of most

cancer cells to attach to the ECM through their integrins, there is a

forced ECM–integrin interaction. This serves to mechanically

induce a feedback pull on both the ECM and the nucleus of the

tumor cell and subsequently promote the activation genes involved

in cancer cell proliferation and metastasis (14, 159, 217, 256–261).

Engineering of O-glycans on the cancer glycocalyx demonstrated

that a thick and dense glycocalyx could trigger complete cellular

detachment from the ECM to facilitate prolonged cell survival

(236). Several research lines have applied gene editing to affect

the enzymatic function of specific precursor sugars of the entire

glycan tree to make cancer cells susceptible to immune attack

(262–265).

The cancer cell glycocalyx is heavily decorated by glycan structures

(266), and this glycan bulk induces an upregulation of both

mesenchymal and bulky glycocalyx-related genes to drive aggression

(217). A bulky glycocalyx have also been shown to drive metastasis by

increasing cell cycle progression (8). Other reports showed that an
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increase in the size of the glycocalyx with theMUC1 ecto-domain was

sufficient to drive metastatic potential in an in vivo model of breast

cancer (8) as well as promoting immune evasion in epithelial cells that

had increased MUC1 expression (99). Recent reports further revealed

that increasedMUC1 expression is a precursor to hypersialylation and

immune evasion. Overexpression ofmucins in theMCF10A epithelial

cell line increases the glycocalyx bulk to evade immunedetectionwhile

its knockout abrogated the glycocalyx bulk in the ZR-75-1 breast

cancer cell line (99).

As our knowledge in this area continues to expand, it has

become increasingly evident that the glycocalyx of tumor cells is

closely associated with its ability to migrate (267–270). A tumor

cell’s glycocalyx serves to tension their membrane and enhance

integrin clustering and activate downstream pathways involved in

tumor proliferation and invasion (8, 223, 271, 272), as well as

extravasation (17, 273, 274). Other studies indicated that mucin

degradation in ZR-75-1 breast cancer cell line led to an increased

NK-mediated cytotoxicity (99) while genetic disruption of the

glycocalyx in melanoma cells tends to be anti-metastatic (275).

Recently, synthetic mucin glycopolymers of low and high densities

were expressed on epithelial cell membrane to increase the relative

size and density of mucin and modulate plasma membrane

dynamics (236). Glycocalyx-mediated tensioning has been

identified in many cancer types including glioma cells, which

cause glioblastoma multiforme (GBM) to adopt a more

mesenchymal and lethal phenotype with high migration velocity
FIGURE 5

This figure illustrates the effects of increased sialylation on the cell membrane under cancerous conditions, highlighting how heightened sialylation
can promote membrane bulging, cell detachment from the extracellular matrix (ECM), and tumor cell disaggregation. The figure depicts the
repulsive interactions between sialylated glycoproteins on the cell membrane, causing glycan–glycan repulsion and resulting in membrane bulging.
Additionally, it shows how sialylated glycans interact with the ECM components and neighboring tumor cells, leading to glycan–ECM and glycan-
induced cell–cell repulsion. These mechanisms contribute to cancer cell detachment and increase metastatic potential, emphasizing the role of
sialylation in cancer progression and metastasis.
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(217). This finding is consistent with other studies where increase in

mucin glycosylation (O-glycan) correlates with metastatic invasion

and immune evasion (99, 178–180).
Sialylation-induced mechanical
tension modulates signaling in cancer

Physical stress induced on the cell membrane by glycan capped

by sialic acid can impact cellular behavior to reorganize and activate

surface receptors’ integrins. This tension-activated integrin pulls on

the ECM ligands, causing a tension-mediated glycocalyx–integrin

feedback loop to promote mesenchymal-like phenotype in most

cancer cells that overexpresses mucin glycoprotein. This, in turn, has

a pulling mechanical effect on the nucleus to promote downstream

signaling with growth factor receptors, a positive factor to G1 cell cycle

progression (217, 223, 276). Overexpression of mucin glycoproteins in

cancer cells potentiate more glycosylation hotspots for O- and N-

glycosylation, which are often capped with an excess of sialic acid and/

or fucose at the terminal end of the sugar glycan. Increased expression

of mucin in MCF-10A breast epithelial cell line correlates with sialic

acid expression (99) while increased sialic acids on glycoproteins have

been reported to stimulate not just integrin-FAKmechanosignaling (8,

217) (Figure 6). Sialylation events such as overexpression of

ST6GalNAcII mediates the invasive properties of breast carcinoma

through the PI3K/Akt/NF‐kB signaling pathway (166).
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ST6GALNAC1 expression has been shown to promote the invasion

and migration of breast cancer cells via the EMT pathway (140).

