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Background: This study explores the clinical value of a machine learning (ML)

model based on ultrasound radiomics features of primary foci, combined with

clinicopathologic factors to predict the pathological complete response (pCR) of

neoadjuvant chemotherapy (NAC) for patients with breast cancer (BC).

Method:We retrospectively analyzed ultrasound images and clinical information

from 231 participants with BC who received NAC. These patients were randomly

assigned to training and validation cohorts. Tumor regions of interest (ROI) were

delineated, and radiomics features were extracted. Z-score normalization,

Pearson correlation analysis, and the least absolute shrinkage selection

operator (LASSO) were utilized for further screening ultrasound radiomics and

clinical features. Univariate and multivariate logistic regression analysis were

performed to identify the CFs that were independently associated with pCR. We

compared 10 ML models based on radiomics features: support vector machine

(SVM), logistic regression (LR), random forest, extra trees (ET), naïve Bayes (NB), k-

nearest neighbor (KNN), multilayer perceptron (MLP), gradient boosting ML

(GBM), light GBM (LGBM), and adaptive boost (AB). Diagnostic performance

was evaluated using the receiver operating characteristic (ROC) area under the

curve (AUC), accuracy, sensitivity, and specificity, and the Rad score was

calculated. Subsequently, construction of clinical predictive models and Rad

score joint clinical predictive models using ML algorithms for optimal diagnostic

performance. The diagnostic process of the ML model was visualized and

analyzed using SHapley Additive exPlanation (SHAP).

Results: Out of 231 participants with BC, 98 (42.42%) achieved pCR, and 133

(57.58%) did not. Twelve radiomics features were identified, with the GBMmodel

demonstrating the best predictive performance (AUC of 0.851, accuracy of 0.75,

sensitivity of 0.821, and specificity of 0.698). The clinical feature predictionmodel

using the GBM algorithm had an AUC of 0.819 and an accuracy of 0.739.
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Abbreviations: CFs, clinical features; C-model, clinica

model, Rad score and clinical feature model; RFs, radio

radiomics model.
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Combining the Rad score with clinical features in the GBM model resulted in

superior predictive performance (AUC of 0.939 and an accuracy of 0.87). SHAP

analysis indicated that participants with a high Rad score, PR-negative, ER-

negative and human epidermal growth factor receptor-2 (HER-2) positive were

more possibly to reach pCR. Based on the decision curve analysis, it was shown

that the combined model of GBM provided higher clinical benefits.

Conclusion: The GBM model based on ultrasound radiomics features and

routine clinical date of BC patients had high performance in predicting pCR.

SHAP analysis provided a clear explanation for the prediction results of the GBM

model, revealing that patients with a high Rad score, PR-negative status, ER-

negative status and HER-2-positive status are more likely to achieve pCR.
KEYWORDS

breast cancer, NAC, ultrasound radiomics features, pCR, GBM, SHAP
1 Introduction

BC is themost commonmalignant tumor amongwomen (1).Highly

invasive BC is challenging to treat and is characterized by a high

recurrence rate and poor prognosis (2, 3). While surgery (4) remains

the primary treatment for BC, some patients are not suitable for direct

surgery due to large tumor lesions, extensive metastases, or a strong

preference for breast preservation. Neoadjuvant chemotherapy (NAC) is

administered to reduce the clinical stage, improve the likelihoodofbreast-

preservation, and decrease the need for axillary surgery (5, 6). Thus,

assessing the efficacy of NAC is crucial for determining the subsequent

individualized treatment plan. Current methods for evaluating the

effectiveness of NAC primarily include pathological and clinical

assessments. Among clinical assessment methods, ultrasound is more

frequently utilized than magnetic resonance imaging (MRI) and

mammography (7). However, imaging techniques like ultrasound and

MRI, as well as non-imaging methods such as pathological evaluation,

more often fall short of characterizing the therapeutic effectiveness of

NAC by rule and line. While pathological assessment, though the gold

standard for efficacy evaluation, suffers from delayed results (8).

