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Background: Relapsed and refractory Diffuse large B cell lymphoma (DLBCL) can

be successfully treated with axicabtagene ciloleucel (axi-cel), a CD19-directed

autologous chimeric antigen receptor T cell (CAR-T) therapy. Diagnostic image-

based features could help identify the patients who would clinically respond to

this advanced immunotherapy.

Purpose: The aim of this study was to establish a radiomic image feature-based

signature derived from positron emission tomography/computed tomography

(PET/CT), including metabolic tumor burden, which can predict a durable

response to CAR-T therapy in refractory/relapsed DLBCL.

Methods: We conducted a retrospective review of 155 patients with relapsed/

refractory DLBCL treated with axi-cel CAR-T therapy. The patients’ disease

involvement was evaluated based on nodal or extranodal sites. A sub-cohort of

these patients with at least one nodal lesion (n=124) was assessed, while an

overlapping sub-cohort (n=94) had at least one extranodal lesion. The lesion

regions were characterized using 306 quantitative imaging metrics for PET

images and CT images independently. Principal component (PC) analysis was

performed to reduce the dimensionality in feature-based functional categories:

size (n=38), shape (n=9), and texture (n=259). The selected features were used to

build prediction models for survival at 1 year and tested for prognosis to overall/

progression-free survival (OS/PFS) using a Kaplan-Meier (KM) plot.

Results: The Shape-based PC features of the largest extranodal lesion on PET were

predictive of 1-year survival (AUC 0.68 [0.43,0.94]) and prognostic of OS/PFS

(p<0.018). Metabolic tumor volume (MTV) was an independent predictor with an

area under the curve (AUC) of 0.74 [0.58, 0.87]. Combining these features improved
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the predictor performance (AUC of 0.78 [0.7, 0.87]). Additionally, the Shape-based

PC features were unrelated to total MTV (Spearman’s r of 0.359, p≤ 0.001).

Conclusion: Our study found that shape-based radiomic features on PET

imaging were predictive of treatment outcome (1-year survival) and prognostic

of overall survival. We also found non-size-based radiomic predictors that had

comparable performance to MTV and provided complementary information to

improve the predictability of treatment outcomes.
KEYWORDS

imaging biomarkers in lymphoma, MTV (metabolic tumor volume), radiomics in
immunotherapy, PET/CT scan, biomarkers in CAR T cell therapy
Introduction

Non-Hodgkin’s lymphoma (NHL) accounts for approximately

4% of all cancers, with over 20,250 deaths in 2021 in the United States

(1–3). Diffuse large B cell lymphoma (DLBCL) is the most common

form of aggressive NHL, accounting for 30% to 50% of cases (4, 5).

DLBCL is genetically and biologically heterogeneous, with variable

therapy responses (6–8). Axicabtagene ciloleucel (axi-cel), a CD19-

targeted chimeric antigen receptor (CAR)-T cell therapy, has

revolutionized the treatment of the disease, demonstrating superior

levels of durable response in relapsed/refractory (R/R) DLBCL (9–11).

As only a proportion of patients respond to this relatively new therapy,

developing prognostic biomarkers is a critical unmet clinical need.

Total metabolic tumor volume (MTV) measured on 18F

fluorodeoxyglucose (18F-FDG) positron emission tomography/

computed tomography (PET/CT) has been associated with

treatment outcomes, and the assessment involves a semi-automated

process with clinical oversight to avoid false detection (12, 13). Recent

advancements in imaging methodologies have made it possible to

utilize medical images (PET/CT) to develop quantitative biomarkers

using radiomic metrics (14–16), further extended by artificial

intelligence (AI) methods (17, 18). Recently, radiomic metrics on

PET imaging have been shown to be prognostic for complete

response (19) and predict clinical benefit after CAR-T treatment (20).