Other studies have shown that MUC1 is heavily sialylated and

mice deficient in MUC1 resist tumor formation (277) while primary

tumor xenografts that overexpressMUC1 grow andmetastasize more

aggressively (268). The implication of this finding is that tumors with

bulky glycans on their mucins may foster tumor progression and

aggression. Heavily sialylated mucins have been reported to bend the

cancer cell membrane and stimulate integrin-FAKmechanosignaling.

This occurs due to the negatively charged sialic acids populating the

membrane, creating a repulsive effect in the local vicinity of the

cancer cell membrane and pulling all the integrins and other surface

receptors apart. As a result, focal adhesions are formed and the

receptor integrins are forced to bind and pull on the ECM as well as

the intracellular cytoskeleton to mediate a stiffer ECM. The

subsequent autophosphorylation of tyrosine pY397-FAK assembly,

which is an activation signal to other downstream mechanosignaling

events involved in cell migration, proliferation, and aggression (8,

217, 223, 261), then occurs. FAK assembly disseminates adhesion and

tensional information from focal adhesions to the rest of the cell via

autophosphorylation at tyrosine 397, as well as increased

phosphorylation at tyrosine 925 (278). The cell senses increased

substrate stiffness through integrins to induce assembly of focal

adhesions and further cause activation of focal adhesion kinase

(FAK) (34, 279). This leads to enhanced MAPK activation, such as

Akt phosphorylation, which then promotes G1 cell cycle progression
FIGURE 6

This figure illustrates the state of cellular glycosylation on the membrane under healthy conditions, characterized by minimal reciprocal membrane
tension and low mechanosignaling activity. The figure also depicts the distribution and structure of glycosylated proteins on the cell membrane,
highlighting the role of glycosylation in maintaining cellular functions in a healthy physiological state. Key components include glycoproteins, the
actin cytoskeleton, and signaling molecules, demonstrating their interplay in preserving normal cellular behavior with minimal mechanical stress to
the membrane.
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through expression of proteins like the cyclins (8). The AKT pathway

and MAPK pathway can influence each other’s activity through

crosstalk and regulatory interactions. AKT can directly or indirectly

modulate the activation and function of various MAPKs, including

ERK1/2, JNK, and p38 MAPK. Staining for pY397-FAK, cyclin D1,

and pAKT substrate demonstrated that overexpression of the MUC1

ectodomain increases mechanosignaling, cell cycle progression, and

MAPK activity (280).

Taken together, increased sialylation drives integrin clustering

through kinetic funneling, leading to increased signaling from focal

adhesion-associated proteins such as FAK in combination with

growth factor signaling.
Altered sialylation in brain cancer

Owing to the brain’s importance in controlling the central

nervous system and overseeing most of the body’s functions, tumor

growth in the brain has unique cell types, immune context, anatomy,

and metabolic limitations as the tumor microenvironment of the

brain is significantly different compared to other parts of the body.

This unique microenvironment, protected by the blood–brain

barrier, favors low rate of metastasis out of the brain while favoring

higher rate of metastatic invasion within the brain (281, 282). How

brain tumors manage to navigate this microenvironment from other

organs presents unique clinical challenges especially in patients with

lung, breast, and skin cancer that has metastasized to the brain

(282, 283).

In normal tissue, sialic acids (gangliosides and polysialic acids)

maintain the structural stability of stem cells and its self-renewal. In

the brain, gangliosides influence stem cell proliferation and

differentiation pathways while the interaction of polysialic acid

with neural cell adhesion molecules (NCAMs) modulates cell–cell

interactions that are essential for the maintenance of neural stem

cells, thereby promoting both their self-renewal and the

regenerative processes (28, 252, 284). In glioblastoma, aberrant

expression of sialic acids plays a significant role in the enhanced

self-renewal and survival of circulating stem cells (CSCs). CSCs are

distinguished by altered glycosylation patterns, particularly in

sialylated glycoproteins. These modifications promote the ability

of CSCs to evade immune detection (Figure 2) and resist therapies,

which is a critical aspect of their aggressiveness. Sialic acid-rich

gangliosides contribute to maintaining the “stemness” of these cells

by stabilizing key signaling molecules on their surface, to facilitate

self-renewal and tumorigenesis (284). Additionally in glioblastoma,

ST6Gal1-mediated a2,6-sialylation of crucial receptors such as

EGFR and TNFR1 has been shown to enhance tumor-initiating

cell (TIC) properties to foster increased self-renewal, therapy

resistance, and invasion. This heightened level of sialylation

supports cancer stem cell (CSC) survival by stabilizing cell surface

proteins that drive oncogenic signaling (28). Ganglioside GD3 are

highly expressed in CSCs to facilitate self-renewal and invasiveness.

