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Colorectal cancer (CRC) ranks third in global incidence and second in mortality.

However, a comprehensive predictive model for CRC prognosis, immunotherapy

response, and drug sensitivity is still lacking. Various types of programmed cell

death (PCD) are crucial for cancer occurrence, progression, and treatment,

indicating their potential as valuable predictors. Fourteen PCD genes were

collected and subjected to dimensionality reduction using regression methods

to identify key hub genes. Predictive models were constructed and validated

based on bulk transcriptomes and single-cell transcriptomes. Furthermore, the

tumor microenvironment, immunotherapy response, and drug sensitivity profiles

among patients with CRC were explored and stratified by risk. A risk score

incorporating the PCD genes FABP4, AQP8, and NAT1 was developed and

validated across four independent datasets. Patients with CRC who had a high-

risk score exhibited a poorer prognosis. Unsupervised clustering algorithms were

used to identify two molecular subtypes of CRC with distinct features. The risk

score was combined with the clinical features to create a nomogrammodel with

superior predictive performance. Additionally, patients with high-risk scores

exhibited decreased immune cell infiltration, higher stromal scores, and

reduced responsiveness to immunotherapy and first-line clinical drugs

compared with low-risk patients. Furthermore, the top ten non-clinical first-

line drugs for treating CRC were selected based on their predicted IC50 values.

Our results indicate the efficacy of the model and its potential value in predicting

prognosis, response to immunotherapy, and sensitivity to different drugs in

patients with CRC.
KEYWORDS
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drug sensitivity
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1 Introduction

Colorectal cancer (CRC) is one of the most commonmalignancies,

ranking third in incidence and second in mortality worldwide (1).

Various treatment modalities are available for CRC, including

chemotherapy and immunotherapy (2). Unfortunately, clinical

outcomes remain poor owing to the heterogeneity of CRC, genetic

features, and distinct risk factors (3, 4). Approximately 25% of patients

with CRC are diagnosed at an advanced stage, and 25–50% of patients

diagnosed at an early stage eventually go on to develop metastatic

disease (5–7). The 5-year survival rate for individuals with limited

metastatic lesions remains at 40% following surgical resection and

systemic therapy, whereas for those with advanced metastatic CRC, the

survival rate drops to only 20% (8–11). Considering the low survival

rate of patients with CRC, there is an urgent need to identify an

accurate classification of CRC that can better predict patient outcomes,

immunotherapy, and chemotherapy responses, ultimately guiding

personalized treatment strategies and improving patient prognosis.

Programmed cell death (PCD) plays a crucial role in cancer

occurrence and treatment (12). PCD driven by various complex

mechanisms includes apoptosis, pyroptosis, ferroptosis, autophagy,

necroptosis, cuproptosis, anoikis, parthanatos, entotic cell death,

NETosis, lysosome-dependent cell death, alkaliptosis, oxeiptosis,

and disulfidptosis (13–16). We selected these 14 PCD types to

comprehensively cover the diverse mechanisms relevant to CRC

while ensuring specificity. This number reflects an optimal balance,

capturing all major PCD pathways with distinct molecular signatures,

based on an exhaustive review of literature and databases, without

introducing redundancy or lesser-studied types that could complicate

analysis. Apoptosis critically regulates CRC progression by either

inhibiting tumor growth when activated or promoting tumor survival

and metastasis when suppressed. Studies have shown that targeting

apoptotic pathways, such as enhancing microRNA-induced

apoptosis, can sensitize CRC cells to treatment and inhibit tumor

progression (17, 18). Pyroptosis is crucial in suppressing CRC

progression by activating immune responses. Recent studies

emphasize that pyroptosis-inducing therapies, like quercetin or

mitochondria-targeted photodynamic therapy, not only inhibit

tumor growth but also enhance anti-tumor immunity, offering

promising avenues for CRC treatment (19, 20). Recent advances in

ferroptosis research have highlighted its role in CRC progression and

treatment resistance. Studies demonstrate that targeting ferroptosis

regulators, such as SLC7A11 or GPX4, may enhance therapeutic

efficacy by overcoming chemoresistance and inducing cancer cell
Abbreviations: TCGA, the cancer genome atlas; GEO, gene expression omnibus;

CRC, colorectal cancer; PCD, programmed cell death; TME, tumor

microenvironment; LCD, lysosome-dependent cell death; DEGs, differentially

expressed genes; t-SNE, t-distributed stochastic neighbor embedding; OS, overall

survival; CC, consensus clustering; ROC, receiver operating characteristic; DSS,

disease specific survival; ssGSEA, single-sample gene set enrichment analysis;

GSVA, gene set variation analysis; IC50, half maximal inhibitory concentration;

ICI, immune checkpoint inhibitor; PD-1, programmed cell death protein 1; PD-

L1, programmed death-ligand 1; EMT, epithelial-mesenchymal transition;

TAMs, tumor-associated macrophages; MDSCs, myeloid-derived suppressor

cells; NK cells, natural killer cells.
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death (21, 22). Autophagy plays a dual role in CRC, influencing both

tumor suppression and progression. Targeting autophagy regulators,

such as lncRNA GAS5 and ATG9A, holds promise for improving

chemotherapy response and modifying the tumor microenvironment

(TME) (23, 24). Necroptosis has been shown to play a pivotal role in

CRC by driving inflammatory processes and facilitating cancer cell

death. By modulating necroptotic pathways, particularly through the

RIPK1/RIPK3/MLKL signaling cascade, new therapeutic strategies

can potentially suppress tumor progression and improve treatment

outcomes in CRC (25). Cuproptosis, a copper-dependent cell death

mechanism, is triggered by mitochondrial dysfunction and protein

aggregation. In CRC, targeting cuproptosis pathways has shown

potential for tumor suppression and improving immune response

(26, 27). Anoikis, induced by cell detachment from the extracellular

matrix, is crucial in preventing metastasis. In CRC, KHK-A-mediated

phosphorylation of PKM2 enables anoikis resistance and promotes

metastasis (28). Parthanatos, driven by PARP-1 overactivation,

contributes to tumor progression through DNA damage and

mitochondrial dysfunction. Its role in modulating the TME has

been recently highlighted (29, 30). Entotic cell death, initiated by

loss of cell adhesion, involves neighboring cells engulfing each

other. TRAIL signaling promotes entosis, potentially contributing

to CRC suppression (31, 32). NETosis, a form of cell death in

neutrophils, involves the release of neutrophil extracellular traps to

capture pathogens, driven by ROS and histone modification. Recent

advances highlight the role of NETosis in CRC, contributing to tumor

progression by promoting an inflammatory microenvironment (33).

