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Background: Gastric cancer (GC) is a malignant tumor associated with significant

rates of morbidity and mortality. Hence, developing efficient predictive models and

directing clinical interventions in GC is crucial. Lactylation of proteins is detected in

gastric cancer tumors and is linked to the advancement of gastric cancer.

Methods: The The Cancer Genome Atlas (TCGA) was utilized to analyze the gene

expression levels associated with lactylation. A genetic pattern linked to

lactylation was created using Univariate Cox regression and least absolute

shrinkage and selection operator (LASSO) regression. The predictive ability of

the model was evaluated and confirmed in the Gene Expression Omnibus (GEO)

cohort, where patients were divided into two risk groups based on their scores.

The study examined the relationship between gene expression and the presence

of immune cells in the context of immunotherapy treatment. In vitro cytotoxicity

assays, ELISA and PD-1 and PD-L1interaction assays were used to assess the

expression of PD-L1 while knocking down SLC16A7.

Results: 29 predictive lactylation-related genes with differential expression were

discovered. A signature consisting of three genes was developed and confirmed.

Patients who had higher risk scores experienced worse clinical results. The group

with lower risk showed increased Tumor Immune Dysfunction and Exclusion (TIDE)

score and greater responsiveness to immunotherapy. The tumor tissues secrete

more lactate acid than normal tissues and express more PD-L1 than normal tissues,

that is, lactate acid promotes the immune evasion of tumor cells. In GC, the

lactylation-related signature showed strong predictive accuracy. Utilizing both

anti-lactylation and anti-PD-L1 may prove to be an effective approach for treating

GC in clinical settings. We further proved that one of the lactate metabolism related

genes, SCL16A7 could promote the expression of PD-L1 in GC cells.

Conclusion: The risk model not only provides a basis for better prognosis in GC

patients, but also is a potential prognostic indicator to distinguish the molecular

and immune characteristics, and the response from Immune checkpoint

inhibitors (ICI) therapy and chemotherapy in GC.
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1 Introduction

Gastric cancer (GC), a prevalent malignant tumor globally,

poses a significant threat to human health (1). GC arises from a

complex interplay of genetic predisposition, dietary habits,

Helicobacter pylori infection, and environmental factors,

progressing through different stages and involving a variety of

influences. Most cases of early-stage GC are often diagnosed late

because of its unusual symptoms. Patients with GC usually have a

dismal prognosis with a significant chance of distant metastasis and

local recurrence (2–4). Advancements in GC research have revealed

that cellular metabolic inefficiency plays a crucial role in the

progression of GC, indicating that GC is not exclusively

attributed to particular gene abnormalities (5–8). Growing

evidence indicates that tumor metabolism affects immune cells by

releasing metabolites such as lactate and arginine, which are

essential for the development and progression of cancer. This

metabolic competition between immune cells and tumors leads to

nutrient deprivation (9).

Tumors arise and progress due to a variety of factors, leading to

diverse gene expression, cell morphology, and metabolic features.

This heterogeneity can be attributed to factors such as gene

mutations, the tumor microenvironment (TME), and changes in

homeostasis (10). Though the tumor microenvironment usually

presents many different characteristics than normal tissues, but the

tumor cell growth also need adenosine triphosphate (ATP) as

energy support. According to the Warburg effect, even if there is

sufficient oxygen supply, tumor cells still choose glycolysis to obtain

energy. Excess lactic acid further secreted outside the cell makes the

tumor microenvironment become conducive to the growth of

tumors, affecting tumor cell proliferation, immune escape and
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other behaviors. New studies indicate that lactic acid is essential

in the tumor microenvironment and is closely associated with

tumor cells’ capacity to avoid detection by the immune system.

Its key roles include controlling immune cell metabolism,

suppressing the activation and growth of various immune cells,

and serving as a signaling molecule to regulate the immune

response of tumor cells, affecting immune surveillance and

evasion mechanisms (11–13).

By examining RNA-seq data and clinical information from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) database, we identified genes linked to lactatylation that

exhibited varying expression in gastric cancer tissues compared to

normal tissues. This information enabled us to create a predictive

marker for genes associated with lactatylation. Following this, a

study was researched to explore the relationship between

lactatylation-associated genes and immune-infiltrating cells within

the tumor microenvironment, along with the effects of

immunotherapy. Furthermore, experiments were conducted to

confirm the findings obtained through bioinformatics analysis.

The study’s flowchart is depicted in Figure 1.
2 Methods

2.1 Data acquisition and processing

Access to the Molecular Signatures database v7.4 (MSigDB) is

available through the use of the search terms ‘lactate’ (14) at https://

www.gsea-msigdb.org/gsea/msigdb. Eight pathways involving

lactate were identified: GOBP LACTATE TRANSMEMBRANE

TRANSPORT, GOMF LACTATE DEHYDROGENASE
FIGURE 1

The workflow of study.
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ACTIVITY, HP ABNORMAL BRAIN LACTATE LEVEL BY MRS,

HP ABNORMAL LACTATE DEHYDROGENASE LEVEL, HP

ELEVATED LACTATE PYRUVATE RATIO, HP INCREASED

C I R CU L A T I NG L A C T A T E D EH YD ROG ENA S E

CONCENTRATION, HP INCREASED CSF LACTATE, and HP

INCREASED SERUM LACTATE. After eliminating any redundant

genes, a total of 322 genes related to lactatylation were combined.