GD3 has been identified as a marker for glioblastoma stem cells

(GSCs) and overexpression of ST6Gal1 and GD3 synthase (GD3S)

has been shown to enhance CSC properties by stabilizing oncogenic

signaling pathways like c-MET signaling (252).
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Research on glycosylation in brain cancer, particularly GBM, is

limited but suggests a potential role for a2,6 sialylation and the

enzyme ST6GAL1 in promoting GBM growth. Elevated a2,6
sialylation levels correlate with increased GBM cell growth and

self-renewal. ST6GAL1 was identified as a key regulator of a2,6
sialylation in GBM, with higher expression observed in brain

tumor-initiating cells (BTICs) (28). Knockdown of ST6GAL1 in

BTICs resulted in reduced growth, self-renewal capacity, and

tumorigenic potential (18). Additionally, ST6GAL1 was found to

modulate the levels of key BTIC regulators, such as PDGF receptor

b (PDGFRB), activated leukocyte cell adhesion molecule, and

neuropilin, through its regulation of a2,6 sialylation. These

findings underscore the importance of ST6GAL1-mediated a2,6
sialylation in driving GBM growth (18, 40).

Other families of sialyltransferases have been identified in

glioblastoma and other types of brain cancer including other

ST6GAL family (160–162, 285), ST3GAL Family (3, 286, 287),

and ST8SIA Family (88, 286, 288, 289). However, it is still unknown

what proteins and lipids of the cellular glycocalyx present these

critical sialylated glycans, which are the most important functional

end groups that potentiate aggressive phenotype in glioblastoma.
Glycocalyx bulk mediates a stiffer
ECM to promote cancer cell migration

Aside from sialylation serving to bulk the cancer cell’s

glycocalyx, it also causes the glycocalyx to extend further from

the cell membrane. In certain cancers, the glycocalyx can extend

longer than the integrins away from the cell membrane. This causes

a forced protrusion of integrin binding to the ECM, leading to a

“push and pull” on both the ECM and the nucleus, respectively

(223, 271, 290). This pulling effect induces a physical change in the

tumor microenvironment to cause physical stiffening of ECM,

increased cellular contractility, and substrate tensioning (261). As

such, cells continuously sense and modify their behavior in

response to this physical cue via mechanotransduction to activate

integrins that bind the ECM to ultimately modify the migratory

behavior of cells (291, 292) (Figure 7). The pulling effect of integrins

on the ECM mechanically activates tenascin-C (TNC) that is

produced and secreted onto the ECM to further increase ECM

stiffness, cellular griping, and contractility to increase traction. This

event increases the migratory behavior of the cell, and this is true for

most cancers including breast and brain cancer (217, 293, 294).

The stiffness of the ECM dictates how sialic acids influence

cellular physiology. Softer ECM support stem cell self-renewal and

tissue regeneration. This ECM softness allows for less rigid cell

adhesion to reduce integrin signaling mediated by FAK. Sialic acids,

particularly in the form of glycosylated proteins like gangliosides,

help maintain stem cell function by modulating integrin activation

and reducing over-activation of mechanotransduction pathways

(239, 295). In cancer, a stiffer matrix predominates to promote

CSC invasion and migration (296). Studies show that stiffer ECM,

with higher collagen content and rigidity, activates SRC/FAK

signaling, which is crucial for CSC migration, invasion, and

metastasis. Sialic acids, particularly those catalyzed MGAT5, are
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crucial in the N-glycosylation of integrins, to enhance their

interaction with galectins and promote focal adhesion turnover

and mechanosensing. This is essential for cancer cell migration and

invasion in stiffer ECM (239, 295). For example, GSCs exhibit

maximum migration at an optimal matrix stiffness (166 kPa) due to

MGAT5-dependent N-glycosylation (239).