Lysosome-dependent cell death (LCD) is driven by lysosomal

membrane permeabilization, releasing cathepsins and causing

cellular damage. Existing studies indicate that modulating

lysosomal function in CRC could enhance tumor sensitivity to

LCD, providing a strategy to overcome drug resistance (34, 35).

Alkaliptosis, a pH-dependent cell death, involves intracellular

alkalinization and lysosomal dysfunction. It shows potential as a

therapeutic approach in CRC by disrupting tumor cell survival (36,

37). Oxeiptosis, a ROS-dependent cell death via the KEAP1-PGAM5-

AIFM1 axis, shows potential as a tumor-suppressive mechanism in

CRC, with sanguinarine being a key inducer (38). Disulfidptosis,

driven by actin cytoskeleton collapse via disulfide bond formation,

shows potential in CRC for prognosis prediction and therapeutic

advancements (15, 39, 40). Notably, drugs targeting PCD pathways

have already entered clinical application, offering novel therapeutic

potential for CRC treatment. For instance, a BCL-2 inhibitor

approved by the FDA has been shown to exert protective effects

against lymphoma through apoptosis (41). gasdermin E mediated

pyroptosis is intimately linked to the enhancement of anti-tumor

immunity (42). Ferroptosis-targeted drugs or genetic manipulations

can help against chemotherapy resistance (43).

Various PCD types play crucial roles in the progression and

treatment of malignant tumors (12, 44). However, the integration of

various PCD-related genes to identify key hub genes that significantly

impact CRC prognosis has yet to be fully elucidated. To address this,

we employed Cox proportional hazards and LASSO regression to select

PCD-related genes through dimensionality reduction. The Cox model

allowed us to identify genes associated with CRC prognosis by

estimating hazard ratios, making it effective for survival analysis.
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LASSO regression was applied tomanage the high-dimensional genetic

data, selecting the most influential genes while reducing overfitting. By

integrating these methods, we identified crucial PCD-related genes and

constructed a robust model to predict the prognosis of CRC patients, as

well as their response to immunotherapy and drug sensitivity, ensuring

the clinical relevance and reliability of our findings.
2 Materials and methods

2.1 Data collection

The gene sets associated with 14 types of PCD were collected

from the GSEA database, FerrDB database, and literature sources

(45). The specific contents of the gene sets are provided in the

supplementary materials and can also be accessed through the

aforementioned databases using the gene set names. Following

consolidation and deduplication, 1,267 PCD genes were included

for subsequent analysis (Supplementary Table S1). The datasets

used for analysis include TCGA-CRC, GSE39582, GSE29621,

GSE17536, GSE38832, GSE161277, GSE78220, and IMvigor210.
2.2 Identification of differentially
expressed genes

Differential analysis was utilized to identify DEGs between tumor

and normal tissues, with criteria set as |log2 fold change| > 1.5 and

adjusted P < 0.05. Similarly, for DEGs between the low- and high-risk

groups, the criteria were |log2 fold change| > 1 and adjusted P < 0.05.
2.3 Construction and validation of
prognostic PCD-related gene signature

This process employs a stepwise regression strategy, beginning

with univariate Cox regression to identify PCD-related genes

significantly associated with survival, followed by LASSO Cox

regression for dimensionality reduction, and culminating in

multivariate Cox regression to develop the risk score. The risk

score for each patient was calculated using the following formula:

Risk   score =o bi*Ei

This formula incorporated the risk coefficients (bi) and the

expression levels of individual genes (Ei). Subsequently, the t-

distributed stochastic neighbor embedding (t-SNE) was utilized

for clustering analysis of high- and low-risk groups. Kaplan-Meier

analysis was then performed to explore the relationship between

overall survival (OS) time and the calculated risk score.
2.4 Unsupervised clustering of PCD-related
gene signature

Utilizing the PCD-related gene signature, we performed consensus

clustering (CC) analysis to uncover previously unidentified subtypes of
Frontiers in Oncology 03
CRC. Additionally, we employed the t-SNE for clustering analysis of

these CRC subtypes.
2.5 Establishment of the nomogram

Univariate Cox regression analysis was conducted to evaluate

the prognostic value of various clinical characteristics and risk

score. multivariate Cox regression analysis was utilized to

identify prognostic factors associated with OS, which served as

the foundation for developing a prognostic nomogram.

The predictive efficiency of the nomogram was evaluated

using calibration curves and receiver operating characteristic

(ROC) curves.
2.6 Tumor microenvironment

Algorithms such as XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, ESTIMATE, EPIC, CIBERSORT, and ssGSEA

were utilized to evaluate TME cell infiltration in patients with CRC.
2.7 Prediction of therapeutic sensitivity in
patients with different risk scores

The association between the risk score, immune treatment

response, and the IC50 values of 198 chemotherapy and targeted

therapy drugs was investigated. The TIDE algorithm was applied to

predict patients’ potential response to immunotherapy, while the

oncopredict package was employed to calculate IC50 values for each

patient across the 198 drugs.
2.8 Cell lines and culture

The LOVO, SW480 and NCM460 cells were purchased from

the Type Culture Collection of the Chinese Academy of Sciences

(Shanghai, China). All used cell lines were maintained in Dulbecco’s

Modified Eagle Medium supplemented with 10% fetal bovine serum

and 1% penicillin-streptomycin and grown in a humidified

atmosphere containing 5% CO2 at 37°C. All cell lines were

authenticated using short tandem repeat (STR) genotyping and

tested negative for Mycoplasma.
2.9 Terminal deoxynucleotidyl transferase
deoxyuridine triphosphate nick end
labeling staining

Apoptosis analysis of CRC cells was performed using TUNEL

staining (Millipore, Billerica, MA, USA) following the

manufacturer’s instructions. Briefly, the cells were seeded on

coverslips in 24-well plates at a density of 2×105 cells/well. The

cell slides were then fixed in 4% paraformaldehyde for 60 min,

washed with phosphate-buffered saline (PBS), permeabilized using
frontiersin.org
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0.1% Triton X-100 for 2 min on ice, and stained with TUNEL

detection liquid for 1 h at room temperature in the dark.

