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Prognostic significance of
CNNM4 in ovarian cancer:
a comprehensive
bioinformatics analysis
Yiya Wang*

School of Life Sciences, Qilu Normal University, Jinan, China
Background: Ovarian cancer (OV) is a common malignancy in the female

reproductive system, characterized by poor prognosis and high recurrence

rates. The discovery of dependable molecular markers is crucial for improving

the timeliness of detection, diagnosis, and treatment, ultimately aiming to lower

fatality rates. CNNM4 (cyclin and CBS domain divalent metal cation transport

mediator 4), a member of the CNNM (Cyclin M) family, binds to PRL (prolactin) to

regulate magnesium homeostasis and influence tumor cell proliferation.

Although CNNM4 is implicated in various cancers, its role in OV remains unclear.

Methods: In vitro experiments assessed CNNM4 expression and its impact on the

proliferation and migration of OV cells. Comparisons of TCGA and GTEx data

were used to identify correlations between clinical features and outcomes. The

role of CNNM4 in OV was further explored through comprehensive

bioinformatics analyses.

Results: Elevated levels of CNNM4 expression were observed in OV cells and

tissues, and were linked to a poor prognosis. CNNM4 could modulate the

proliferation and migration of various OV cell lines, including IOSE-80, SKOV-

3, and A2780. Through involvement in multiple signaling pathways, evidenced by

GSVA and GSEA, CNNM4 was implicated in OV progression. CNNM4 positively

regulated the infiltration level of Macrophages M2, T cells CD4 memory resting

and NK cells resting, and had a negative regulation effect on NK cells activated

and T cells gamma delta. Moreover, CNNM4 is related to drug sensitivity of OV. A

prediction model based on CNNM4 expression and clinical symptoms was

constructed to predict OV prognosis.

Conclusion: CNNM4 may affect the progression of OV and is associated with a

poor prognosis. It has potential as a biomarker for predicting survival and as a

target for therapeutic interventions in OV patients.
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1 Introduction

Globally, OV is the fifth leading cause of cancer mortality

among women, exemplifying a highly lethal condition that

surpasses other gynecologic cancers in terms of mortality and

recurrence rates (1, 2). OV is rare in women under 40, primarily

presenting as germ-cell tumors, whereas epithelial cancers, which

constitute over 90% of cases, predominantly affect women over 40.

The risk of developing these tumors increases with age, peaking in

those aged 70 and above (3). According to the statistics, 90% of OV

cases are epithelial (EOV), with 60% being high-grade serous

carcinomas (HGSCs) and the remaining 40% comprising clear

cell, mucinous, endometrioid, and low-grade serous carcinomas

(4). Studies have predicted that the incidence of OV and the death

toll will increase annually (5). Although early-stage OV has a high

cure rate (6, 7), a significant proportion of women are diagnosed

with stage III/IV disease, with more than 75% presenting with late-

stage OV and succumbing to the disease (8). In the past,

conventional treatment methods for OV in clinical practice have

included cytoreductive surgery and combination platinum-taxane

chemotherapy. With ongoing advancements in clinical treatment

technologies, many emerging treatments, such as small molecule

inhibitors, are increasingly being applied (9). However, the cure rate

for OV has not improved over the last 30 years, due to ineffective

early detection tests and frequent recurrences due to chemotherapy

resistance (10, 11). Consequently, enhancing early detection is vital

for reducing mortality in women, alongside the need to pinpoint

more effective biomarkers for OV.

CNNM4 belongs to the CNNM family, which can control

intracellular Mg2+ levels through Na+/Mg2+ exchange, its

biological function is linked to various diseases (12, 13). Members

of the CNNM family have a highly conserved domain and are

evolutionary conserved (14). CNNM4 was the first family member

shown to the Mg2+-transporting function. In HEK293 cells,

CNNM4 can reduce Mg2+ levels and increase the Na+ levels (15).

Dyshomeostasis of magnesium, often found in cancer, contributes

to pathophysiology. Adequate magnesium is essential for cell

proliferation (16), and overexpression of Mg2+ channels has been

implicated in tumor development and progression. PRL, frequently

overexpressed in cancers, acts as a pseudo phosphatase by binding

to CNNM4, modulating magnesium homeostasis. The co-

expression of PRL with CNNM4 inhibits CNNM4-mediated Mg2+

efflux (14). Changes in intracellular magnesium, linked to cancer

progression, result from the formation of a PRL-CNNM complex.

In certain digestive system cancers, CNNM4 mRNA levels are

elevated compared to normal tissues. High CNNM4 mRNA

expression correlates with reduced overall survival in patients

with pancreatic adenocarcinoma (17). These findings suggest

CNNM4 may have regulatory roles in cancer pathogenesis and

progression beyond its Mg2+ transport function, warranting further

investigation into specific mechanisms. CNNM4 also plays a crucial

role in genetic diseases. In patients with Jalili syndrome, CNNM4

mutations have been observed (18). And the presence of a CNNM4

defect has the potential to impact the individual’s fertility. The most

common phenotype in CNNM4-deficient mice is male sterility (19).
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Recent studies have linked CNNM4 to tumor growth and

metastasis, sparking interest in its potential as a target for cancer

therapy. However, the relative expression and function of CNNM4

in OV remain unclear and require further investigation.

This study explores CNNM4’s relationship with OV, examining

its varied expression in diseased versus normal tissues and its

association with the clinical characteristics of OV to determine its

prognostic significance. We demonstrated that CNNM4 promotes

cancer proliferation and metastasis through multiple biological

assays. GSVA and GSEA were conducted to analyze the biological

mechanisms modulated by CNNM4 involved in OV pathogenesis.