The “limma” package in R was used to examine the mRNA

expression matrix and genes linked to lactatylation, then the

expression matrix was extracted specifically for lactatylation-

related genes. Among these, 29 genes were recognized as genes

associated with lactylation that showed varying expression levels

between tumor samples and neighboring tissues, exhibiting a fold

change (FC) exceeding 1.5 and a false discovery rate (FDR)

below 0.05.
2.2 Identification of lactylation−related
genes in gastric cancer

We used “STRING” and the ‘corrplot’ package to compute

Pearson correlations at the transcriptional level and explore the co-

expression patterns of important genes.
2.3 Construction and validation of
prognostic risk models

P<0.05 was chosen as the cutoff for prognostic gene screening.

The risk model was then further compressed using a Lasso

regression analysis to minimize the number of genes. By building

a penalty function to compress the number of coefficients and set

some coefficients to zero, the Lasso technique is a compressed

estimation that results in a more refined model. As a result, it still

has the benefit of subset contraction and permits biased estimation

for data with complicated collinearity. The Lasso model is more

effective at resolving the multicollinearity issue in regression

analysis and may realize the choice of variables when estimating

parameters. The risk score was calculated as follows: Risk score =

∑multivariate Cox regression coefficient x gene expression value.

Patients were divided into high-risk and low-risk categories based

on the median risk score. The TCGA and GEO datasets were

designated as the training and testing sets, respectively, for the

prediction of overall survival using Kaplan-Meier survival analysis.

Furthermore, genes linked to lactylation were subjected to survival

analysis using the Kaplan-Meier technique. Next, the risk score and

clinical characteristics were combined for both univariate and

multivariate analyses. Age, gender, the TNM stage, grade, and the

risk score were utilized as covariates. ROC analysis was utilized to

assess the precision of the risk score signature in predicting survival

rates at 1, 3, and 5 years. Specificity and sensitivity were evaluated

by calculating the areas under the curves (AUC) with the ‘survival

ROC’ R package. After being found to be lactylation-related genes,

the genes were applied to the prediction of GC prognosis.
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2.4 Construction of nomogram and clinical
correlation analysis

TCGA cohort was considered as training group and GEO

cohort was deemed as test group, then we combined them

together to further analyze. Age, gender, grade, stage, survival

time, and survival status were utilized alongside the risk score

from TCGA-STAD for univariate and multivariate Cox

proportional hazard regression analyses, investigating the

influence of lactylation-related gene signature on overall survival

(15). A nomogram was created to predict the 1-year, 3-year, and 5-

year overall survival rates in TCGA-STAD using the calibration

functions provided by the ‘rms’ software. The nomogram scoring

method assigns a numeric score to each variable, and the total score

for each instance is determined by adding up the scores of all

variables. The accuracy of the 1-, 3-, and 5-year models was

evaluated using the Kaplan-Meier method, and calibration curves

were created to compare the predicted and actual OS rate.The

dependability of the model was evaluated through decision curve

analysis (DCA) (16). Afterward, a study was done to analyze how

risk score is related to clinical factors, and then a heatmap and circle

graph were generated.
2.5 Analysis of tumor immune signatures
and function enrichment for lactylation risk

The research included examining connections by using the

ssGSEA method to explore the relationship between the

lactylation score and immune cells.GSEA website (https://

www.gsea-msigdb.org) provided the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway files. The enhanced functional

pathways in gastric cancer subtypes were displayed as a heatmap

utilizing the ‘GSEABase’ and ‘GSVA’ packages in R. Furthermore,

the mutation information was evaluated and summarized with the

‘maftools’ package in R.
2.6 Analysis of immunotherapy for
immune subtypes

The study focused on Tumor Mutational Burden (TMB), which

refers to the number of mutations in the coding sequence area of the

longest transcript sequence, normalized per million bases. TMB

encompasses point mutations and indels. Higher TMB can lead to

the production of more neoantigens, increasing the likelihood of T

cell recognition and enhancing the effectiveness of immunotherapy.

The use of immune checkpoint inhibitors (ICIs) in the treatment of

microsatellite instability (MSI) has been associated with

improvements in results. MSI is caused by changes in the length

of microsatellite (MS) sequences, which result from mutations

during DNA replication. This condition is caused by defects in

mismatch repair (MMR). The researchers utilized the TIDE

(Tumor Immune Dysfunction and Exclusion) analysis available
frontiersin.org
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on the TIDE online database to predict the efficacy of immune

checkpoint inhibitors (ICIs) in treatment. Through this analysis,

researchers obtained TIDE prediction scores for each sample, which

indicated the likelihood of immune evasion and the potential

response to ICIs treatment. Additionally, the study assessed

TIDE, MSI, T-cell dysfunction, and exclusion scores for each

TCGA-STAD sample using the TIDE online tool. This evaluation

aimed to assess the potential benefits of immunotherapy across

various lactylation score groups.
2.7 Cell culture and chemicals

SNU-719 and AGS gastric cancer cell lines were cultured in

DMEM medium (KeyGEN, China) supplemented with 10% fetal

bovine serum (BI, Israel). The incubator was maintained at a

temperature of 37 degrees Celsius and a carbon dioxide

concentration of 5%.To create a 5 mM stock solution,

syrosingopine, a suppressor of MCTs, was kept at -20°C in a

DMSO solution. Following this, the cells were treated with

varying levels of syrosingopine for a duration of 48 hours. The

sodium L-lactate was purchased from Sigma-Aldrich.
2.8 Real-time polymerase chain reaction