In GBM, stiffness of ECM is altered due to elevated TNC to

promote growth, survival, migration, and invasion (295, 297). An

increase in the ECM stiffness compromises the cell’s vascular

integrity to induce the expression of epithelial-to-mesenchymal

(EMT) transition genes (298, 299). A growing body of research

also reveals the positive role of sialic acid bulk on the glycoprotein in

mediating stiffer ECM to promote cell proliferation (223). Stable

expression of sialyl-Tn antigen in the T47-D human breast cancer

cell line induces a decrease of cell adhesion and an increase in cell

migration (211). Direct alteration of brain stiffness resulted in

aberrant axonal growth and migration (300). Barnes et al. (217)

also reported that proneural GBMs had longer migration

trajectories and higher migration velocities on stiff PA gels. TNC

expression has been reported to increase proliferation of neurogenic

precursors in the developing ventricle (301). Miroshnikova et al.

(295) reported that reduced TNC expression led to a fourfold

decrease in the stiffness of ECM and lower tumor migration in

GBM. Cells exposed to chronically stiffened ECM undergo EMT,

promoting their switch to a motile state with increased aggression
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and migration (217, 302). Enhanced ECM stiffness also drives GBM

cell proliferation and a phenotype reminiscent of EMT, which

further enhances GBM invasion (32, 303). In all, a hypersialylated

glycocalyx is a potent mechanosensor known to drive an increased

stiffness to potentiate migratory phenotype in brain cancer.
A sialylated glycocalyx is indispensable
to the cancer metastatic cascade

The overall charge of the ECM is typically negative as this arises

from several components of the ECM, including proteoglycans

(covered in glycosaminoglycans or GAGs) such as heparan sulfate,

chondroitin sulfate, and dermatan sulfate, which are highly negatively

charged due to the presence of sulfate groups and carboxyl groups

(304). The glycoproteins on the ECM such as fibronectin and laminin

also contribute to the negative charge through their carbohydrate side

chains, which may include sialic acid residues that carry a negative

charge (305, 306). Moreover, increased sialylation on integrins can

induce detachment from the ECM, promoting cancer cell migration

and tissue invasion (307–309) (Figure 3). The stearic repulsion

contributed by negative charges on the ECM and negatively charged

sialic acid on the cancer cell surface fuels the detachment of cancer

cells from the tumor mass and subsequent metastasis. The detached
FIGURE 7

This figure illustrates cellular glycosylation on the membrane under cancerous conditions, highlighting the role of glycocalyx in promoting
membrane bulging as well as increased membrane tension and mechanosignaling. This tension drives an upregulation in the expression of genes
involved in cytoskeletal dynamics, actin polymerization, cell proliferation, growth, and motility, emphasizing the pathological shifts in cellular
behavior. Key features include the distribution of glycoproteins, amplified signaling pathways, and the resulting structural and functional changes in
the cytoskeleton, underscoring the impact of glycosylation on cancer progression.
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tumor cells then exit the vasculature where they are recruited to the

endothelium via selectin ligands for an onward transmigration

through the endothelium to form secondary metastases (310, 311).

Cancer cell surfaces are enriched with glycans capped with SLeX and

SLea oligosaccharides that can interact with selectins in the

endothelium, promoting cancer cells to adhere to, migrate along,

and extravasate through the endothelium (33).

The progression of cancer is strongly related to sialylated

glycans and their interaction with selectins, which interact with

SLeX moieties on the cancer cell glycocalyx and are critical for

cancer cell tethering and rolling on the vascular endothelium upon

intravasation and in the direction of shear flow (Figure 3). This

initial interaction of SLeX and either P- and E-selectin is important

for transmigration along the endothelium and subsequent steps in

cancer metastatic cascade and their extravasation to distal sites,

which is similar to leukocyte adhesion cascade (312, 313). Several

studies have shown that in the absence of the full SLex moiety, the

initial recruitment of leukocytes could not be initiated, which may

also be true in circulating tumor cells (CTCs) (150, 314, 315) as well.