Subsequently, the cells were washed twice with PBS and stained

with DAPI to visualize the cell nuclei for 10 min at room

temperature to visualize the cell nuclei. Fluorescent signals were

visualized using a laser scanning confocal microscope (LSM800;

Zeiss, Jena, Germany).
2.10 Annexin V-FITC/PI apoptosis assay

The number of apoptotic CRC cells was determined using an

Annexin V-FITC/propidium iodide (PI) assay kit (BD Biosciences,

New Jersey, USA) according to the manufacturer’s instructions. In

brief, the collected CRC cells were washed with cold PBS and

resuspended in 500 ml 1× binding buffer. Subsequently, 5 μL of

annexin-V-FITC and 5 μL of PI were added to 200 μL of each

sample, gently vortexed, and incubated in the dark for 15 min at

room temperature. Finally, the number of stained cells was detected

using a flow cytometer (BD Biosciences, San Jose, CA).
2.11 Plasmid construction and transfection

Human full-length NAT1, amplified from the human cDNA

library, was cloned into the pEGFP-N1 vector to overexpress NAT1.

Plasmid transfection was performed using Lipofectamine 2000

reagent (Invitrogen) according to the manufacturer’s instructions.
2.12 Quantitative real-time PCR and
western blotting

The mRNA levels were analyzed by qPCR assay as previously

described (46–48). Briefly, total RNA was extracted from cells using

TriPure Isolation Reagent (Roche, Basel, Switzerland), following the

manufacturer’s instructions. Subsequently, 2 μg of total RNA was

reverse-transcribed into cDNA using a Transcriptor First Strand

cDNA Synthesis Kit (Roche). Real-time PCR was performed on a

MyiQ Single Color Real-time PCR Detection System (Bio-Rad

Laboratories, Hercules, CA, USA) using the SYBR Green PCR

Master Mix (Bio-Rad Laboratories). The relative mRNA

expression levels were normalized to that of b-actin mRNA using

the comparative 2–DDCT method. Primer sequences used for the

indicated genes are listed in Table 1.
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For protein extraction, cell samples were homogenized and

lysed in radioimmunoprecipitation assay (RIPA) lysis buffer

containing a protease inhibitor cocktail (Roche) and a

phosphatase inhibitor (Roche). Protein concentrations were

determined using a bicinchoninic acid (BCA) assay kit (Thermo

Fisher Scientific, Waltham, MA, USA). Equal amounts of collected

protein (50 μg) were then separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) on 8–12% gels and

transferred onto polyvinylidenefluoride membranes (Millipore) via

electroblotting. Subsequently, the membranes were blocked with 5%

nonfat milk in 1× tris-buffered saline with tween 20 (TBST) at room

temperature and incubated with primary antibodies overnight at

4°C (primary antibodies listed in Table 2). After washing with TBST

thrice, the membranes were incubated with horseradish peroxidase-

conjugated secondary antibodies for 1 h at room temperature.

Membranes were visualized using enhanced chemiluminescence

reagent (Thermo Fisher Scientific) and immunoblotting images

were captured using the ChemiDoc MP Imaging System (Bio-

Rad). The housekeeping gene b-actin was used as the internal

control, and the gray value of each band was quantitatively

analyzed using ImageJ software (National Institute of Health,

Bethesda, MD, USA).
2.13 Statistical analysis

All statistical analyses were performed using R (version 4.3.1).

Continuous variables were compared using the Wilcoxon rank-sum

test, appropriate for non-normally distributed data such as gene

expression levels. Categorical variables were analyzed with the Chi-

square test. For comparisons involving more than two groups, the

Kruskal-Wallis test was used as a non-parametric alternative to

ANOVA, suitable for non-normally distributed data, including gene

expression and other derived metrics. Spearman’s rank correlation

was applied to assess associations between variables, given its

robustness in handling non-linear and non-parametric data.

Statistical significance was defined as p < 0.05.
3 Results

3.1 Workflow of this study

The training cohort included 585 patients with CRC from the

TCGA database, while the validation cohort consisted of 65 patients
TABLE 1 Primer sequences used for real-time PCR analysis.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

NAT1 (human) GGGAGGGTATGTTTACAGCAC ACATCTGGTATGAGCGTCCAA

AQP8 (human) CCATGTGTGAGCCTGAATTTGG ACCCGATGAAGATGAAGAGAGC

FABP4 (human) ACTGGGCCAGGAATTTGACG CTCGTGGAAGTGACGCCTT

b-actin
(human)

GCTTCTCCTTAATGTCACGC CCCACACTGTGCCCATCTAC
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from GSE29621, 177 patients from GSE17536, and 122 patients

from GSE38832. A flowchart summarizing the study design is

provided in Figure 1.
3.2 Identification of PCD-related DEGs

Differential expression analysis identified 2,967 DEGs from the

TCGA-CRC dataset (Figure 2A). To improve accuracy, the same

analysis was performed on GSE39582 (Figure 2B). We subsequently

identified the intersection of DEGs from both cohorts with 1,267
Frontiers in Oncology 05
PCD-related genes, yielding 42 differentially expressed PCD-related

genes, as illustrated in the Venn diagram (Figure 2C).
3.3 Construction of a PCD-related
gene signature

Three PCD-related DEGs (FABP4, AQP8, and NAT1) with

prognostic significance were identified using univariate, Lasso-Cox,

and multivariate Cox regression analyses (Figures 2D–F).