RNA was extracted from 10 samples of both healthy and gastric

cancer tissues using TRIzol reagent (Invitrogen, Thermo Fisher

Scientific, Inc.) at Seventh Hospital of Sun Yat-Sen University from

2022 to 2023. The reverse transcription reaction utilized the

PrimeScript ™ RT reagent kit by TaKaRa. GAPDH was used to

normalize the mRNA levels of CD274, COL4A1, SLC16A7, and

IRAK1.The primer sequences for the 3 genes, CD274 and GAPDH

are listed in Supplementary Table S3. Normalized CT values were

used to calculate fold variances within each group.
2.9 Westren blot

Proteins were extracted from 5 paired normal and gastric cancer

samples collected between 2022 and 2023 at Seventh Hospital of Sun

Yat-Sen University in Guangdong, China by lysis buffer from

KeyGEN. Lysates were then separated by Sodium Dodecyl Sulfate-

Polyacrylamide Gel Electrophoresis (SDS-PAGE) and transferred

onto a polyvinylidene fluoride (PVDF) membrane. After blocking,

the membrane was incubated with a primary antibody. Following two

rinses with tris-buffered saline (TBS), the membrane was treated with

a horseradish peroxidase-conjugated secondary antibody, washed,

and visualized using an enhanced chemiluminescence (ECL)

detection system and a LAS-4000 (GE Healthcare). The relative

concentrations were measured using Bradford from KeyGEN.

Equal amounts of protein with matching concentration and
Frontiers in Oncology 04
volume were added. PTM Bio supplied the Anti-l-Lactyl Lysine

Rabbit mAb, while Fude Biology provided the Antibody targeting

b-actin, PD-L1, and Goat anti-Mouse/Rabbit IgG.
2.10 Immunohistochemistry

To detect the expression of SLC16A7, IHC was performed. The

process included removing paraffin and hydrating tissue sections

embedded in paraffin by using xylene and various concentrations of

ethanol. To recover the antigen, the sections were boiled in a citrate

buffer solution with a pH of 6.0 for 10 minutes. To block

endogenous peroxidase activity, the slides were treated with 3%

hydrogen peroxide for 10 minutes. Afterward, the sections were

treated with 5% goat serum and blocked for 30 minutes at room

temperature. In this research, the main antibody employed was the

Anti-SLC16A7 Polyclonal Antibody (K008867P) from Solarbio,

which was diluted at a ratio of 1:100. The sections were then left

to incubate with the antibody overnight at a temperature of 4°C.

The following day, the segments were rinsed with PBS and then

treated with the suitable secondary antibody, goat anti-rabbit IgG

H-conjugated.
2.11 Extraction and cultivation of T cells

Peripheral blood mononuclear cells (PBMCs) were isolated

from whole blood buffy coats using Ficoll 400 gradient

centrifugation. The extracted PBMCs were stimulated for 48

hours in 12-well plates (approximately 5×10^6 cells per well) pre-

coated with T cell activators (anti-CD3 and anti-CD28 from

STEMCELL Technologies, 10971) in a serum-free medium

specifically designed for lymphocytes (SuperCulture, L500),

supplemented with 0.5‰ IL-2. The stimulation process lasted 5-7

days, after which T cells were obtained.
2.12 PD- L1 and PD-1 interaction assays

GC cells were incubated with recombinant human PD-1 Fc

protein (R&D Systems) for 1 hour. Subsequently, anti-human Alexa

Fluor 488 dye-conjugated secondary antibodies (Life Technologies)

were applied for 1 hour. The cells were then examined using a

confocal laser-scanning microscope (Carl Zeiss).
2.13 In vitro cytotoxicity assay

SNU-719 and AGS cells were cultured in 96-well plates until

they reached approximately 70% confluency. To investigate the

cytotoxic effect of T cells on tumor cells, GFP-expressing tumor cells

were co-cultured with activated primary human T cells (derived
frontiersin.org

https://doi.org/10.3389/fonc.2024.1485580
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2024.1485580
from PBMCs activated by anti-CD3/CD28 and IL-2) for 24 hours.

IncuCyte™ Cytotox Reagents were added to the culture (tumor

cells/T cells at a 5:1 ratio) to assess cytotoxicity. Cytotox Red

Reagent was introduced at the 24-hour mark to distinguish dead

cells. Importantly, these reagents do not interfere with the growth of

normal cells. When cells undergo apoptosis or necrosis, the loss of

plasma membrane integrity allows the reagent to bind to DNA,

resulting in enhanced red fluorescence. Cells were then analyzed

using a confocal laser scanning microscope, where cells displaying

red fluorescence were classified as dead.