Furthermore, excess sialylation in cancer induces EMT phenotype

including cell–cell detachment from primary tumor, ECM invasion,

and distal site colonization following metastasis. E-selectin ligands

are reported to play a role in the metastasis of cancer cells to bone

(316) by inducing EMT and WNT signaling (317). Overall, this

demonstrates that when EMT is induced in cancer cells, selectin-

binding SLeX oligosaccharides are upregulated and promote the

invasion of cancer cells.
Sialylation as a potential target
for early diagnosis and
therapeutic intervention

Given the importance of sialic acids in the progression of cancer,

some enzymes are potential targets for drug development including

sialic acid synthases, CMP–sialic acid synthetases, sialyltransferases,

sialidases, and sialic acid modification enzymes (48). Early diagnosis

and treatment are critical in managing cancer; thus, the need to

understand the formation and pathological alterations of its

progression is of upmost importance. Hypersialylation of

glycoconjugates has been implicated as an important disease

biomarker and a potential therapeutic target (318). In many

endocrine disorders, sialylation has been reported as an important

disease biomarker as there is increased sialylation in cancer patients

compared to healthy patients, which is also directly proportional to

the cancer stage (318, 319). New evidence has also demonstrated that

de-sialylation repolarizes tumor-associated macrophages (TAMs)

(320), and treatment with neuraminidase to cleave sialic acid

residues or its inhibition using 3Fax-Neu5Ac enables activation of

natural killer (NK) cells to kill multiple myeloma cells (210, 321).

Recent reports also point to sialic acid–Siglec interactions as new

immune checkpoints to be targeted in order to achieve adaptive and

innate antitumor immunity (39, 320). This remains an active area of

investigation as the complicated and broad sialoglycan–Siglec

expression pattern in the immune system (320) and the elucidation
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of all of the Siglec ligands have not been fully characterized to date

(65). ST6Gal-I overexpression in tumors functions as a crucial

modulator of tumor cell survival, particularly by disrupting

galectin–glycan interactions that would otherwise promote

apoptosis. This mechanism, combined with the enzyme’s

involvement in cell adhesion and metastasis, makes ST6Gal-I a

significant target for therapeutic intervention in cancer treatment.

Glycans on cell surface glycoconjugates are aberrantly expressed

in tumor cells, which consequently gives them a unique glycan

signature as compared to healthy cells (322). With cell surface

glycans currently being targeted by therapeutic agents to aid

treatment and for diagnostic purposes (65), the identification of

the specific glycan composition of cancer cells will be of great

importance to understanding the role of glycans in immune evasion

(45, 322, 323). It was suggested that tumor cells have specific glycan

signatures (“Glyco-codes”) that, if deciphered, can be considered a

novel immune checkpoint that offers new therapeutic opportunities

(322). Using antibody–NEU conjugates has shown promising

results in precision glycocalyx editing for immune therapy (45).

This method uses a specific antibody to drive NEU to selectively

cleave sialic acids from tumor cells exposing de-sialylated (and

galactose exposed) cancer cells to immune cells’ attack (324). This

same approach showed great promise in breast cancer treatment

(99, 325). Another approach that targets sialic acid glycans in cancer

immunotherapy with great potential is the use of anti-glycan

vaccines, inhibiting cancer-associated glycan lectin interactions

and dendritic cell targeting (322).
Conclusions and future directions

One trend that remains of great importance as it relates to cancer

sialylation is determining which specific glycan chains, proteins, and

lipids these sialylated glycans reside on. Future work should target the

disruption of chain-initiating glycosyltransferases as a promising

approach in determining both the most important glycan structure

of the glycocalyx that displays the chain terminating sialic acids and

which backbone component it rests on. This will determine the critical

sialylated glycans mediating aggression in various cancer types so that

we can adequately target the glycan for disruption. This could be

achieved by truncating either of the chain initiating/extension

enzymes for O-linked, N-linked or GSL glycan synthesis (326). In

both the healthy and cancer glycocalyx, MGAT1, COSMC, and

UGCG are critical chain initiating enzymes that synthesize N-linked

glycans (complex and hybrid), O-linked glycans, and GSLs,

respectively, and may play a crucial role in cell signaling, immune

evasion, and cancer metastasis (138, 225–227). Determining which

branch displays the sialylated glycans is the first step toward effectively

“pruning” the cancer glycocalyx to be more susceptible to treatment.

Immunoengineering is also a very promising approach as

equipping effector immune cells with surface-displayed or

secreted enzymes that disrupt the glycan structures displaying the

critical sialylated glycans can also represent an attractive strategy for

the enhanced killing of tumor cells through protein engineering.

Pharmacological agents or metabolic inhibitors could also be
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exploited to potentially disrupt sialic acid synthesis (99).

Unravelling these mechanisms has the potential to accelerate the

discovery of therapeutic interventions that overcome the protective

sialic acid barrier in cancer cells.
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197. López-Morales D, Velázquez-Márquez N, Valenzuela O, Santos-López G,
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