In this study, we used advanced quantitative imaging metrics

(radiomics) on PET/CT images of DLBCL tumors to identify imaging

observed metrics that may predict treatment response (1-year survival),

specifically to CAR-T therapy. We compared our findings with whole-

body MTV. Our study overview is illustrated in Supplementary Figure S1.
Methods

Patient cohort

We retrospectively obtained patient records after approval from

our Institutional Review Board at the University of South Florida/
02
Moffitt Cancer Center (MCC). Patients with R/R DLBCL between

May 2015 to June 2019 at MCC (n=100), at consortium sites

between November 2015 to September 2016 (n = 55), and who

had received axi-cel treatment as a third or later line of therapy were

enrolled. In the study, 55 of 155 patients were part of the cohort

from a previously reported consortium trial (10). This previous

article showed the effectiveness of CAR T cell immunotherapy (axi-

cel) after the failure of conventional therapy, with a reported

objective response rate of 82% and a complete response rate of

54% with a median follow-up of 15.4 months. Clinical parameters

for the consortium patients (n=55) were blinded from the study

authors. We obtained imaging scans (18F-FDG PET/CT) and

clinical data from these patients. Patients without baseline

imaging (18F FDG-PET/CT) prior to CAR T cell therapy were

excluded. Patients may have received bridging therapy as a standard

of care (SOC), defined as any lymphoma-specific therapy given after

apheresis but before the start of fludarabine and cyclophosphamide

chemotherapy for lymphodepletion before the CAR-T infusion

(see Table 1A).
PET/CT imaging

PET/CT scans are the primary modality used in disease staging

of lymphoma disease as recommended by Lugano’s disease

classification, adapted from the oncology guidelines (21, 22). The

CT scan modality provides the anatomical details of the lesion’s

morphology while the PET scan allows the assessment of contrast

uptake that enables us to distinguish an abnormal lesion from a

normal tissue (23). Patients undergo a standard-of-care whole-body

CT with PET imaging to evaluate the disease condition prior to

CAR-T treatment (baseline scan). The patient cohort was scanned

on mixed clinical PET/CT scanners (see Table 1C). Images

constructed with attenuated corrected (AC) scans were used for

the study as it has been shown that AC PET imaging allows

appropriate intensity scaling (24). The voxel values were
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TABLE 1 Patient data used for radiomic analysis: A) clinical and demographic characteristics, B) lesions categorized by anatomical location, and C)
PET/CT scanner types.

TABLE 1A. Cohort clinical characteristics.

Characteristic All patients*
(N=155)

Lesion site used for radiomics

Extranodal (n=94) Lymphatic (n=124)

Age (mean, median, std.dev) 60.1
(63, 12.2)

59.4
(63.5, 12.8)

61
(63, 10.9)

Sex (male/female/unavailable) 61/39/55 36/22 53/29

LDH (mean, median, std.dev) 400.5
(266, 348.25)

448.3
(275.5, 406.79)

408.6
(267.5, 353.4)

ECOG

0-1 83 48 66

2-3 17 10 16

One-year progression or death:
No
Yes

41 (43.6%)
53 (56.4%)

61(49.2%)
63 (50.8%)

Stage

I/II
III/IV
Unavailable

22
78
55

10
48

14
68

Bridge therapy

Yes
No
Unavailable

Yes: 50
No: 50
55

Yes: 28
No: 30

Yes: 41
No: 41

Axi-cel administration

Trial (cancer center)
Zuma-1

100
55

58
36

82
42
F
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TABLE 1B. Lesions categorized by anatomical location.

Lymphatic (n = 124) Extranodal (n = 94)

# Anatomical Location # Patients (%) Anatomical Location # Patients (%)

1 Abdomen 58 (46.77%) Abdomen 3 (3.19%)

2 Lungs (Chest) 8 (6.45%) Lungs (Chest) 35 (37.23%)

3 Pelvis 22 (17.74%) Pelvis 8 (8.51%)

4
Musculoskeletal system
(bone or muscle)

0 (0%) Musculoskeletal system
(bone or muscle)

20 (21.28%)