Subsequently, Kaplan-Meier analysis was performed to determine the

prognostic value of FABP4, AQP8, and NAT1, with OS as the outcome

metric. Patients with CRC with high NAT1 and AQP8 expression

showed better OS, whereas high FABP4 expression significantly

correlated with shorter OS (Supplementary Figure S1). The risk score

for each patient was calculated using the formula: risk score = (0.186 ×

FABP4) + (0.103 × AQP8) + (-0.449 × NAT1). We investigated the

associations between risk scores and diverse clinical characteristics,

including survival status, clinical stage, N stage, and M stage. Poor

clinical outcomes were associated with higher risk scores (Figures 3A,

B). Patients with CRC were stratified into high- and low-risk groups

based on the median risk score to evaluate functional differences
FIGURE 1

Workflow.
TABLE 2 Antibodies used for western blot analyses.

Antibodies Source Cat NO. Dilution

b-actin Proteintech 20536-1-AP 1:2000

BAX Proteintech 50599-2-Ig 1:2000

Cleaved
Caspase3

Cell
Signaling Technology

9664 1:1000

Caspase3 Cell
Signaling Technology

9662
1:1000
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between the two groups. GO and KEGG analyses were applied to

identify the biological functions and pathways of the 150 DEGs in the

high- and low-risk groups (Supplementary Table S2). We focused on

the top five enrichment results from both GO and KEGG and

discovered that the biological processes were involved in metabolic

processes. In addition, the KEGG analysis of the DEGs indicated that

retinol metabolism and drug metabolism-cytochrome P450 were

among the most significantly enriched pathways (Figure 3C).

Furthermore, a close relationship between 42 PCD-related DEGs and

CNV was explored in the TCGA-CRC cohort. Notably, AQP8 and

FABP4 were frequently expressed, whereas NAT1 was occasionally

expressed in CRC (Figure 3D).
3.4 Internal training and external validation
of the PCD-related gene signature

Subsequently, OS rates were compared between patients with

high- and low-risk scores in the TCGA training cohort. The OS rate

was significantly lower in patients with CRCwho had high-risk scores

than in those with low-risk scores (Figures 4A, B). Additionally, t-

SNE analysis revealed that the established risk score was suitable for

classification (Figure 4C). There was a significant difference in the OS
Frontiers in Oncology 06
between the two groups according to the risk score. Patients in the

low-risk group had a better OS than those in the high-risk group

(Figure 4D). The GSE29621, GSE17536, and GSE38832 datasets were

used as validation cohorts. Patients from these validation cohorts

were divided into high- and low-risk groups based on the median risk

scores. Consistent with the results of the training cohort, the survival

rates, OS, and Disease Specific Survival (DSS) in the validation cohort

were lower in the high-risk group than those in the low-risk group

(Figures 4A–D).
3.5 Unsupervised clustering of PCD-related
gene signature

To further investigate unidentified CRC subtypes, we performed

CC analysis on three PCD-related model genes. The results showed

that the differences between the subgroups were most pronounced at

maxK = 2, suggesting that the patients with CRC could be effectively

categorized into two groups (Figure 5A). Furthermore, t-SNE

clustering analysis was conducted on the two subtypes, yielding

satisfactory differentiation results (Figure 5B). Notably, there were

significant differences in OS between the subtypes, with cluster 2

displaying a more favorable prognosis and cluster 1 showing a poorer
FIGURE 2

Identification of differentially expressed genes (DEGs) related to PCD and construction of prognostic gene signature. (A, B) Volcano plot and
heatmap of DEGs between CRC and normal tissues in TCGA and GSE39582. (C) Venn diagram reveals 42 PCD-related DEGs obtained from the
intersection. (D) The expression profiles of seven genes associated with prognosis identified through univariate Cox regression analysis. (E) LASSO
regression employed for screening of univariate COX regression results. (F) A final selection of 3 genes associated with the prognosis of patients with
CRC was made through multivariate COX regression analysis to create a signature. ***P < 0.001.
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prognosis (Figure 5C). Similar results were observed in the validation

cohorts GSE29621, GSE17536 and GSE38832. Furthermore, analysis

indicated that the majority of Cluster1 was linked to a high-risk score,

while the majority of Cluster2 was correlated with a low-risk

score (Figure 5D).
3.6 Establishment and assessment of the
nomogram survival model

Univariate and multivariate Cox regression analyses were

performed on the clinical information and corresponding risk scores

of the 585 patients from TCGA. Univariate Cox regression analysis
Frontiers in Oncology 07
identified that risk score, stage, T-stage, N-stage, M-stage, and age

significantly affected survival. Subsequently, when these survival-

influencing factors were incorporated into the Multivariate Cox

regression analysis, the established risk score was determined to be

an independent prognostic indicator (Figure 6A). A nomogram was

developed for TCGA cohort utilizing Multivariate Cox regression

analysis to evaluate the OS of patients with CRC at 1, 2, and 4 years.

The model incorporated risk score, stage, M-stage, and age (Figure 6B).

The calibration curve illustrates the precision of the model in predicting

survival rates at these time points (Figure 6C). Additionally, the area

under the curve values was assessed in four independent cohorts,

indicating that the nomogram exhibited high accuracy in predicting

survival rates at 1, 2, and 4 years for patients with CRC (Figure 6D).
FIGURE 3

Clinical relevance and functional analysis of the constructed gene signature. (A) Box plots depicting the association between risk score and clinical
characteristics. (B) Heatmap regarding the expression of the three model genes and the patient’s features. (C) Enrichment analysis the DEGs in high-
and low-risk groups. (D) CNV status of 42 PCD-related DEGs. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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3.7 Dissection of TME based on PCD-
related gene signature

Tumor immune cell infiltration is a crucial feature of the TME.