Pathological complete remission (pCR) following NAC is strongly

associated with favorable outcomes (6), and is a key metric for

evaluating the effectiveness of NAC. pCR can serve as an early

surrogate endpoint for predicting improved disease-free survival (DFS)

and overall survival (OS) in patients after NAC (9). Therefore, early

prediction of the systemic response of BC toNAC is clinically significant,

enabling clinicians to adjust treatment plans promptly, minimize

unnecessary chemotherapy side effects, enhance pCR rates, and

improve patient prognosis.
l feature model; C-R-

mics features; R-model,
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With the rapid advancement of machine learning (ML) algorithms

and their applications in clinical cancer research, cancer prediction

performance has significantly improved (10, 11). ML is increasingly

used in the medical field for predicting outcomes, diagnosing

conditions, and guiding treatments (12). However, the logical

thinking and complex calculation of various ML algorithms can

differ (13), leading to variations in clinical applications. For instance,

a study (14) comparing the prediction performance of different ML

algorithms for BC recurrence found that the adaptive boost (AB)

algorithm gained optimal performance (AUC of 0.987). ML offers

advantages over traditional methods in the area of precision and

velocity, and it can recognize new predictive features and spatial

patterns that may be missed by human analysis (15, 16). By

extracting valuable clinical information from large datasets, ML

helps make informed clinical decisions. The SHAP method provides

both holistic and localized explainability. It explains model predictions

by attributing them to the contributed value from each of the input

features, known as the Shapley value. Comparison with other

interpretative methods, SHAP offers a clearer visualization of the

prediction process for complex ML models. Several researchers have

incorporated Explainable Artificial Intelligence (XAI) techniques to

analyze the efficacy of chemotherapy for targeted cancers (17). Zhang

(18) et al. developed an ML model for accurately predicting the

probability of obtaining a pCR after neoadjuvant chemotherapy

(NAC) in patients with locally advanced breast cancer (LABC).

Furthermore, the ML model was visualized and analyzed using

SHAP technology. However, there may be some limitations in

discussing only the influence of US images or clinical factors on

pCR. Therefore, this study aimed to develop an ML model that

integrates BC ultrasound and radiomics data with clinical factors to

predict the pCR following NAC. The predictive results of the ML

model were interpreted visually by using SHAP. The study seeks to

guide clinicians in developing personalized diagnosis and treatment
frontiersin.org
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plans for patients with BC. The flowchart of RFs and CFs extraction

and models establishment is shown in Figure 2.
2 Materials and methods

2.1 Patients

The study included patients diagnosed with BC between December

2014 and September 2023 who underwent NAC at the Affiliated

Tumor Hospital of Nantong University. The diagnosis of BC was

confirmed through surgical and pathological means. The inclusion

criteria were listed as following conditions: (a) patients with pathologic

results of pCR or non-pCR after NAC and surgery; (b) patients treated

with a full course of NAC; and (c) patients who provided preoperative

breast ultrasound examination and puncture biopsy results. The

exclusion criteria were listed as following conditions: (a) patients

with unavailable and incomplete pathological results; (b) patients

who did not receive a full course of NAC; (c) patients with

inadequate ultrasound image quality; (d) patients with bilateral breast

tumors and unilateral multifocal carcinomas. Figure 1 showed a patient
Frontiers in Oncology 03
enrollment flow chart. The study adhered to the Declaration of

Helsinki and was approved by the Ethics Committee of the Affiliated

Tumor Hospital of Nantong University (No. LW2024024). Written

informed consent was obtained from each patient. The final enrolled

231 patients were randomly assigned to the training cohort (n = 185)

and the validation cohort (n = 46) (Table 1).
2.2 Effectiveness and pathological
assessment of NAC

The National Comprehensive Cancer Network (NCCN) guidelines

adhered to guide treatment regimens and schedules for BC patients.

The NAC for BC included anthracyclines (doxorubicin or epirubicin)

either in combination with or followed by paclitaxel or docetaxel (19).

The 231 participants were subjected to postoperative histopathology to

evaluate their responsiveness to NAC. The criteria for pCR were

defined as the absence of residual invasive carcinoma in the

specimen (with or without residual ductal carcinoma in situ) and the

absence of lymph node involvement in the ipsilateral anterior sentinel

lymph nodes or axillary lymph nodes.
FIGURE 1

Flowchart of radiomics features and clinical features extraction, model establishment and analysis.
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2.3 Clinical parameter

Clinical parameter comprised the patient’s age, menopausal

status, history of breastfeeding, family history of cancer, and

underlying diseases. Tumor-related information encompassed

tumor pathology types (such as invasive ductal carcinoma,

invasive lobular carcinoma, and others), molecular subtypes (such

as luminal A-like, luminal B-like, human epidermal growth factor

receptor-2 [HER-2] enriched, and triple negative), and tumor, node,

and metastasis (TNM) stages (T-stage [1–4], N-stage [0–3]).