5 Mediastinum (Chest) 11 (8.87%) Mediastinum (Chest) 0 (0%)

6 Neck 10 (8.06%) Neck 0 (0%)

7 Liver 0 (0%) Liver 7 (7.45%)

8 Axilla 5 (4.03%) Axilla 0 (0%)

9 Spleen 1 (0.81%) Spleen 4 (4.26%)

10 Leg 1 (0.81%) Leg 4 (4.26%)

11 Cutaneous (Skin) 0 (0%) Cutaneous (Skin) 4 (4.26%)

12 Breast 2 (1.61%) Breast 1 (1.06%)

13 Colon 2 (1.61%) Colon 1 (1.06%)

14 Neck 2 (1.61%) Neck 1 (1.06%)

(Continued)
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converted to standardized uptake values (SUVs) prior to feature

extraction, followed by statistical analysis.
Clinical features

Lactate dehydrogenase (LDH) levels are known to be associated

with tissue damage due to disease, infection, or injury. They have

been shown to be significantly elevated in both indolent and

aggressive non-Hodgkin’s lymphoma (25). We used serum-based

(baseline) estimates in our prognostic model to complement the

metabolic tumor burden and radiomic metrics.
Metabolic tumor burden computation

We used the patient’s baseline 18F-FDG PET/CT scans obtained

prior to axi-cel treatment to evaluate MTV using custom tools
Frontiers in Oncology 04
implemented on MIM Software, our research PACS (version 6.8.4,

MIM Software, Cleveland, OH). The semi-automated workflow

requires the user to identify a normal hepatic (liver) reference

using a single selection click. Using the selected location, a 2-cm

sphere region is automatically drawn to estimate the statistics of the

reference region. Following the Positron Emission Tomography

Response Criteria (PERCIST) recommendations (26), regions over

two standard deviations from reference (normal hepatic or liver

regions) were automatically identified, delineated, and stored. These

identified regions were individually evaluated (manual process) by a

clinical expert (radiologists J.Q. and J.W.C., and oncologist, E.A.D.)

to discriminate and remove physiologically active regions (brain/

bladder/etc.) and regions with perceived non-oncologic

inflammation or infection. After the manual evaluation, voxels

over 41% of SUVmax at the lesion level were converged (as

PERCIST recommended). These regions were then summated

across the body to obtain MTV at the patient level, reported in

milliliters (mL), as previously assessed and presented (12).
TABLE 1 Continued

TABLE 1B. Lesions categorized by anatomical location.

# Anatomical Location # Patients (%) Anatomical Location # Patients (%)

15 Arm 0 (0%) Arm 2 (2.13%)

16 Stomach 1 (0.81%) Stomach 1 (1.06%)

17 Hilar 1 (0.81%) Hilar 0 (0%)

18 Mouth 0 (0%) Mouth 1 (1.06%)

19 Pancreas 0 (0%) Pancreas 1 (1.06%)

Sub-total (Lymphatic) 124 Sub-total (Extranodal) 94

*Some clinical variables were unavailable for consortium patients (n=55, see Methods section).
TABLE 1C. PET/CT scanner details (n=155).

Manufacturer Model (Count) Count

1 Siemens Biograph 16 (3) 21

Biograph 64 (8)

Biography 40 (10)

2 Phillips Gemini (7) 11

Ingenuity (2)

Brilliance64 (2)

3 GE Medical System DiscoverySTE (54) 123

DiscoveryMR DR (44)

Discovery600 (5)

Discovery690 (3)

Discovery710 (3)

DiscoveryRX (2)

DiscoveryST (4)

DiscoverySTE (8)

Sub-total 155
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Lesion review

Lesions that were validated and part of the MTV computation

were re-reviewed by our research/clinical radiologists (J.Q/J.W.C)

to capture additional details about them: i) anatomical location, ii)

individual metabolic volumes of the lesions at the patient level, and

iii) association of the lesions with the lymphatic system (lymphatic

vs. extranodal). The lesions were broadly categorized by the

anatomical location (20 sites in total), for the patient’s largest

lesions. We selected the largest lymph node (in lymphatic-related

lesions) and the largest nodule (in extranodal-related lesions) in

each patient. Thus, we assembled a sub-cohort with 124 patients

with their largest lesion related to the nodal disease (lymph node)