Here, we employed seven algorithms, including XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, ESTIMATE, EPIC, and

CIBERSORT, to assess the immune cell infiltration scores of 585

patients from TCGA database. Spearman’s correlation analysis

demonstrated a potential relationship between lower risk scores

and heightened immune activity. The risk score inversely correlated

with the infiltration of various immune cells, including B cells, CD4+

memory T cells, CD4+ T cells, CD8+ naïve T cells, CD8+ Tcm cells,
Frontiers in Oncology 08
cDC, and other immune cells (Figure 7A). This trend remained

consistent across multiple algorithms, confirming the robustness and

reliability of our risk score assessment approach. Additionally, the

risk score showed a positive correlation with the stromal score,

fibroblasts, and endothelial cells, and a negative correlation with

M1 macrophages. To provide further insight, we compared the

outputs from the different algorithms and noted minimal

discrepancies, supporting the consistency of the observed

associations. Visualization of the TME between low- and high-risk

groups revealed that immune cells associated with a favorable tumor

prognosis, such as B cells, CD4+ T cells, CD8+ T cells, plasma cells,

M1 macrophages, and natural killer (NK) cells, had lower infiltration
FIGURE 4

Internal training and external validation of the gene signature prediction model. (A) Distribution of risk score between low- and high-risk groups. (B)
Survival status of patients with CRC in the low- and high-risk groups. (C) t-SNE analysis plot based on the risk group. (D) The differences between
OS and DSS in different risk groups.
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in the high-risk group than in the low-risk group. Conversely,

elements linked to an unfavorable tumor prognosis, such as

fibroblasts and endothelial cells, tended to have higher infiltration

levels in the high-risk group (Figure 7B). These findings emphasize

the differential immune landscape between risk groups, as

consistently identified across algorithms. To validate the accuracy

of immune infiltration and investigate the differences in immune

function between the high- and low-risk groups, ssGSEA was

performed. Our findings were consistent with those of previous

algorithms, showing that the low-risk group had superior immune

infiltration compared with the high-risk group. Moreover, the

immune function scores of the low-risk group generally surpassed

those of the high-risk group. Analysis using the ESTIMATE
Frontiers in Oncology 09
algorithm revealed that the high-risk group had remarkably higher

stromal scores, but lower immune scores than the low-risk group

(Figures 8A, B). To further explore the risk score expression in

different cell types, single-cell RNA transcriptome data from

GSE161277 were analyzed. Cell type annotation was conducted

(Figure 8C), and the risk score expression in each cell was

calculated using the ssGSEA and GSVA algorithms for accuracy.

Violin plots consistently demonstrated that the risk score was

expressed across various cell types, with tumor-associated

fibroblasts exhibiting the highest expression levels. This

pronounced expression in fibroblasts underscores their potential

role in mediating the adverse prognostic impact associated with

elevated risk scores (Figure 8D).
FIGURE 5

Unsupervised clustering of PCD related model genes. (A) Empirical cumulative distribution function plot displaying consensus distributions for each k
value (from 2 to 4). (B) t-SNE analysis plot based on the molecular clusters. (C) Kaplan-Meier analysis of the prognostic differences between two
molecular clusters. (D) Diagram showing the interrelationship between molecular clusters, survival status, and risk score groups.
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3.8 PCD-related gene signature was
associated with immunotherapy responses
in CRC

Immunotherapy has emerged as a powerful clinical approach

for treating various cancers (49). However, patients who fail to

mount an effective immune response do not derive significant

benefit from immunotherapies. Therefore, there is an urgent need

to dist inguish between immunotherapy-sensit ive and
Frontiers in Oncology 10
immunotherapy-insensitive patients with CRC. The TIDE

algorithm, which assessed the predictive power of the risk score

in determining immunotherapy response in patients with CRC,

revealed that responders had lower risk scores than non-responders.

Notably, the low-risk group displayed lower TIDE scores and

correlation analyses, indicating a positive relationship between the

risk and TIDE scores. Furthermore, the low-risk group showed a

higher immunotherapy response rate (48.8%) in contrast to the

poorer response rate observed in the high-risk group (28.4%).
FIGURE 6

Establishment and assessment of the nomogram. (A) Univariate and multivariate analysis for the clinicopathologic characteristics and risk score. (B) A
nomogram capable of predicting the prognosis of patients with CRC. (C) Calibration plots showing the probability of 1-, 2-, and 4-year OS. (D) ROC
curves analysis of nomogram. **P < 0.01; ***P < 0.001.
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Moreover, the risk score was associated with the tumor stroma,

prompting an investigation into the impact of stromal scores on

immunotherapy response rates. Interestingly, the high stromal

score group exhibited a lower immunotherapy response rate

(22.3%) compared to those in the low stromal score group.

(54.9%) (Figure 9A). By integrating the risk and stromal scores,
Frontiers in Oncology 11
the findings revealed that in the low-stromal score group, the

immunotherapy response rates were 61.7% and 46% in the low-

risk and high-risk groups, respectively. Conversely, in the high

stromal score group, the immunotherapy response rate was 32% in

the low-risk group and 15% in the high-risk group. These findings

suggest that the combination of the risk and stromal score could
FIGURE 7

The investigation of the immune landscape in low- and high-risk groups. (A) Plot illustrating the correlation between risk score and levels of immune cell
infiltration. (B) The difference in immune cell infiltration level between low- and high-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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serve as a reliable biomarker for predicting immunotherapy

response in patients with CRC.