Additional data included estrogen receptor (ER) status,

progesterone receptor (PR) status, HER-2 status, Ki-67 expression

(<20% or ≥20%), and the primary tumor location (left, right, or

bilateral). Tumor biomarkers such as carcinoembryonic antigen

(CEA), carbohydrate antigen 153 (CA153), carbohydrate antigen

125 (CA125), and carbohydrate antigen 50 (CA50) were also

recorded. The TNM staging followed the 2017 American Joint

Committee on Cancer (AJCC) eighth edition criteria for

BC (Table 1).
2.4 Ultrasonography

Ultrasonography was conducted using the GE Logic E9 and

Philips EPIQ7 diagnostic ultrasound machines. Four highly

experienced doctors (with more than ten years’ experience in

breast ultrasound) performed preoperative breast ultrasound. For

231 participants, we analyzed the images with the maximum

diameter. The reader 1 and reader 2, each with at least ten years

of experience in breast ultrasound and unaware of the pathologic

results, segmented the region of interest (ROI) in the ultrasound

images using Itk-Snap (version 3.8.0). One month later, the reader

3, with nine years of breast ultrasound interpretation experience,

delineated 55 random patients’ ultrasound images. The interclass

correlation coefficients (ICC) were used to evaluate the consistency
Frontiers in Oncology 04
of extracted feature between observers. ICC values are categorized

as follows: <0.40 was considered “poor,” 0.40 to 0.59 was “fair,” 0.60

to 0.74 was “good,” and 0.74 to 1.00 was “excellent”.
2.5 Radiomics features extraction

We used the PyRadiomics open-source tool (available at:

https://www.example.com/en/latest/index.html) to extract

radiomics features (RFs) from the images. A full seven categories

of features were extracted: (1) first-order; (2) gray-level co-

occurrence matrix (GLCM); (3) gray-level dependence matrix

(GLDM); (4) gray-level run-length matrix (GLRLM); (5) gray-

level size-zone matrix (GLSZM); (6) neighboring gray-tone

difference matrix (NGTDM); and (7) SHAPE features. These RFs

were obtained from the pre-treatment ultrasound images

before NAC.
2.6 Screening and validation of ML models

Before feature selection, the threshold value of ICC was greater

than 0.75, which could ensure the repeatability and stability of the

features. All ultrasound RFs and clinical features (CFs) extracted

from the images were normalized using the Z-score method,

followed by Pearson correlation analysis. The least absolute

shrinkage selection operator (LASSO) was then applied to further

filtrate the RFs and CFs, selecting those with the highest correlation

based on the least squares error criterion. Univariate and

multivariate logistic regression analysis were performed to

identify the CFs that were independently associated with pCR.

Subsequently, we compared 10 ML models based on RFs: support

vector machine (SVM), logistic regression (LR), random forest

(RF), extreme random trees (ET), naïve Bayes (NB), k-nearest

neighbor (KNN), multilayer perceptron (MLP), gradient boosting

ML (GBM), light GBM (LGBM), and AB. The diagnostic

performance of these models was optimized using a mesh finding

method to avoid overfitting.

The predictive performance of 10 ML models was

comprehensively evaluated using AUC, accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV). Rad scores were calculated under each

algorithm. We compared the radiomics model (R-model), the

clinical feature model (C-model), and the combined Rad score

and clinical feature model (C-R-model) using DeLong’s test. We use

calibration curves to evaluate the calibration of predictive models,

and decision curve analysis (DCA) to compute and contrast the net

benefits of the training and validation cohorts under different

threshold probabilities in order to evaluate the clinical value of

three models.
2.7 Visualizing ML models

SHAP quantified the importance of each feature by calculating

its contribution value, indicating whether its impact was positive or
FIGURE 2

Flowchart of patient enrollment.
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TABLE 1 Baseline characteristics of the participants.