and another with 94 patients with their largest lesion related to

extranodal disease. The organ site information about the largest

lesion in each patient which was utilized for further radiomic

analysis is provided in Table 1B with more details described in

the Results section. It is possible that patients can be part of both or

either of the cohorts (lymphatic or extranodal).
Radiomics

CT and FDG-PET imaging were re-sampled to the same

resolution of 1x1x1 mm3 using bilinear interpolation and then

standardized to SUV units using the activity concentration

calibrated to the dosage of 18F-FDG injected volume and patient

body weight after decay correction, using custom tools developed in

Matlab, Mathworks Inc ®. The regions that converged to be

metabolically active (using the same procedure followed for

MTV) were used as the lesion boundary in the PET images and

mapped to CT images. These boundaries were used to extract 306

radiomic features in each modality (CT and PET), totaling 612

features obtained to characterize each lesion across modalities.

Based on clinical assessment, the largest metabolic lesion (based

on PET volume) associated with lymphatic and extranodal regions

were selected. These nodules across the patients were sorted to form

sub-cohorts for analysis. We categorized imaging radiomic features

into three broad functional categories: Size (n=38), Shape (n =9),

and Texture (n=259), with details on the features differed to

Supplementary Tables S1–S3. The radiomic feature classification

is based on the functional nature of the descriptors. It follows

conventional formulations and definitions in adherence to the

recommendations of the Image Biomarker Standardization

Initiative (IBSI) consensus criteria (27).
Feature dependencies

The dependency between the radiomic features and whole-body

MTV was evaluated by computing correlation coefficient metrics.

We repeated the comparison across the modalities (PET/CT), sub-

cohorts (Lymphatic and Extra-nodal), and for the principal

components (PCs) calculated at the feature category level (Size,

Shape, and Texture). The highly correlated features were ordered

(descending) across the modalities (PET/CT) and sub-cohorts
Frontiers in Oncology 05
(Lymphatic, Extra-nodal). We found that the Texture-based

feature, PC1 (first principal component), in the Lymphatic group

(CT features) had the lowest correlation (r =0.35), followed by the

Texture PC1 feature in the Extranodal group (CT features, r =0.38).

The Texture PC7 (seventh principal component) feature in the

Lymphatic group (PET features) had a moderate negative

correlation (r = -0.33), and the Shape feature PC1 (Shape PC1)

in the Extranodal group (PET features) had a moderate correlation

(r = 0.36) (see Supplementary Table S4). Shape-based PCs tended

toward and away from the Size-based PCs and overall Metabolic

Tumor Volume (MTV), respectively (see Supplementary Figure S2).
Statistical analysis

A logistic regression model was used to test the predictive ability

of the imaging features. The features with the lowest change

(coefficient of variance ≤3%) across the patient samples were

removed. The PCs in each of the feature categories were

computed using the first three components (1 to 3) to build a

logistic regression model. The relationship between the radiomic

feature-based principal components and MTV in each category

across the imaging modality was assessed using Spearman’s

correlation coefficients (r) (see Supplementary Table S4). A

logistic regression model was constructed using MTV and

radiomic and clinical features to predict 1-year survival after

treatment. The PCs were computed using radiomic features in

each functional category (Size, Shape, Texture) and models were

assessed independently using these feature metrics. The model

performance was measured by sensitivity, specificity, and area

under receiver operator characteristics (AUC), estimated by 5-

fold cross-validation. In the final analysis, we used the logistic

regression model based on the PCs (PC1-3) in the non-size-based

functional categories (shape, texture) to divide the cohort into risk

groups. We assessed the risk of disease progression measured by

overall survival using the Cox regression model. We measured the

ability of features to predict overall survival (OS) and progression-

free survival (PFS) using Kaplan-Meier (KM) plots, and the log-

rank test was used to assess the significance. A p-value of less than

0.05 was considered statistically significant in our analysis.
Results

In this study, we created a cohort of 155 patients who were

treated with axi-cel therapy. Baseline radiological scans (PET/CT)

scans were obtained and there were 1,639 lesions assessed across the

patient cohort that our clinical radiologist manually verified. Of

these, 1,058 lesions were detected in 100 patients (MCC) and 581

lesions were detected in 55 patients from ZUMA-1 (consortium).