In a parallel experiment, tumor cells and T cells were co-

cultured in six-well plates under the same conditions for 24

hours. After co-culture, T cells were carefully washed away using

PBS, and the remaining adherent tumor cells were fixed with 4%

paraformaldehyde for 15 minutes. Following fixation, the tumor

cells were stained with crystal violet for 30 minutes to visualize and

quantify the remaining viable cells.
2.14 Enzyme-linked immunosorbent assay

The supernatant from the co-cultured cells was collected and

analyzed to measure the levels of interferon-gamma (IFN-g), tumor

necrosis factor alpha (TNF-a), and granzyme B (GmzB) using

ELISA kits (MEIMIAN). The supernatant was first centrifuged at

4000 rpm for 20 minutes at 4°C to remove any debris, and the

cleared supernatants were then stored at -80°C until they were ready

for the ELISA assay. The ELISA kits were used following the

manufacturer’s instructions to ensure accurate measurements of

the cytokine and enzyme levels in the supernatant.
2.15 Immunofluorescence staining

Collect the supernatants from the gastric cancer cell cultures of

the control group and the SLC16A7 knockdown group after 48

hours and add them to the M0 macrophages. Continue to culture

for another 48 hours. Cells subjected to different treatments were

fixed with 4% paraformaldehyde and permeabilized using 0.1%

Triton X-100. Following a 1% BSA blocking step, the cells were

incubated overnight at 4°C with CD163 (Proteintech) antibody.

Afterward, fluorescein-labeled secondary antibodies were added

and incubated for 1 hour at room temperature, followed by DAPI

staining to visualize the nuclei. Images were captured using a laser

confocal microscope (LEICA DMi8).
2.16 Statistical analysis

Statistical analyses were conducted using R software 4.2.2 or

GraphPad 8, with a p-value < 0.05 considered statistically

significant unless stated otherwise. Ns, *, **, ***, and **** stand

for p-value >0.05, p-value <=0.05, p value <=0.01, p value <=0.001,

and p value <=0.0001, separately. The analysis of survival was

conducted utilizing the R software packages ‘survival’ and

‘survminer’. The Wilcoxon test was utilized for comparing two
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groups, while the Kruskal-Wallis test was used for comparing more

than two groups.
3 Results

3.1 Identification of lactylation−related
genes in gastric cancer

The workflow of the lactate-related gene signature analysis is

demonstrated in Figure 1. Through the analysis of the MSigDB

database, researchers have identified eight lactylation-related

pathways and 322 genes that exhibit significant upregulation in GC

tissues (Supplementary Tables S1, 2). This discovery suggests a

potential direct association between these pathways and the

development and progression of GC. To further explore the

relationship between these genes, the researchers utilized

the STRING database for protein interaction analysis. The results

revealed a comprehensive and robust network of interactions among

the 29 key genes, indicating potential functional associations and

cooperation among them. This information could provide valuable

insights into the underlying mechanisms and potential therapeutic

targets related to lactylation and GC. (Figure 2A).
3.2 Development and verification of
predictive risk models

The 29 key genes were applied into the unvariate cox regression

(Figure 2B) and LASSO algorithm (Figures 2C, D), yielding 3

lactylation-related genes (COL4A1, SLC16A7, and IRAK1)

(Table 1). Risk score = (0.22*COL4A1) + (0.14* SLC16A7)

- (0.25*IRAK1).

A total of 403 individuals diagnosed with GC in the TCGA group

and 109 individuals diagnosed with GC in the GEO group were

categorized into high-risk and low-risk categories based on their

median risk scores. To determine the risk score for each patient, a

calculation was performed, which then allowed for their classification

into either the high-risk or low-risk group. This categorization based

on risk scores helped in assessing the prognosis and potential

outcomes for patients in these different risk categories (Figure 3A).

The high-risk category showed an increased number of fatalities

(Figure 3B), while the heatmap illustrated the spread of these 3 genes

across various risk categories (Figure 3C). We employed survival

curves to assess the predictive significance of the model on overall

survival (OS) in GC. The results showed that the high-risk group had

significantly lower OS rates compared to the low-risk group in both

the training and test groups. This trend was also observed when

considering the overall samples, indicating that the risk score model

had a meaningful predictive value for OS in GC (Figure 3D). ROC

analysis was performed to assess the predictive precision of the

model. The AUC values for the training group, test group, and

overall samples over a 5-year period were 0.662, 0.611, and 0.586, as

shown in Figure 3E. The findings indicate the lactylation-related

genes signature serves as a valuable predictive model for GC. Except
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for IRAK1, high expressions of COL4A1 and SLC16A7 predicted a

poor prognosis (Supplementary Figure S1).

Cox regression analysis was employed to evaluate the significance

of the prognostic models generated using lactylation-related genes as

risk factors for GC. Univariate Cox regression analysis was conducted

to assess the impact of various factors on patient prognosis. The results

indicated that factors such as age, tumor stage, grade, and risk score

significantly influenced patient prognosis (Figure 4A). Multivariate

COX regression analysis revealed that the risk model was an

autonomous predictor for GC outcomes (P<0.001, HR = 2.605, 95%

CI = 1.482-4.582) as depicted in Figure 4B. A nomogram was
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developed using clinicopathological parameters to evaluate the

effectiveness of risk models in clinical applications. The researchers

conducted risk assessments to predict survival rates at 1-, 3-, and 5-year

intervals (Figure 4C). The calibration graph demonstrated a strong

agreement between the projected survival rates and the observed

survival rates after 1-, 3-, and 5-years (Figures 4D–F). Additionally,

according to the DCA, genes related to lactylation were found to be

more beneficial in predicting the 1-, 3-, and 5-year overall survival rates

compared to factors such as stage, age, and gender (Figures 4G–I).
3.3 Analysis of immune cell infiltration,
functional enrichment, and gene mutations

The ESTIMATE algorithm analysis revealed that the high

lactylation score group had significantly elevated stromal and

immune scores compared to the low lactylation score group. This

suggests that the high lactylation score group had a higher

proportion of stromal and immune cells infiltrating the tumor.
FIGURE 2

Screening of genes via STRING and filtrating lactylation-related genes. (A) 229 genes selected by STRING and their relationships. (B) Univariate Cox
regression analysis to screen 29 prognosis-related genes. (C, D) LASSO coefficient curves of prognosis-related genes.
TABLE 1 The coefficients of three genes in the risk model formula.