Additionally, the IPS is a molecular indicator used to assess the

immune status of tumors in patients, with a higher IPS suggesting a

more favorable response to immunotherapy. Analysis of IPS data

from the TCGA database revealed that the low-risk group generally

exhibited higher IPS levels (Figure 9B). The relationship between the

risk score and immunotherapy response rates was further validated

using two independent datasets, GSE78220 and Imvigor210. Both

datasets showed that the patients who responded positively to

immunotherapy tended to have lower risk scores. Additionally,
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individuals in the low-risk category displayed higher rates of

immunotherapy response. Moreover, patients with a low-risk score

demonstrated similarly superior OS compared with those with a

high-risk score within the immunotherapy cohort (Figures 9C, D).
3.9 Efficacy of PCD-related gene signature
in predicting drug sensitivity

To investigate the relationship between PCD-related gene

signatures and drug sensitivity in patients with CRC, our analysis
FIGURE 8

Dissection of TME based on PCD signature. (A) The difference of TME score between in low- and high-risk groups. (B) ssGSEA algorithm calculated
the differences in immune cell infiltration levels and immune function between low- and high-risk groups. (C) Visualization of all cell subtypes from 7
samples through t-SNE plot. Different cell subtypes were annotated. Proportions of different cell types in each sample were computed. (D) Violin
plot of risk score in different cell types. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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FIGURE 9

Efficacy of PCD signature in predicting therapeutic sensitivity. (A) Differences in risk score among patients with different responses to
immunotherapy. The correlation between risk score and TIDE. Variations in immunotherapy response rates between high- and low-risk groups.
Differences in immunotherapy response rates between high- and low stromal score groups. (B) Utilizing risk score and stromal score together to
predict immunotherapy response rates. Disparities in IPS between patients in different risk groups. (C, D) Validation of the predictive efficiency of the
PCD signature in the IMvigor210 and GSE78220 cohort. (E) Variations in IC50 of first-line clinical treatment drugs for CRC between high- and low-
risk groups. (F) The correlation between riskscore and IC50 values for first-line clinical treatment drugs in CRC. The ten drugs with the lowest IC50
values selected from a pool of 198 drugs. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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focused on comparing the IC50 values of first-line drugs (5-

Fluorouracil, Oxaliplatin, Irinotecan, Epirubicin, Cisplatin, and

Vincristine) between the high- and low-risk groups of clinically

treated patients with CRC. Interestingly, we observed that patients

in the low-risk group demonstrated a significantly higher sensitivity

to these first-line drugs (Figure 9E). A correlation plot revealed a

positive correlation between the IC50 values of first-line drugs and

the risk score, implying that patients with elevated risk score

expression could potentially develop resistance to first-line drugs.

To explore new therapeutic possibilities for patients insensitive

to first-line CRC treatment drugs, we calculated the median IC50

values of 198 chemotherapy/targeted drugs. The top ten drugs with

the lowest IC50 values (Vinblastine, Vinorelbine, Eg5, Paclitaxel,

and Camptothecin, etc.) were identified in ascending order. The

very low IC50 values suggest the potential sensitivity of patients

with CRC to these drugs, making them potential candidates for

those who are insensitive to first-line treatment drugs (Figure 9F).
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3.10 Biological function of the
selected gene

To verify the expression of model genes, qPCR showed that

NAT1 and AQP8 had significantly lower expression levels, while

FABP4 showed higher expression in CRC cell lines (LOVO and

SW480) compared with that in NCM460 normal cells (Figures 10A–

C). Interestingly, the results of FABP4 mRNA levels seemed to be

inconsistent with the analysis from the TCGA database. This

discrepancy may be due to differences in the cell lines and tumor

tissues used to measure mRNA expression. We focused on exploring

the role of NAT1 in CRC since NAT1 yielded the largest contribution

to the risk model. GSEA revealed that apoptosis signaling pathway

genes were enriched in the high NAT1 expression phenotype

(Figure 10D). Strikingly, NAT1 overexpression was correlated with

increased tumor cell apoptosis, as determined by TUNEL and

Annexin V/PI staining (Figures 10E–H). Consistent with these
FIGURE 10

Experimental verification of 3 genes expression and role of NAT1 in mediating apoptosis in colorectal cancer cells. (A–C) The mRNA levels of NAT1
(A), AQP8 (B), and FABP4 (C) in NCM460 normal colonic and LOVO and SW480 colorectal cancer cells. (D) GSEA of apoptosis pathway in the NAT1-
high subgroups. (E, F) Representative images of the TUNEL assays exposed to NAT1 overexpression in LOVO (E) and SW480 (F) cells, respectively.
(G, H) Apoptosis was evaluated by Annexin V/PI staining with a flow cytometer. (I, J) Western blot results for analysis of BAX and cleaved caspase-3
expression treated with NAT1 overexpression. n=6 for each group. *P < 0.05; **P < 0.01; ***P < 0.001.
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results, NAT1 overexpression increased the expression of apoptosis-

related proteins, including BAX and cleaved caspase-3 (Figures 10I,

J). Collectively, these findings suggested that NAT1 dramatically

activated apoptosis in CRC cells.
4 Discussion

This study provides a comprehensive analysis of 14 distinct PCD

types, resulting in the identification of crucial PCD-related genes in

CRC and the development of a novel risk score. The outstanding

predictive performance of the risk score was extensively validated

using multiple external cohorts. Furthermore, we integrated the risk

score with patients’ clinical characteristics to construct a nomogram,

enhancing its clinical relevance and further strengthening its predictive

accuracy. Our findings reveal a significant association between the risk

score and the TME, immunotherapy responsiveness, and drug

sensitivity, highlighting its clinical applicability in precision oncology.

Existing CRC prognostic models typically focus on single-genemarkers

or individual PCD pathways, such as PD-L1, ferroptosis, or cuproptosis

alone (50–52). In contrast, ourmodel uniquely integrates multiple PCD

pathways, enabling a comprehensive analysis to identify the genes that

play a more pivotal role in prognosis, which are subsequently used to

construct a robust predictive model. This multi-dimensional approach

not only enhances the accuracy of patient stratification but also

provides a more nuanced prediction of therapeutic outcomes,

encompassing both immunotherapy and chemotherapy responses.