The normal (benign) hepatic (liver) reference region was excluded

from the counts. We formed sub-cohorts with patients with their

largest lesion related to either lymphatic (n=124) or extranodal

(n=94) disease. Figure 1 shows lymphatic (i.e., nodal) and

extranodal lesions. The most frequently involved nodal sites were

the abdomen (46.77%, n=58), pelvis (17.74%, n=22), mediastinum
frontiersin.org
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(8.87%, n=11), neck (8.06%, n=10), and lungs (5.65%, n=7). The

most frequently involved extranodal sites were the lungs (36.17%,

n=34), musculoskeletal system (21.28%, n=20), pelvis (8.51%, n=8),

liver (7.45%, n=7), and spleen (4.26%, n=4), (Table 1B). The fifth

most common extranodal site in our cohort was evenly shared

between the spleen, legs, and skin, with approximately 4.26% of

patients (n=4). In this study, radiomic features were categorized

into major functional characteristics, i.e., Size, Shape, and Texture

(n=259 features) (Supplementary Table S1), and feature metrics

were assessed independently in CT and PET scans. We reviewed the

relationship of principal components across three categories (Size,
Frontiers in Oncology 06
Shape, Texture) with MTV and individual lesion volume, displayed

as a scatter plot of the principal components, PC1 and PC2, for

extranodal CT features and extranodal PET features, respectively

(Supplementary Figure S2).

The dependency between the radiomic features and whole-body

MTV was evaluated by correlating these metrics at the category

level, and we found that the Texture feature PC1 (first principal

component) in the Lymphatic group (CT features) had the lowest

correlation (r =0.35), followed by the Texture PC1 feature in the

Extranodal group (CT features, r =0.38). The details are given in

Supplementary Table S4, Supplementary Figure S2.
FIGURE 1

Patient scans showing representative slices of lesions in different image modalities (CT/PET and fused) with an arrow. (A) Lesions associated with the
lymphatic system in the pelvis and (B) extranodal lesions in the abdomen.
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A logistic regression model was built using total body MTV and

radiomic feature-based PCs to predict survival (1 year) after

treatment. We found that total body MTV remains predictive

with an average AUC of 0.71 to 0.76 across the different sub-

cohorts (see Tables 2A–D). We built a logistic model using the

Shape-based PCs, which were computed on CT (Lymphatic group)

and MTV, either independently or in combination. We found that

MTV shows better predictive value than the Shape-based PCs, with

an average AUC of 0.72 and 0.53, respectively, with the

combination not showing an improvement (average AUC of 0.67)

(see Table 2A). In the PET SUV (Lymphatic group) image cohort,

using Shape-based PC features had an average AUC of 0.61, and the

MTV-based predictor yielded an average AUC of 0.71. The

combination of these metrics marginally improved the predictive

value (average AUC to 0.72), while adding LDH did not improve

the predictive ability (AUC of 0.62) (see Table 2B). Using CT

image-based features (Extranodal group) did not show predictive
Frontiers in Oncology 07
value improvement with the addition of MTV (Shape-based PCs

avg. AUC was 0.57 [0.31,0.83], MTV was 0.76 [0.62,0.89], while the

combination was 0.46 [0.33,0.60], and with LDH it was 0.697 [0.51,

0.89]) (see Table 2C). Using PET SUV image metrics (Extranodal

group) had an average AUC of 0.68[0.53,0.82], while MTV had an

average AUC of 0.74[0.58, 0.89], and the combination showed an

improved average AUC of 0.78 [0.7, 0.87]; however, the addition of

LDH did not improve the predictive value (avg. AUC of 0.68

[0.42,0.94]) (see Table 2D, Figure 2). We further divided the

cohort into lower tumor burden (lower median MTV) and higher

tumor burden (greater than median MTV). We repeated the

predictive analysis to evaluate the role of radiomic metrics. We

found that the Shape-based PCs showed a comparable predictive

value of AUC 0.716 to MTV (AUC of 0.75), (see Table 2A). The 1-

year OS predictive ability did not improve in combination (Shape-

based PCs and MTV). Furthermore, in patients with higher tumor

burden, MTV and the Shape-based PC did not seem to be good
TABLE 2 Logistic regression model to predict 1-year response to CAR-T therapy using whole-body metabolic tumor volume and radiomic PCs (Shape
PCs) in patient image scans that are associated with A) Lymphatic-CT, B) Lymphatic-PET, C) Extranodal-CT, and D) Extranodal-PET observed across
the cohort. The estimates were obtained using 5-fold cross-validation.