Characteristics Training Cohort (N=185) Validation Cohort (N=46) P-value

Age, Mean (SD), years 54.49 (± 9.539) 56.13 (± 9.570) 0.300

Menopause yes 104 (56.2%) 23 (50.0%) 0.450

no 81 (43.8%) 23 (50.0%)

Breastfeeding history yes 174 (94.1%) 44 (95.7%) 0.304

no 11 (5.9%) 2 (4.4%)

Family history of breast cancer yes 9 (4.8%) 0 0.128

no 176 (95.2%) 46 (100%)

Basic diseases yes 35 (18.9%) 5 (10.9) 0.198

no 150 (81.1%) 41 (89.11%)

Chemotherapy AC-T 76 (41.1%) 24 (52.2%) 0.490

TCbHP 42 (22.6%) 8 (17.4%)

AT 19 (10.2%) 2 (4.3%)

TP 14 (7.5%) 4 (8.7%)

AC 11 (5.9%) 3 (6.5%)

TC 23 (12.4%) 5 (10.9%)

Pathological type Invasive ductal carcinoma 157 (84.9%) 37 (80.4%) 0.444

Invasive lobular carcinoma 8 (4.3%) 2 (4.3%)

Others 20 (10.8%) 7 (15.3%)

Clinical T Stage T1-T2 120 (64.9%) 33 (71.7%) 0.579

T3-T4 65 (35.1%) 13 (28.3%)

Clinical N Stage N0-N1 136 (75.1%) 35 (76.1%) 1.000

N2-N3 49 (24.9%) 11 (23.9%)

Molecular subtype Luminal A-like 16 (8.6%) 5 (10.9%) 0.673

Luminal B-like 83 (44.9%) 19 (41.3%)

HER2-enriched 66 (35.7%) 15 (32.6%)

Triple negative 20 (10.8%) 7 (15.2%)

ER status negative 87 (47.0%) 22 (47.8%) 0.718

positive 98 (53.0%) 24 (52.2%)

PR status negative 123 (66.5%) 31 (67.4%) 0.908

positive 62 (33.5%) 15 (32.6%)

HER2 status negative 86 (46.5%) 23 (50.0%) 0.871

positive 99 (53.5%) 23 (50.0%)

ki67 status <14% 40 (21.6%) 9 (19.6%) 0.809

≥14% 145 (78.4%) 37 (80.4%)

Location Left 98 (52.9%) 26 (56.5%) 0.550

Right 87 (47.1%) 20 (43.5%)

CEA, Mean (SD), ng/ml 9.08 (± 2.864) 137.96 (± 133.368) 0.341

CA125, Mean (SD), U/ml 21.19 (± 1.868) 24.08 (± 4.290) 0.505

CA153, Mean (SD), U/ml 21.66 (± 1.355) 29.54 (± 5.649) 0.183

(Continued)
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negative (20). This approach facilitated the analysis of the

significance of each feature, thereby enhancing the clinical

application of ML models.
2.8 Statistical analysis

Python (version 3.7), R (version 4.2.0), and IBM SPSS Statistics

for Windows (version 25.0; IBM Corp., Armonk, NY, USA) were

used to conduct statistical analyses. Normally distributed

continuous variables were compared using the independent

sample t-test, while categorical variables were assessed using the

chi-square test. The performance of each model was evaluated using

Z-scores, Pearson correlation analysis, LASSO screening of clinical

features and RFs, and ROC curves. AUC was calculated.
3 Results

3.1 Clinicopathologic characteristics
in participants

The 231 participants participated in this study. The flowchart of

patient enrollment is shown in Figure 1. There were no statistically

significant differences between the training and validation groups in

terms of age, menopausal status, history of breastfeeding, family

history of cancer, underlying disease, tumor pathology type, tumor

molecular subtypes, TNM stage (T stage [1–4], N stage [0–3]), ER

status, PR status, HER-2 status, Ki-67 expression, tumor location,

CEA levels, CA153, CA125, CA50 levels, pCR, or non-

pCR (Table 1).
3.2 Screening of RFs and R-
model construction

From the RF extraction, a total of 1,562 RFs were screened,

including FIRSTORDER (16.8%), GLCM (22.4%), GLDM (13.1%),

GLRLM (15%), GLSZM (15%), NGTDM (4.7%), and SHAPE

(13.1%). Before selection, 1,064 features had an ICC of >0.75,

ensuring their reproducibility. After applying Z-score

normalization, Pearson correlation analysis, and LASSO

regression analysis (Figures 3A, B), the results indicated that the

R-model could be obtained with l = 0.0168. Based on the screening

of 12 RFs (Figure 3E), the Rad score formula was:
Frontiers in Oncology 06
the Rad score = 0.4242424242424243