The robustness of our model is further underscored by its validation

through single-cell transcriptomic data, reflecting its adaptability and

reliability. By capturing the complexity of the TME and the diverse

PCD pathways involved, our model offers an innovative and

personalized framework for optimizing CRC patient management,

positioning it as a superior prognostic tool compared to

existing models.

Increasing evidence suggests that PCD plays a fundamental role

in biological processes and has long been linked to the development

and metastasis of cancer (44). Our established signature, composed of

three genes associated with PCD (NAT1, AQP8, and FABP4), has

been shown to accurately predicted OS and DSS in patients with

CRC. Each of these model genes fulfills unique functions in CRC

progression via distinct mechanisms. FABP4, a low-molecular-weight

protein responsible for transporting long-chain fatty acids and other

hydrophobic ligands, has a significant impact on tumor initiation,

progression, and treatment (53). In ovarian cancer cells, enhanced

expression of FABP4 induced by adipocytes not only promotes

metastasis but also mediates resistance to carboplatin (54). In

pancreatic cancer, FABP4 facilitates the movement, invasion, and

spread of cancer cells by influencing signals related to epithelial-

mesenchymal transition (EMT) (55). Consistent with previous

studies, Kaplan-Meier analysis demonstrated that patients with

CRC with high FABP4 expression exhibited a lower survival rate,

suggesting that FABP4 is a potential risk factor for CRC. AQP8

functions as a water-selective transporter (56). Our analysis indicated

that patients with CRC with low AQP8 expression had a poorer

prognosis. Previous studies have shown that AQP8 overexpression

can lead to a notable decrease in the growth, invasiveness, and colony
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formation of SW480 and HT-29 CRC cells. This is possibly due to

AQP8 overexpression, which inhibits the PI3K/AKT signaling

pathway and PCDH7 expression, ultimately suppressing oncogenic

characteristics (57). NAT1 is a phase II xenobiotic-metabolizing

enzyme that is widely distributed in various tissues (58). Our

results indicate that elevated levels of NAT1 expression

are correlated with better outcomes in patients with CRC.

Furthermore, NAT1 emerged as a key gene in our model, with the

highest contribution from the risk model. Therefore, we focused on

this gene in the present study. Initial validation of NAT1 expression,

supported by qPCR results aligned with TCGA-CRC data, indicated

reduced expression in tumors. Furthermore, our exploration of the

relationship between NAT1 expression and PCD through GSEA

demonstrated the upregulation of the apoptotic pathway in response

to high NAT1 expression. Interestingly, previous studies show that

NAT1 knockdown promotes apoptosis in HT-29 cells under low

glucose conditions (59). This seems contrary to our results, which

revealed that NAT overexpression led to apoptosis in two different

cell lines (LOVO and SW480). A possible explanation is that the

regulatory role of NAT1 in apoptosis varies across HT-29, LoVo, and

SW480 cells, depending on the p53 status and cellular context. In

HT-29 cells, NAT1 stabilizes the gain-of-function mutant p53

(R273H) under low-glucose conditions, thereby modulating its

activity. This stabilization enables the mutant p53 to effectively

reduce ROS accumulation, which, in turn, suppresses glucose

deprivation-induced apoptosis (59). In contrast, in LoVo cells,

where p53 is wild-type and retains its pro-apoptotic function under

cellular stress (60), NAT1 overexpression may increase ROS levels or

alter metabolic pathways, further activating p53’s apoptotic response,

leading to increased cell death. Similarly, in SW480 cells, despite the

presence of mutant p53 (R273H and P309S) (61), the mutation type

differs from that in HT-29 cells, potentially preventing NAT1 from

exerting the same stabilizing effect, and instead, inducing apoptosis

through alternative mechanisms, such as ROS elevation. This

indicates that the function of NAT1 varies significantly depending

on the p53 background and cellular stress conditions, highlighting the

importance of investigating NAT1’s role in specific cell types

and contexts.

Disrupted microenvironments significantly influence the

occurrence and development of tumors. The TME aids tumors in

evading immune surveillance and drug interference. The three

model genes play distinct roles within the TME. FABP4 regulates

lipid metabolism, enhancing fatty acid transport and activating pro-

tumorigenic pathways, which promote the accumulation of tumor-

associated macrophages (TAMs) and myeloid-derived suppressor

cells (MDSCs), leading to immune suppression and tumor immune

evasion (62). AQP8 modulates ROS levels within the TME,

influencing immune cell behavior and promoting the recruitment

of suppressive cells like Regulatory T cells (Tregs) and MDSCs,

which create an immunosuppressive environment that supports

tumor progression (63). NAT1 modulates the TME by regulating

immune cell infiltration levels, particularly affecting Cytotoxic T

Lymphocytes (CTLs), NK cells, and TAMs. Downregulation of

NAT1 correlates with decreased CTL and NK cell infiltration,

promoting an immunosuppressive environment characterized by

increased TAM and Treg presence, which collectively facilitates
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tumor progression and metastasis (64–66). In the TME, various cell

types collectively contribute to tumor development, significantly

impacting patient prognosis (67). M1 macrophages, known for their

“classical activation,” produce type I pro-inflammatory cytokines,

engage in antigen presentation, and possess anti-tumorigenic

properties (68). However, cancer-associated fibroblasts contribute

to pro-tumorigenic functions (69). The tumor vasculature sustained

by the TME supports continuous tumor growth (70). Endothelial

cells contribute to the formation of new blood vessels by regulating

angiogenesis (71). The initiation of primary tumor invasion

involves the critical process of EMT, where tumor cells undergo a

transformation marked by the loss of epithelial markers and the

acquisition of mesenchymal traits. This phenotypic shift confers

stem cell-like properties and a migratory phenotype to tumor cells,

supported by the altered immune microenvironment (72). Several

studies have shown that the stroma plays an essential role in cancer

phenotype transformation (73). CD8+ T cells significantly

correlated with recurrence time, DFS, and OS in patients (74).