A1. Logistic regression using Shape-based PCs on CT Images (Lymphatic group)

Variable Sensitivity/Specificity E[AUC] Prognosis

OS (p-val) OS (p-val)

1 MTV 0.737 (0.608, 0.866)/0.737 (0.531, 0.943) 0.719 (0.572, 0.866) <0.0001 0.0006

2 Shape-based PCs (1 to 3) 0.656 (0.299, 1)/0.589 (0.305, 0.873) 0.526 (0.400, 0.652) 0.8200 0.6600

3 MTV with Shape-based PCs
(1 to 3)

0.769 (0.455, 1)/0.663 (0.375, 0.951) 0.677 (0.527, 0.827) 0.0019 0.0120

4 MTV with Shape-based PCs
(1 to 3) and LDH

0.726 (0.576, 0.876)/0.679 (0.454, 0.904) 0.662 (0.607, 0.717) 0.0005 0.011
B1. Logistic regression using Shape-based PCs on PET Images (Lymphatic group)

Variable Sensitivity/Specificity E[AUC] Prognosis

OS (p-val) OS (p-val)

1 MTV (whole-body) 0.676 (0.446, 0.906)/0.773 (0.598, 0.948) 0.711 (0.604, 0.818) <0.0001 0.0035

2 Shape-based PCs (PC 1 to 3) 0.72 (0.535, 0.905)/0.693 (0.512, 0.874) 0.639 (0.576, 0.702) 0.27 0.51

3 MTV, Shape-based PCs (1
to 3)

0.761 (0.707, 0.815)/0.752 (0.656, 0.848) 0.718 (0.68, 0.756) 0.0004 0.0005

4 MTV, Shape-based PCs (1 to
3) and LDH

0.615 (0.423, 0.807)/0.786 (0.557, 1) 0.662 (0.565, 0.759) <0.0001 <0.0001
C1. Logistic regression using Shape-based PCs on CT Images (Extranodal group)

Variable Sensitivity/Specificity E[AUC] Prognosis

OS (p-val) OS (p-val)

1 MTV (whole-body) 0.709 (0.406, 1)/0.88 (0.715, 1) 0.758 (0.622, 0.894) <0.0001 0.0018

2 Shape-based PCs (PC 1 to 3) 0.641 (0.477, 0.805)/0.698 (0.399, 0.997) 0.57 (0.311, 0.829)” 0.0020 0.0028

3 MTV, Shape-based PCs (1
to 3)

0.356 (0.144, 0.568)/0.883 (0.751, 1) 0.464 (0.329, 0.599) 0.0004 <0.0001

4 MTV, Shape-based PCs (1 to
3) and LDH

0.706 (0.503, 0.909)/0.828 (0.686, 0.97) 0.697 (0.509, 0.885) <0.0001 <0.0001

(Continued)
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predictors of 1-year OS (see Table 2B). We found that the Texture-

based PCs showed a similar trend to the Shape-based PCs. The

Texture-based PCs computed in CT (Lymphatic group), PET SUV

(Lymphatic group), and CT (Extranodal group) did not improve on

MTV-based predictors in the respective cohorts (see Supplementary

Tables S8A–C). When using the Texture-based PCs computed on

PET SUV (Extranodal group), the metrics had a moderate

predictive ability, with an average AUC of 0.59 compared to

MTV-based predictors (AUC of 0.74), while the combination

showed a moderate improvement (average AUC of 0.66) (see

Supplementary Figure S3, Supplementary Table S8D). We tested
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for prognosis using KM plots by grouping patients based on the

logistic model and found that the Shape-based PC and Texture-

based PC models were significant (P<0.001) for overall and

progression-free survival (see Figure 3; Supplementary Figure S4).