+ 0.004568 * lbp_3D_m2_firstorder_minimum

+ 0.014004 * lbp_3D_m2_gldm_DependenceVariance

+ 0.012488 * lbp_3D_m2_glrlm_RunPercentage

– 0.043531 * original_shape_Elongation

– 0.045768 * squareroot_glcm_Correlation

+ 0.013394 * wavelet_HHL_firstorder_Kurtosis

– 0.022782 * wavelet_HLH_firstorder_maximum

+ 0.078863 * wavelet_HLH_gldm_SmallDependence

HighGrayLevelEmphasis

– 0.049518 * wavelet_LHH_glcm_Imc1

+0.004476 * wavelet_LLH_gldm_Smal lDependence

LowGrayLevelEmphasis

– 0.032368 * wavelet_LLL_glcm_ClusterShade

– 0.009410 * wavelet_LLL_glcm_Correlation

After comparing the ROC curves of 10 ML models of LR, NB,

SVM, KNN, RF, ET, LGBM, GBM, AB, and MLP, the GBM model

demonstrated the optimal predictive performance with an AUC of

0.851 and accuracy of 0.750 (Figure 4). Its sensitivity, specificity,

PPV, and NPV were also superior to those of other algorithms in

the training and validation cohorts (Tables 2, 3).
3.3 Screening of clinical features and
C-model construction

Following Z-score normalization, Pearson correlation analysis,

LASSO regression analysis (Figures 3C, D), Four features were

filtered out (Figure 3F). Univariate and multivariate logistic

regression analysis were performed to identify the CFs that were

independently associated with pCR, three CFs were selected: HER-2

status, ER status, PR status (Table 4). The C-model was constructed

with these features, and the optimal l value was found to be 0.0043.

We used the GBM algorithm for further analysis and developed the

C-model based on the three selected clinical features. The results

indicated that the C-model had an AUC of 0.819and an accuracy of

0.739 (Table 5).
3.4 Validation and clinical valuation of
C-R-model

Using the GBM algorithm (Figures 5A, B), we combined the

three selected CFs with the Rad score to construct a C-R-model,

which was then compared with the C-model and R-model. The C-R-
TABLE 1 Continued

Characteristics Training Cohort (N=185) Validation Cohort (N=46) P-value

CA50, Mean (SD), U/ml 10.69 (± 1.637) 8.85 (± 1.134) 0.580

Miller-Payne pCR 78 (42.2%) 20 (43.4%) 0.982

non-pCR 107 (57.8%) 26 (56.6%)
SD, standard deviation; AC-T, adriamycin with cyclophosphamide plus docetaxel; TCbHP, docetaxel with carboplatin and trastuzumab and pertuzumab; AT, adriamycin with docetaxel; TP,
docetaxel with pertuzumab; AC, adriamycin with cyclophosphamide; TC, docetaxel with cyclophosphamide; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth
factor receptor-2; CEA, carcinoembryonic antigen; CA153, carbohydrate antigen 153; CA125,carbohydrate antigen 125; CA50, carbohydrate antigen 50; pCR, pathological complete response.
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model demonstrated the optimal predictive performance, with an

AUC of 0.939 and accuracy of 0.870, outperforming both the C-

model and R-model in terms of diagnostic accuracy in both the

training and validation cohorts. What’s more, the C-R-model

resulted in superior predictive performance comparing with

exist ing pCR prediction models . A visual nomogram

(Supplementary Figure 1A) was developed using Rad-score

combined with PR status, ER status, HER-2 status. The nomogram

yielded an AUC of 0.926 in the training set (Supplementary

Figure 1B). In the validation set (Supplementary Figure 1C), the

AUC was 0.832. We utilized DCA to compare the clinical benefits of

the C-R model with those of the C-model and R-model. Overall, the

C-R-model, based on the GBM algorithm, demonstrated superior

clinical benefits (Figures 5C, D). Additionally, the calibration curves

showed that the C-R-model outperformed both the C-model and R-

model in calibration performance, as evidenced in the training and
Frontiers in Oncology 07
validation cohorts (Figures 5E, F). We used DeLong’s test