Our analysis aligns with the findings of previous research. Patients

with high-risk scores and poor prognoses displayed decreased levels

of beneficial immune cells, such as CD8+ T cells, CD4+ T cells, M1

macrophages, and NK cells, whereas cells that support tumor

progression, such as endothelial cells, tumor-associated

fibroblasts, and stromal infiltration, were elevated. These patterns

were consistent across various algorithms, elucidating the basis of

unfavorable prognosis in this patient cohort. As the risk score

increases, immune cell infiltration decreases, tumor stromal

components increase, and immune function deteriorates, creating

an imbalanced TME that facilitates tumor formation and invasion.

Consequently, patients with high-risk scores had lower survival

rates and poorer prognoses.

Immunotherapy has revolutionized the treatment of patients

with unresectable cancers (49). Biomarkers, such as PD-1 and PD-

L1 are valuable for predicting the effectiveness of immunotherapy.

However, the interplay between these biomarkers is intricate, and it

is unclear whether combining them enhances the efficacy compared

to using a single marker (75). This study investigated the correlation

between the risk score and effective immunotherapy biomarkers.

Results from the ssGSEA immune checkpoint analysis showed that

the low-risk group exhibited superior performance. Furthermore,

the application of the TIDE score, which indicates immune escape

likelihood and ICI treatment effectiveness, showed a significantly

higher TIDE score in the high-risk group. The positive correlation

between the risk score and TIDE score suggested that patients with

lower risk scores derived greater benefits from ICI therapy. By

combining the stromal and risk scores, we were able to predict the

responsiveness of patients with CRC to immunotherapy more

accurately. The IPS, developed from the TCGA RNA-seq data to

predict patient responses to immune checkpoint inhibitors (ICIs)

(76), also indicated a better response in the low-risk group. Taking

all these immunotherapy-related findings into consideration, it

appears that patients in the low-risk group may benefit more

from immunotherapy in the context of CRC treatment.

Pharmacological interventions, encompassing chemotherapy and

targeted therapies, are pivotal in enhancing survival outcomes for

patients with CRC (77). Our results indicated a correlation between
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the risk score and IC50 values of chemotherapy/targeted drugs in

patients with CRC. The IC50 values were calculated for 198

chemotherapy/targeted drugs, revealing that patients in the low-risk

group exhibited higher sensitivity to the first-line clinical treatment

drugs for CRC than those in the high-risk group. Furthermore,

correlation analysis revealed a positive relationship between the risk

score and the IC50 values of first-line clinical treatment drugs,

indicating that as the risk score increases, patients with CRC may

develop resistance to these drugs. To identify potential alternative

treatments for patients with CRC, we arranged the median IC50

values of non-first-line drugs in ascending order and pinpointed the

ten drugs with the lowest values. These drugs are promising for the

treatment of patients unresponsive to first-line drugs. Consequently,

it is plausible to consider that patients at high-risk may derive lesser

benefits from first-line drug treatments and might require alternative

drugs or treatment strategies.

The PCD-related gene signature developed in this study offers a

practical and translational tool for CRC management, enabling precise

patient stratification through risk score calculation. In clinical settings,

gene expression levels of FABP4, AQP8, and NAT1 can be measured

from routine biopsy samples using established techniques such as

qPCR or RNA sequencing. These technologies, widely available in

modern hospitals, allow for the rapid and accurate quantification of

gene expression, integrating seamlessly into clinical workflows. This

stratification guides personalized treatment decisions, such as

prioritizing low-risk patients for standard chemotherapy or

identifying high-risk individuals for alternative or immunotherapy

approaches, thereby maximizing therapeutic efficacy and improving

clinical outcomes. Thus, the integration of gene expression analysis and

risk score computation in hospitals is not only feasible but also

streamlined for clinical application.

While our risk model demonstrates strong performance across

TCGA-CRC and external cohorts, its generalizability may be limited

due to the demographic and geographic diversity of the sample

populations, potentially restricting its applicability to broader CRC

populations. Computational methods, including XCELL, TIMER,

and others, were employed to analyze the TME and immune cell

infiltration, yet these algorithms may not fully capture the dynamic

and complex immune interactions. Although IC50 values provide

preliminary insights into drug sensitivity, further experimental and

clinical studies are needed to validate their efficacy and safety. Future

research should incorporate multi-ethnic cohorts and utilize single-

cell RNA sequencing and spatial transcriptomics to better

characterize TME heterogeneity and validate the mechanistic roles

of hub genes (e.g., NAT1, AQP8, FABP4).

In summary, our study highlights the unique advantages of

utilizing multigene combinations over single genes for predicting

cancer prognosis. The risk model, which was derived from hub

genes across 14 types of PCD, plays a crucial role in the diagnosis

and prognosis of patients with CRC. Furthermore, our study offers a

straightforward approach for categorizing patients into high- or

low-risk subgroups. Finally, we conducted separate investigations

on TME variances, mutation statuses, immune therapy responses,

chemotherapy drug sensitivities, and other factors in these

subgroups. This study offers valuable insights into the tailoring of

personalized treatment plans for patients with CRC.
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5 Conclusions

We developed a risk model for patients with CRC. This model

showed a significant correlation between the risk score and various

factors such as patient prognosis , TME, response to

immunotherapy, and sensitivity to chemotherapy drugs. Patients

classified in the low-risk group demonstrated better prognoses and

higher response rates to immunotherapy and first-line

chemotherapy drugs compared to those in the high-risk group.

Conversely, patients in the high-risk group may experience

resistance to first-line CRC chemotherapy drugs as their risk

score increases. Through the use of regression methods, 10 drugs

were identified as sensitive for CRC treatment, offering potential for

patients who do not respond well to standard first-line medications.

To further elucidate the molecular mechanisms underlying the

model genes, NAT1, as the most pivotal gene within the risk

model, was selected for subsequent fundamental experimental

investigations. The findings suggested that NAT1 may play a role

in CRC progression by impacting cell apoptosis.
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