Using Shape features on PET images (Non-lymphatic group) had

an 18% increased risk of disease progression compared to 15% using

MTV, with a CI of 1.018, 1.371 and 1.038, 1.281, respectively (see

Supplementary Table S6). The patients in our study had a median

follow-up of 1 year after CAR-T treatment. Figure 4 shows

representative patient scans selected based on Shape-based PC

predictors (high and low) for extranodal PET features.
FIGURE 2

Receiver operating characteristic curves to predict 1-year overall survival using a logistic model based on shape features of the largest lesion in the
extranodal regions of PET (SUV) images (see Table 2). The curves include MTV (average AUC 0.74), the Shape-based radiomic features (Principal
components 1 to 3) (average AUC 0.68), and Shape-based radiomic features (Principal components 1 to 3) with MTV (average AUC 0.79).
TABLE 2 Continued

D1. Logistic Regression using Shape-based PCs on PET Images (Extranodal group)

Variable Sensitivity/Specificity E[AUC] Prognosis

OS (p-val) PFS (p-val)

1 MTV (whole-body) 0.87 (0.751, 0.989)/0.692 (0.503, 0.881) 0.735 (0.584, 0.886) 0.0002 <0.0001

2 Shape-based PCs (PC 1 to 3) 0.701 (0.597, 0.805)/0.712 (0.478, 0.946) 0.675 (0.532, 0.818) 0.0180 0.0160

3 MTV, Shape-based PCs (1
to 3)

0.742 (0.493, 0.991)/0.847 (0.698, 0.996) 0.783 (0.7, 0.866) <0.0001 <0.0001

4 MTV, Shape-based PCs (1 to
3) and LDH

0.704 (0.285, 1)/0.789 (0.577, 1) 0.682 (0.425, 0.939) <0.0001 <0.0001
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Discussion

In this study, we developed and validated a quantitative

radiological imaging signature derived from DLBCL PET/CT

scans that could be used as a biomarker to predict response in

patients treated with axi-cel treatment and allow us to identify

patients that would benefit from the advanced immunotherapy

treatment. We further divided the radiomic metrics into three

functional characteristics related to Size, Shape, Texture, and

computed PCs in each category. The ensemble feature signatures

in each of the categories were used in a logistic regression model to

predict treatment response (1 year). We identified the benefit of

radiomic feature extraction for the prediction of durable survival in

R/R/DLBCL. We found that the Shape-based PCs showed

comparable performance to MTV (see Table 2). Furthermore,

they continue to complement MTV for patients with a smaller
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tumor burden (≤ median MTV) (see Supplementary Table S7). It

has been shown that size-based features, including MTV-related

metrics, are often prognostic for a patient’s outcome, as previously

reported by us and others (12, 13, 28). A few other studies have

associated the shape of lesions with aggressive phenotypes and was

shown to have poor prognosis in oncological diseases (3, 29, 30). In

our study, we observed that shape-based predictors select patients

with large irregularly featured nodules, while more round features

are associated with low features that are associated with better

prognostic cases (see Figure 4).

The current clinical consensus assessment criteria (Cheson and

Lugano classifications) (22, 31) do not always accurately capture the

disease condition nor can they predict disease outcome, creating a

need to develop better biomarkers. Characterizing subtle

physiological changes observed on radiological imaging using

quantitative metrics has shown enormous promise in developing
FIGURE 3

Kaplan-Meier (KM) plots obtained using patients grouped with a cut-off point obtained from a logistic model for the Shape-based radiomic features
(Principal components 1 to 3) extracted from the extranodal regions of PET (SUV) images (details in Table 2); (A) Overall survival, (B) Progression-
free survival.
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models that can be related to patient outcomes (14, 16, 32). Our