Lactylation-related genes coefficients

COL4A1 0.220712497208269

SLC16A7 0.147004007788101

IRAK1 -0.253487009805723
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Furthermore, the ESTIMATE score was significantly higher in the

high lactylation score group, indicating an inverse association

between lactylation score and tumor purity. In other words,

higher lactylation scores were associated with lower tumor purity.

(Figure 5A). By examining different immunocyte analysis methods,

we conducted a study on the association between lactylation score

and immunocyte infiltration. Our findings revealed a positive
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correlation between lactylation score and the presence of

macrophages, with a specific emphasis on M2-type macrophages

(Figures 5B, C). Furthermore, the lactylation model showed strong

associations with various oncogenic pathways including WNT,

VEGF, TOLL-LIKE RECEPTOR, and T-CELL RECEPTOR as

revealed by KEGG and Hallmark enrichment analysis

(Figure 5D). In addition, analysis using Hallmark enrichment
FIGURE 3

Evaluation of the lactylation-related genes signature in the TCGA-STAD and GEO cohort. (A, B) The distribution of the risk scores and scatter plots
of survival in patients in the training group, text group, and all samples. (C) Prognostic signature signal heatmaps in the different group (D) The
Kaplan-Meter curve analysis of the low-and –high-risk groups in the different group. (E) Receiver operating characteristics (ROC) curve analysis of
the signature in the different group.
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showed that the lactylation model was linked to HALLMARK TGF-

BETA SIGNALING and HALLMARK WNT BETA CATENIN

SIGNALING (Figure 5E). The results indicate that a higher

lactylation score correlates with elevated proliferation, metastasis,

and invasion capabilities in gastric cancer. To gain a deeper

understanding of the immunological characteristics across

different risk subgroups, we conducted an analysis of genetic

mutations. Through this analysis, we identified the top 20 genes

with the highest mutation rates in both the high-risk and low-risk

subgroups (Supplementary Figures S2A, B). Surprisingly, the low-
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risk group showed a higher mutation rate in these genes. In

particular, we discovered that missense mutations were the most

common mutation type identified. Among the identified genes,

TTN, TP53, and MUC16 had the highest mutation rates, exceeding

25% in both groups. It is intriguing to note that these genes

demonstrated a higher mutation rate in the low-risk group.

Notably, missense mutations were the most commonly observed

type of mutation. Among the identified genes, TTN, TP53, and

MUC16 exhibited the highest mutation rates, surpassing 25% in

both groups.
FIGURE 4

Construction of a nomogram model integrated with the risk score. (A, B) Univariate and multivariate Cox analyses included different
clinicopathologic features. (C) Nomogram model for predicting the 1-, 3-, and 5 –year OS of GC patients. (D–F) The calibration plots for 1-, 3- and
5 years in the TCGA-STAD. (G–I) Decision curve for nomogram 1-, 3- and 5- years in the TCGA-STAD.
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3.4 Evaluation of immunotherapy response

Immunotherapy has shown promising efficacy and minimal

serious side effects in the treatment of malignant tumors. It is crucial

to understand that immunotherapy may not have the same

effectiveness for all patients with cancerous growths. Identifying

molecular subtypes is essential for determining which patients will
Frontiers in Oncology 09
likely see benefits from immunotherapy. During the analysis of

patients with high- and low-risk scores, as well as their TMB,

significant differences were detected. More specifically, patients in

the low-risk score group showcased higher levels of TMB compared

to those in the high-risk score group. (Figure 6A). Moreover, an

inverse relationship was found between the risk score and TMB

(Figure 6B). In Figure 6C, it is shown that the survival rate of the
FIGURE 5

Immune cells infiltration and function enrichment analysis. (A) Correlation between lactylationscore and the tumor microenvironment of gastric
cancer assessed using the ESTIMATE algorithm. (B, C) The correlation between lactylation score and immune cell infiltration by various immunocytes
analysis methods. (D, E) GSVA analysis of lactylation score and lactylation-related genes. *p<0.05; **p<0.01;***p<0.001.
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group with high tumor mutational burden (TMB) was notably

higher compared to the group with low TMB. The statistical

analysis showed a notable variation in the percentage of patients

with MSS and MSI-H among various risk score categories. In

particular, individuals with microsatellite stable (MSS) tumors

exhibited elevated risk scores in contrast to those with

microsatellite instability-high (MSI-H) tumors, as shown in

(Figure 6D). Patients deemed low risk were more likely to benefit

from ICI therapy than those deemed high risk. The reason for this

finding is that the low-risk subgroup had lower TIDE scores than

the high-risk subgroup, as shown in Figure 6E. Additionally, our

examination uncovered notable distinctions among the two risk

categories regarding the T-cell exclusion score (Figure 6G) and

T cell dysfunction score (Figure 6H), with the exception of MSI

score (Figure 6F). We analyzed the correlation between risk score

and IPS in patients with gastric cancer to assess the potential

efficacy of clinical immunotherapy in various risk subgroups.