(Figures 5G, H) to statistically compare the three models. The C-R-

model showed a statistically significant improvement over the C-

model and the R-model, while no significant difference was found

between the C-model and R-model.
3.5 SHAP analysis

This study used SHAP to visualize the results of the GBMmodel

(C-R-model and R-model). The SHAP(R-model) bar chart

(Figure 6A) illustrates the importance of the 12 most

significant RFs, where the y-axis represents the features sorted

according to the importance rankings from top to bottom, the

original_shape_Elongation had the greatest impact. Meanwhile, the

SHAP(C-R-model) bar chart (Figure 6C) illustrates the importance
FIGURE 3

Radiomics feature and clinical feature extraction. (A, B) Lasso analysis of radiomics features. (E) Radiomics features’s coefficients. (C, D) Lasso
analysis of clinical features. (F) Clinical features’s coefficients.
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of the four most significant features: Rad score, PR status, ER status,

HER-2 status. The Rad score had the greatest impact on predicting

pCR after NAC in BC, followed by PR status, ER status, HER-2

status. The SHAP(R-model and C-R-model) scatter plot

(Figures 6B, D) visualizes the positive or negative impact of each

feature on the predicted probability, with red indicating a positive

impact and blue indicating a negative impact. According to
Frontiers in Oncology 08
Figure 6D, patients with a high Rad score, PR-negative status,

ER-negative status, and HER-2 positive status were more possibly to

reach pCR. Further visualizations of the model using SHAP

waterfall chart are shown in Figure 7. Although the waterfall

charts of SHAP(C-R-model) and SHAP(R-model) both accurately

predicted the sample, SHAP(C-R-model) (F1 0.81) was more stable

than SHAP(R-model) (F1 0.58).
FIGURE 4

ROC of ML algorithms. (A-J) ROC under 10 ML algorithms in the Training and Validation Cohort. (A) Logistic regression (LR). (B) Naïve Bayes (NB).
(C) Support vector machine (SVM). (D) K-nearest neighbor (KNN). (E) Random forest (RF). (F) extra trees (ET). (G) Light GBM (LGBM). (H) Gradient
boosting ML (GBM). (I) Adaptive boost (AB). (J) Multilayer perceptron (MLP).
frontiersin.org
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4 Discussion

This study retrospectively analyzed the ultrasound imaging,

histology, and clinical characteristics of 231 participants with BC,

evaluating 10 common ML algorithms. We found that the R-model
Frontiers in Oncology 09
under the GBM algorithm exhibited the best overall diagnostic

performance. Based on the GBM algorithm, we established the C-

model and C-R-model to predict the pCR in patients with BC

undergoing NAC before treatment. Compared to the R-model and

C-model, the C-R-model (AUC, 0.939; accuracy, 0.870) demonstrated
TABLE 2 Screening evaluation metrics for machine learning algorithms using 10-fold cross-validation in the training cohort.

LR NB SVM KNN RF ET LGBM GBM AB MLP

AUC 0.671 0.669 0.722 0.778 0.780 0.739 0.776 0.851 0.774 0.685

Accuracy 0.641 0.647 0.663 0.630 0.701 0.696 0.707 0.750 0.674 0.658

Sensitivity 0.603 0.628 0.885 0.537 0.692 0.679 0.782 0.821 0.769 0.628

Specificity 0.670 0.660 0.500 0.593 0.708 0.708 0.651 0.698 0.604 0.679

PPV 0.573 0.576 0.566 0.778 0.635 0.635 0.622 0.667 0.588 0.590

NPV 0.696 0.707 0.855 0.614 0.758 0.758 0.802 0.841 0.780 0.713
fr
TABLE 3 Screening evaluation metrics for machine learning algorithms using 10-fold cross-validation in the validation cohort.

LR NB SVM KNN RF ET LGBM GBM AB MLP

AUC 0.674 0.659 0.693 0.647 0.630 0.606 0.598 0.698 0.447 0.694

Accuracy 0.617 0.617 0.723 0.574 0.574 0.596 0.617 0.681 0.617 0.660

Sensitivity 0.750 0.800 0.750 0.550 0.800 0.750 0.600 0.900 0.650 0.800

Specificity 0.519 0.481 0.704 0.593 0.407 0.481 0.630 0.519 0.852 0.556

PPV 0.536 0.533 0.652 0.500 0.500 0.517 0.545 0.581 0.765 0.571

NPV 0.737 0.765 0.792 0.640 0.733 0.722 0.680 0.875 0.767 0.789
TABLE 5 Performance comparison of C Model, R Model, C-R Model.