metrics may be capable of capturing nuances across lymphatic and

extranodal lesions. Most extranodal lymphoma lesions are

restricted to a single organ but may have infiltrative bone

involvement, making them multifocal (31, 33). It is interesting

that radiologists usually assess PET/CT images by characterizing

the intensity and lesion shape characteristics to discern true

cancerous lesions from benign lesions, an essential step in

assessing the disease burden or MTV in lymphoma. Specifically, it

has been reported that normal lymph nodes are often elongated in

shape and have uniform non-thickened nodal cortices and a

preserved fatty hilum (31). Similar observations have been

reported for related shape-based characteristics and their ability

to predict outcomes in oncological diseases (32, 34).
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Lymphomatous lesions may manifest in a variety of

appearances but are typically classified based on their cellular

architecture (follicular or diffuse) and morphology (small or

large) (35). Beyond tumor metabolic activity, the shape of the

lesions observed on PET/CT also plays a diagnostic role in

lymphoma (36). There have been many studies assessing the role

of axi-cel therapy in DLBCL through immune dysregulation (10),

but the role of advanced imaging analytics has not been

adequately characterized.

Most quantitative assessments in lymphoma utilize MTV,

which has been shown to be prognostic (12, 37) but is still not

clinically adopted. This metric provides a gross measurement of

disease burden in a patient and does not assess nor discriminate

based on the subtle characteristics of the lesions. Our study
FIGURE 4

Patients selected based on shape-based predictors (principal component-based) using the PET radiomic features of their largest extranodal lesion.
Representative PET/Fused (PET-CT) image slices were selected: (A) The panel on left side indicated high Shape PC metric, and (B) the panel on the
right corresponds to patients with a smaller value for the Shape PC metric for their largest extranodal lesion.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1485039
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Balagurunathan et al. 10.3389/fonc.2024.1485039
independently assessed lesion changes (on the pixel level) in a 3D

region in FDG-PET images that were matched to corresponding CT

regions, revealing subtle details with higher levels of contrast

compared to PET imaging alone (23). Recently, MTV combined

with LDH was associated with progression-free survival and the

radiomic metrics of these patients were associated with a complete

response (19). In predictive performance, these radiomic features

demonstrated comparable predictive performance within our

cohort (see Table 2, Figure 2).

Our finding provides a methodology for the use of radiological

imaging-based quantitative metrics to assess patients’ response to

immunotherapy (axi-cel) in DLBCL. Our systematic approach

allows us to characterize the lesions’ shape irregularities and

heterogeneity (including the microenvironment). It is well

recognized that radiomic metrics are dependent on system-level

variables such as scan parameters and image quality but despite

these, the metrics can discriminate (38). Additionally, it is often

difficult to explicitly relate a given radiomic feature to human

observable characteristics, except for (mostly) size and shape

metrics. Our study found that non-circular shaped lesions (high

Shape PC) had a poor prognosis compared to close-to-circular-

shaped lesions (low Shape PC) (see Figure 4).

It should be noted that shape-based metrics have been shown

to have better reproducibility compared to texture metrics (39,

40). A recent study (20), found that a radiomic PET signature

(using four features) achieved an AUC of 0.73 for predicting

clinical benefit, outperforming metabolic tumor volume (AUC

of 0.66).

Furthermore, our study needs secondary validation to provide

prognostic benefits to patients treated with CAR-T for DLBCL. We

retrospectively obtained diverse patient data for this study at our

center and from a consortium that conducted the preliminary trial.

Despite the efforts, the converged samples used in the study were

limited, and we require additional independent samples to validate

our findings. To mitigate and minimize study bias, we performed

cross-validation to estimate predictor performance and reported

our findings as an average (test) metric over multiple samplings.

Our study provides several potential signatures (features) that need

further validation to establish their use in the clinical setting and

provide benefits for our patients. Our study follows the

recommendations from the Standards for Reporting Diagnostic

Accuracy Studies and Radiomics Quality Score to promote the

reproducibility of clinical studies.
Conclusion

This study evaluates the ability of radiological imaging

characteristics obtained from PET/CT images to assess DLBCL

patients’ treatment outcomes. The quantified shape-based radiomic

features (and some texture-based features) observed on PET images

predicted patient’s response to axi-cel (CAR-T) immunotherapy

treatment and were comparable to metabolic tumor volume in

this regard.
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