The Immune cell Proportion Score (IPS) included immune
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checkpoints like CTLA-4, PD-1, and PD-L1, which are important

markers for forecasting the reaction to ICIs. Utilizing these immune

checkpoints, we assessed the potential of ICI treatment in the

respective risk subgroups (Figure 6I). Surprisingly, a notable rise

in immune response was noticed among the low-risk individuals,

suggesting that ICIs may provoke a stronger immune reaction in

this particular category. Therefore, it can be inferred from these

results that individuals in the low-risk category may experience

more advantages from immunotherapy as a result of their enhanced

immune reaction.
3.5 Validation of differentially
expressed genes

To validate the expression patterns of the three lactylation-related

genes selected for the risk model development, qRT-PCR was

employed. In GC tissues, the levels of SLC16A7 expression were
FIGURE 6

TMB, immune evasion and ICIs. (A) TMB score in different lactylation score subgroups and (B) the correlation between TMB, high-/low-risk groups
(C) Kaplan-Meier curve and log-rank test comparethe OS of patients with low or high TMB score. (D) Relationship between lactylation score and
MSI. (E–H) TIDE, MSI, T cell exclusion, and T cell dysfunction, in different lactylation score subgroups,respectively. (I) The vioplot of the different
expressions of CTLA4 and PD-1 between different lactylation-score groups. ***p<0.001 ns: no significance.
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found to be increased, while the expression of other genes was not

significant according to the results shown in Figures 7A–C. As we all

know, the gene SLC16A7 encodes a monocarboxylic acid transporter2

(MCT2), which mediates the transport of lactic acid in and out of cells.

In order to explore the spread of lactic acid in tumor tissues, we

conducted western blot and immunohistochemistry analysis to identify

the presence of lactic acid and SLC16A7 in neighboring and tumor
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tissues. The findings indicated a higher concentration of lactic acid in

tumor tissues compared to neighboring tissues. Similarly, the level of

SLC16A7 in the tumor tissue is greater than in the normal tissue

(Figures 7D, E). To assess the influence of lactic acid on PD-L1

expression in gastric cancer cells, we introduced varying

concentrations of exogenous lactic acid to the cells. The findings

indicated a rise in PD-L1 expression in gastric cancer cells with
FIGURE 7

Validation of differentialy expressed genes. (A–C) Evaluation of the expression of lactylation-related genes in GC tissues. (D) Evaluation of the
lactylation levels of paired tumor and normal samples, as well as the expression of SLC16A7 within them. (E) SLC16A7 IHC staining in normal and
tumor tissues. (F) The expression of PD-L1 in gastric cancer cell lines after adding gradient concentration of exogenous lactate acid.
(G) The expression of PD-L1 in gastric cancer cels after adding 10mM lactate acid and gradient concentration of syrosingopine.
*p<0.05;** p<0.01***p<0.001,ns, no significance; Lac, lactate acid; mM, mmol/L; mM, mmol/L.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1485580
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2024.1485580
increasing lactate acid concentration (Figure 7F). With the addition of

10 mM lactic acid, the PD-L1 expression decreased as we introduced

varying concentrations of syrosingopine (Figure 7G).
3.6 SLC16A7 reduction impairs T cell killing
of tumors

T cells are the main tumor killing cell type in the TME. To

further investigate whether SLC16A7 has an effect on T cell killing

of tumors, we established stable SLC16A7 knockdown GC cell.

Western blot analysis confirmed a significant reduction in SLC16A7

protein levels, indicating successful knockdown. With the

knockdown of SLC16A7, the expression of PD-L1 also decreases

accordingly (Figure 8A). Following SLC16A7 knockdown, we co-

cultured SNU-719 and AGS cells with T cells. In vitro cytotoxicity

assays demonstrated that SLC16A7 depletion significantly

decreased T cell-mediated killing (Figures 8B, C). PD-L1 and PD-

1 interaction assays showed that the level of binding PD-1

fluorescent protein was decreased after SLC16A7 knockdown

(Figure 8D). In addition, the expressions of inflammatory

cytokines including IFN-g, TNF-a, and GzmB, decreased with

SLC16A7 knockdown (Figure 8E). This observation indicated that

the loss o f SLC16A7 in tumor ce l l s influenced the

immunosuppressive tumor microenvironment and led to the bad

antitumor immune response. These findings demonstrated that

SLC16A7 plays an important role in the regulation of TME for

the development of antitumor immunity.
3.7 Lactic acid promotes the polarization
of macrophages to the M2 type

To further study the effects of lactate on immune cells in the tumor

microenvironment in vitro, we collected the supernatants of tumor cells

from the blank control group and the SLC16A7 knockdown group to

culture M0 macrophages. The Western blot results showed that,

compared to the blank control group, M0 macrophages cultured

with the supernatant from the SLC16A7 knockdown group

expressed less CD163 (Supplementary Figure S3A), indicating a

reduced polarization of M0 cells to M2. Immunofluorescence

results were consistent with the immunofluorescence findings

(Supplementary Figure S3B).
4 Discussion

Lately, an increasing amount of proof has uncovered the various

functions of lactate in the biology of tumors. Lactate not only acts as

the main immediate energy supply for tumor cells, but also supports

various functions including tumor development, spread, drug

resistance, and immune system suppression. These effects are

accomplished through diverse mechanisms, encompassing the

acidification of the immune microenvironment and the upregulation

of proteins that confer resistance to tumors (17). Researchers in the

University of Chicago have shown that lactate is a key player in
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epigenetic modifications, affectingmacrophage polarization by histone

lactylation (18). Remarkably, histone lysine lactylation, which is

influenced by glycolysis, is a widespread modification observed in

both human and mouse cells. This process of lactylation is particularly

responsive to fluctuations in lactate concentrations, which are affected

by the rate of glycolysis or the amount of lactate present. Therefore, the

modification of proteins by lactylation is a molecular mechanism that

follows glycolysis and emphasizes the important role of lactate in

controlling cellular functions.