Training Cohort Validation Cohort

C-Model R-Model C-R-Model C-Model R-Model C-R-Model

AUC 0.819 0.851 0.939 0.732 0.698 0.863

Accuracy 0.739 0.750 0.870 0.638 0.681 0.831

Sensitivity 0.628 0.821 0.846 0.900 0.900 0.750

Specificity 0.821 0.698 0.887 0.444 0.519 0.767

Precision 0.721 0.667 0.846 0.545 0.581 0.695

Recall 0.628 0.821 0.846 0.900 0.900 0.850

F1-score 0.671 0.736 0.846 0.679 0.706 0.782
TABLE 4 Univariate and multivariate analysis of clinical features according to the pCR.

Clinical features

Univariate Multivariate

OR (95% CI) P-value OR (95% CI) P-value

Clinical N Stage 0.463 (0.228-0.94) 0.033

ER status 0.296 (0.161-0.545) 0.001 1.332 (0.382-4.64) 0.0113

PR status 3.29 (1.666-6.496) 0.001 2.173 (1.006-4.694) 0.048

HER2 status 4.201 (2.23-7.912) 0.001 3.228 (1.532-6.799) 0.002
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superior predictive accuracy and clinical utility for assessing pCR. Key

features for predicting pCR included the Rad score, PR status, ER

status, and HER-2 status. SHAP analysis provided a clear explanation

for the prediction results of theGBMmodel, revealing thatparticipants

with a high Rad score, PR-negative status, ER-negative status, HER-2-

positive status are more likely to achieve pCR.
Frontiers in Oncology 10
4.1 Prediction performance of CFs and RFs

Over the past decade, individualized treatment for patients with BC

undergoing NAC has been a major research focus, with up to 60% of

participants achieving pCR (21). Previous studies have identified

hormone receptor and HER-2 status as crucial clinical predictors of
FIGURE 5

Performance comparison of C-Model, R-Model, C-R-Model in GBM algorithms. (A, B) ROC in the training and validation cohort. (C, D) DCA in the
training and validation cohort. (E, F) Calibration curve in the training and validation cohort. (G) Cohort train Delong and (H) Cohort validation Delong.
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treatment response (22). The biopsy identifies important factors such

as hormone receptor (ER and PR) and HER-2, which contributed

insights into treatment options and prognosis (23). Additionally, a

single-center study (24) employing vacuum assisted biopsy (VAB) after

NAC found no ipsilateral recurrences during a 26.4-month follow-up

in patients who met specific criteria (CT1-2, clinical N stage [0–1],

triple negative or HER-2 positive, with residual lesions on imaging

following NAC, and tumors ≤2 cm). Park et al. (25) revealed that ER-

negative status should be considered a prognostic factor of tailored

NAC based on the status of molecular subtypes in breast cancer. Yao

et al. (26) found The RF-based combined peritumoral intratumoral

ultrasound radiomics signatures (P-IURS) model of the HER-2-

positive status subtype improved the efficacy to a maximum AUC.

Wang et al. uncovered (27) ER-negative patients had a significantly

higher pCR rate: 36% (23/64) ER-negative patients achieving pCR

while only 2% (3/125) for ER-positive patients, as with ER, PR-negative

patients also had a better chance for reaching a pCR (34%, 25/74) than

the positive ones. Our findings that patients with PR-negative, ER-
Frontiers in Oncology 11
negative, and HER-2 positive status were more likely to achieve pCR

align with these results. Liu et al. (28) achieved an AUC of 0.779 using

ROC analysis of clinical features through univariate and multivariate

analysis. Whereas, our R-model, based on the GBM algorithm, yielded

an AUC of 0.807, indicating superior predictive performance, likely due

to the advantages of ML. A study (29) suggests that radiomics models,

which capture tumor size and heterogeneity, often outperform clinical

models. Ultrasonography examination, with its wide range of

availability, lower expenditure, live properties, noninvasive nature,

and outstanding resolution of soft tissue, provides a significant

advantage in capturing detailed structural information (30). While

various studies have explored radiomics models for predicting tumor

response to NAC, performance and quality have varied (31). Features

extracted at multiple points, with AUC ranging from 0.86 (32) to 0.94

(33), often require multiple patient tests (before treatment, early

treatment [after completing two (28) or four NAC cycles] (34), and

after treatment), which can be burdensome for patients and clinicians.