Two new findings in this investigation have been made. Initially,

we developed a gene signature related to lactylation to forecast the

outcome of stomach cancer by analyzing genes with varying

expressions, such as COL4A1, SLC16A7, and IRAK1. The

association between lactylation risk and the immunosuppressive

tumor microenvironment (TME), as well as the discovery of

predictive biomarkers for immunotherapy response in gastric

cancer, was uncovered. To the best of our knowledge, this study is

the first to demonstrate the potential of a lactylation-based prognostic

risk model in predicting the response to immunotherapy in gastric

cancer. Furthermore, we discovered that the inhibition of

monocarboxylate transporters (MCTs) for the first time reduced

immune evasion in gastric cancer cells by downregulating the

expression of PD-L1. The findings suggest that the lactylation risk

score, derived from the prognostic model, could potentially function

as a predictive biomarker for the immune response in gastric cancer.

This could potentially enhance the effectiveness of anti-PD-1

immunotherapy as a promising therapeutic target.

COL4A1, SLC16A7 or IRAK1 are prognostic biomarkers in

gastric cancer (19–21). It is challenging, nevertheless, for a single

gene to offer patients with gastric cancer strong predictive

performance (22). As a result, using a multiple gene model to

forecast a cancer patient’s prognosis is becoming more common

(23–28). In fact, a number of studies have built predictive models

for individuals with osteosarcoma, colon cancer, and breast cancer

using various lactylation risk score. Here, we combined patient

clinicopathological data with COL4A1, SLC16A7 and IRAK1 to

create a predictive nomogram for gastric cancer. While the AUC

values of 0.665, 0.637, and 0.662 for 1-year, 3-year, and 5-year

predictions may not represent optimal performance, they still

indicate moderate prognostic value. There are several potential

reasons for the model’s relatively lower performance. Firstly,

lactate metabolism is a complex and multifactorial process,

influenced by a wide range of variables beyond the genes included

in our model, such as environmental factors, additional molecular

pathways, and patient-specific clinical variables. This complexity

could reduce the model’s discriminatory power. Additionally, the

heterogeneity of cancer types and stages within the TCGA dataset

might also have contributed to the variability in prediction accuracy

across different time points. The model may perform differently

depending on the specific clinical context of the patients, such as

tumor type, stage, and treatment history, which were not explicitly

accounted for in our analysis. In comparison with other published

models, it is worth noting that many of those models include a

broader range of clinical and molecular data, such as imaging,

multi-omics integration, or patient demographic information,

which can significantly improve predictive accuracy. In contrast,
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our model focused solely on lactate metabolism-related genes.

However, despite these limitations, our model still demonstrates a

level of prognostic capability that warrants further exploration,

especially when integrated with additional data types to enhance its

predictive performance.
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With the continuous advancements in sequencing and

spectrometry technologies, MCT protein family are being

constantly discovered and identified (29). There are currently 14

known proteins belonging to the SLC16 gene family (30). Based on

the properties of the protein transport substrates, we were able to
FIGURE 8

SLC16A7 regulates PD-L1 and in vitro cytotoxicity assay. (A) Western blot of SLC16A7 knockdown SNU-719 and AGS cells. (B, C) T cell-mediated
tumor cell killing assay in SLC16A7 knockdown SNU-719 and AGS cells. Representative phase, red fluorescence (dead cells), and green fluorescence
(GFP/live cells) merged images are shown. (D) Fluorescence microscopy showing the interaction between PD-L1 and PD-1. Representative phase,
blue fluorescence (nucleus), and green fluorescence (green fluorescent-labeled PD-1/Fc protein) merged images of SLC16A knockdown in the
SNU-719 and AGS cell. (E) ELISA analysis on IFN-g, TNF-a and GzmB of supernatant after co-culture T cells with SNU-719 and AGS cell.
**p<0.01; ***p<0.001; **** p<0.0001.
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classify proteins from the SLC16 gene family into 3 classes. One type

of MCTs is characterized by the fact that MCTs require proton

involvement when transporting substrates, and we can also call this

type of MCT proton-coupled monocarboxylic acid transporter (31).

The main types of MCTs are MCT1 (SLC16A1), MCT2 (SLC16A7),

MCT3 (SLC16A8), and MCT4 (SLC16A3). Recent research indicates

that SLC16A7is present in various cancer cells, with varying levels of

expression in normal tissues and cancer cells, suggesting its potential

as a tumor biomarker (31, 32). The study discovered that the

localization of SLC16A7 to peroxisomes is linked to the malignant

transformation of prostate cancer (33), as determined by assessing

intracellular SLC16A7 expression. SLC16A7 is not limited to prostate

cancer, it has also been detected in various tumor cells, including

those of lung and colon cancer.

High levels of MSI have been found to be closely associated with

improved prognosis in gastric cancer patients who receive

immunotherapy. MSI is a biomarker that indicates a defect in the

DNA mismatch repair system, leading to an increased number of

genetic mutations. These mutations result in the production of neo-

antigens, which are unique proteins that can be recognized by T cells.

A higher TMB, which refers to the total number of mutations in a

tumor’s DNA, can also lead to the production of more neo-antigens.

This increased antigenicity enhances the chances for T cell

recognition and activation, ultimately improving the outcomes of

ICI therapies (34). We have demonstrated a negative correlation

between lactylation risk and TMB/MSI in gastric cancer patients. It

suggests that patients with a low lactylation risk are more likely to

benefit from immunotherapy. This finding is consistent with the

existing literature, which suggests that a favorable tumor

microenvironment, characterized by lower lactylation risk and

higher TMB/MSI, is associated with better responses to

immunotherapy. Lower lactylation risk indicates reduced lactate

production by tumor cells, which can contribute to an

immunosuppressive environment. In contrast, higher TMB and

MSI indicate a higher mutational load, leading to the production of

neo-antigens that can activate the immune system and enhance

response to immunotherapy. Therefore, patients with low

lactylation risk and high TMB/MSI may have a more immunogenic

tumor profile, making them more responsive to immunotherapy.

This finding aligns with existing literature that suggests patients with

higher TMB and MSI tend to have better outcomes with

immunotherapy (35). Previous studies have indeed shown that

TTN mutations are associated with high immunogenicity and an

inflammatory tumor immune microenvironment in lung

adenocarcinoma. These mutations can lead to the production of

neo-antigens, which can trigger an immune response and enhance

the efficacy of ICIs. Consequently, patients with TTN mutations may

exhibit a more favorable objective response and improved survival

when treated with ICIs (36, 37). The TIDE score, which reflects the

ability of tumor cells to evade immune surveillance, was found to be

higher in the high lactylation risk group compared to the low

lactylation risk group. This suggests that lactylation of TME may

play a role in promoting immune evasion in gastric cancer. We also
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found that gastric cancer tissues from patients with a high lactylation

risk showed increased infiltration of macrophages 2. The study found

a positive correlation between lactate concentration and PD-L1

expression as well as the level of lactylation in human gastric

cancer tissues. PD-L1 is a protein that is often overexpressed in

cancer cells and interacts with PD-1 receptors on immune cells,

leading to immune suppression. The positive correlation suggests that

lactylation may contribute to the upregulation of PD-L1, potentially

leading to immune dysfunction in gastric cancer. Treated with

syrosingopine, the PD-L1 expression decreased as the

concentration of syrosingopine elevated. Based on the strong

associations observed between lactylation risk, PD-L1 expression,

TMB, and MSI, it is reasonable to conclude that lactylation risk,

including SLC16A7, may have potential as a biomarker for predicting

the response to immunotherapy in gastric cancer.

MCT4 positively regulates the expression of PD-L1 in breast

cancer cells by releasing lactate, and it stabilizes PD-L1 by

promoting its glycosylation through the classical WNT pathway

(38). In addition, lactylation, a newly discovered post-translational

modification in recent years, has attracted considerable attention.

Lactylation has been found in different pathophysiological states

and leads to various biological effects, though only a few

mechanisms have been elucidated. Lactic acid exerts its PD-L1

induction effect by lowering cAMP levels and activating TAZ (39).

Yu et al (40) discovered that histone lactylation is associated with

poor prognosis in ocular melanoma, and further demonstrated that

the mechanism of histone lactylation affects transcription factor

recognition of TP53 modifications and mediates its degradation,

promoting the occurrence of ocular melanoma.

When lactic acid from tumor cells is transported to the tumor

microenvironment through the lactate transporter SLC16A7, it can

induce the conversion of M0 macrophages to the M2 type,

suppressing the body’s immune function. This process is

inhibited when the SLC16A7 gene is knocked out. We conducted

a literature search to explore how lactic acid secretion might inhibit

the functions of immune cells in the immune microenvironment,

which aligns with our research findings (41–43).

Despite the strengths of our study, it is essential to acknowledge

its limitations. Further research, considering larger sample sizes,

diverse patient populations, and mechanistic studies, will help

validate and expand upon these findings, ultimately leading to a

more comprehensive understanding of the influence of lactylation

in GC. Validation of the lactylation score’s efficacy in predicting

reaction to ICI therapy requires extensive clinical trials.
5 Conclusion

To summarize, the lactylation score has the potential to

contribute to the molecular classification of GC by identifying

distinct immune infiltration patterns and genomic instability

profiles. Moreover, it could serve as a valuable tool for assessing

patient response to ICI treatment.
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SUPPLEMENTARY FIGURE 1

Kaplan-Meier survival curves of three lactylation genes. (A, B) GC patients
with high expressionof COL4A1 and SLC16A7 had good prognosis. (C) GC

patients with high expression of IRAK1 had poor prognosis.

SUPPLEMENTARY FIGURE 2

Significantly muted genes in GC samples of the high-and low-risk groups.

SUPPLEMENTARY FIGURE 3

Lactate acid promotes M2 polarization of M0 macrophages. (A) Western blot

analysis of CD163 expression in M0 macrophages co-cultured with
supernatant of gastric cancer cells. (B) Immunofluorescence detection of

CD163 expression in M0 macrophages co-cultured with supernatant of
gastric cancer cells.
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