Ourmodel, which uses only pre-treatment ultrasound RFs, achieved an
FIGURE 6

SHAP. (A, C) SHAP(R-Model and C-R-Model) bars show the weights of the most important features of the model. (B, D) SHAP(R-Model and C-R-
Model) scatter plot shows the positive or negative impact of each characteristic on the predicted probability in red and blue.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1485681
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2024.1485681
AUC of 0.851, outperforming the C-model. The optimal features in our

radiomics model include GLDM, first-order, GLRLM, GLCM, and

SHAP, with GLCM features being the most prevalent. Research shows

that GLCM features reflect tumor image changes and inhomogeneity

by calculating the relative distance between specific pixels and the

correlation coefficient of (35–38) grayscale values in various directions.

This may contribute to the superior performance of our

prediction model.
Frontiers in Oncology 12
4.2 GBM model and SHAP interpretation of
clinical features combined with
ultrasound RFs

We developed a GBM model that integrates Rad score with

clinical characteristics, and the results indicate that the combined

C-R-model outperforms any single model in predicting pCR

(Figures 5G, H). This model demonstrates higher accuracy,
FIGURE 7

Individual visualization of the mode through SHAP. (A-C) The data comes from a female patient, 53 years old. (A) B-US image of lesion. For this
patient, the predicted outcome of SHAP(R-Model) waterfall plot (B) was -3.342 (baseline: -0.522) and he predicted outcome of SHAP(C-R-Model)
waterfall plot (C) was -2.765 (baseline: -0.368), with a predicted outcome of non pCR. The final pathological result was Miller Payne grade 2, which
did not achieve complete pathological remission. (D-F) The data comes from a female patient, 67 years old. (D) B-US image of lesion. For this
patient, the predicted outcome of SHAP(R-Model) waterfall plot (E) was 3.355 (baseline: -0.522) and he predicted outcome of SHAP(C-R-Model)
waterfall plot (F) was 4.169 (baseline: -0.368), with a predicted pCR. The final pathological result was Miller Payne grade 5, achieving complete
pathological remission.
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underscoring its applicability and reliability. Previous research has

also highlighted the strong predictive capabilities of the GBMmodel

(39). To further elucidate the GBM model, we utilized SHAP, a

powerful tool for interpreting ML models. SHAP offers a practical

means to visualize the contributions of individual features, thereby

enhancing the clinical applicability of the model and bolstering the

confidence of clinical doctors in using predictive models (40).

SHAP waterfall plot (Figures 7B, C, E, F) accurately predicts the

pCR for both samples and visualizes the prediction process. Its

predictive results were consistent with the pathologic findings. By

detailing the weights and impacts of the four key predictive features

(Rad score, PR status, ER status, HER-2 status) in our combined

model, SHAP addresses the “black box” issue that often complicates

the use of complicated models. This markedly improves the clinical

valuation of our model and increases the trust of clinical doctors in

predictive models.
4.3 Limitations

Our research has several limitations. Firstly, being a

retrospective single-center study, there is a potential selection bias

that may influence our results. For instance, Asian women often

have denser breast tissue (41), which might affect the

generalizability of the model. Secondly, variations in ultrasound

equipment and examination parameters, due to individual

differences among patients, may impact the quality and

uniformity of the images. Thirdly, our study covers the period

from 2014 to 2023, during which the standards for NAC and patient

care evolved. Although our analysis focuses on ultrasound images

obtained before treatment, variations in NAC responses over time

might still affect the performance of our model. Lastly, as a single-

center retrospective study, our findings need to be validated through

multicenter research to confirm the reliability and applicability of

the GBM model.
5 Conclusion

In summary, we established and compared three GBM models

to predict the pCR of BC undergoing NAC before treatment. These

models included clinical characteristics, ultrasound RFs, and a

combination of clinical characteristics and ultrasound RFs. Our

findings indicate that the C-R-model, which integrates both clinical

characteristics and ultrasound RFs, has the best predictive

performance for pCR. SHAP analysis provided a clear

explanation for the prediction results of the GBM model,

revealing that participants with a high Rad score, PR-negative

status, ER-negative status, and HER-2-positive status are more

likely to achieve pCR. This model offers rewarding prognostic

information on the effectiveness of NAC in treating BC and

provides a useful reference for formulating individualized

therapeutic strategies.
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