Furthermore, we explored the relationships between CNNM4

levels, immune infiltration, and drug sensitivity. Additionally, OV

cells were categorized into subtypes and CNNM4 expression at the

single-cell level was examined. A model predicting OV outcomes

was formulated, underscoring the association between heightened

CNNM4 expression and adverse prognoses. Therefore, CNNM4

represents a promising molecular marker for the diagnosis and

therapeutic targeting of OV.
2 Materials and methods

2.1 Data acquisition and difference analysis

Clinical and genomic data from OV patients in the TCGA Pan

Cancer Atlas cohort were download through the NCI Genomics

Data Commons Portal (https://portal.gdc.cancer.gov/). The total

population of that cohort is 429 samples. In addition, normal

ovarian samples were acquired through the GTEx (The

Genotype-Tissue Expression) database (n = 88) (https://

www.gtexportal.org/home/index.html) (20). After merging the

datasets from TCGA and GTEx, adjustments were made to the

calculations to assess gene expression variations among different

cancer types, especially in terms of CNNM4 expression. Quality

control was performed during merging to reach reliable data, and

because of this, nine samples of low or incomplete quality were

removed. Single cell data file GSE184880 was then downloaded

from the NCBI (National Center of Biotechnology Information)

GEO (Gene Expression Omnibus) database and added sample data

on 7 cases with complete expression profiles for further analysis.
2.2 Functional verification of CNNM4

qRT-PCR and Western Blot (WB) were performed for the

quan t ifica t ion o f CNNM4 expre s s i on in OV ce l l s .

Immunohistochemistry (IHC) was done for locating the expression

of CNNM4 in OV and paracancerous tissue. Vector pcDNA3.1-

CNNM4 was constructed to upregulate the mRNA expression of

CNNM4. The CCK8 (Cell Counting Kit-8) assay was adopted for

proliferation assessment. Flow cytometry was conducted to assess cell

cycle and apoptosis. A wound healing assay was conducted for

assessing cell invasion and migration. Detailed materials and

methods can be found in the Supplementary Material section.
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https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/index.html
https://www.gtexportal.org/home/index.html
https://doi.org/10.3389/fonc.2024.1483425
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang 10.3389/fonc.2024.1483425
2.3 Acquisition and analysis of DepMap
gene loss of function screening data

The DepMap portal (https://depmap.org/) was used to obtain

such gene loss-of-function screening data for all available OV cell

lines, in order to determine functional impact of CNNM4 in OV

cells. The DepMap platform uses CRISPR/Cas9 technology to

achieve gene knockout and allows probing into the dependencies

of genes across diverse cancer cell lines. In this study, genetic

screening data of all OV cell lines were selected, focusing more

precisely on the analysis of the effect of knockout of the CNNM4

gene concerning cell viability and proliferation. Data were obtained

from the DepMap web interface, and rates of survival in cell culture

following knockout of the CNNM4 gene were analyzed using

standard statistical methods, with the results visualized as box

plots (21, 22).
2.4 Co-expression analysis

In this study, the expression of the CNNM4 gene and its pattern

of co-expression in OV datasets were investigated by setting a

threshold correlation coefficient at 0.4, using a significance level of

0.05. Circular correlation diagrams and heatmaps depicting the

relationships between CNNM4 and other genes remarkably

expressed were drawn using “corrplot” and “circlize” packages.
2.5 Gene enrichment analysis

To assess changes in biological function, the Gene Set Variation

Analysis (GSVA) algorithm was used to analyze gene sets from the

Molecular Signatures Database (23). Gene Set Enrichment Analysis

(GSEA) was used to identify signaling pathways that were

differently activated in groups with high vs low expression of

CNNM4 after stratifying OV patients by their expression levels

(24). To compare gene expression across subtypes and analyze

subtype pathways, the version 7.0 of the MsigDB (The Molecular

Signatures Database) database were downloaded and used as the

background gene set (23, 25–27). Priority was given to enriched

gene sets with an adjusted p-value < 0.05.
2.6 Immune cell infiltration analysis

Using the CIBERSORT method, we looked for relationships

between gene expression patterns and immune cell compositions in

OV samples, and we estimated the relative abundances of 21

different types of immune infiltrating cells.
2.7 Drug sensitivity analysis

Using the comprehensive GDSC (Genomics of Drug Sensitivity

in Cancer) database, (https://www.cancerrxgene.org/) (28), the R

package “pRRophetic” was used to forecast the sensitivity of
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individual tumor samples to chemotherapy. We employed

regression analysis to establish the half maximum inhibitory

concentration (IC50) for each chemotherapeutic therapy. To

ensure the accuracy of regression and prediction, we used the

GDSC training set for 10-fold cross-validation. Default settings

such as “combat” were applied for batch effect removal, and

averaging duplicate gene expressions was employed.
2.8 TMB, MSI, NEO data analysis

We operationalized Tumor Mutation Burden (TMB) as

mutation frequency and variant number per exon length in

individual tumor samples, further calculating the ratio between

nonsynonymous mutation sites and total length of protein-coding

regions (29). The microsatellite instability (MSI) value for each

patient in the TCGA cohort was downloaded from a previous study

(30). Neo-antigen assessment of each patient was calculated by

NetMHCpanv3.0 (31).
2.9 Single cell sequencing analysis

Data processing was performed using the Seurat package, and

spatial relationships between clusters were defined using the tSNE

algorithm. The celldex package was used for annotating cells

involved with tumor development. Similarly, single cell expression

profiles identified the marker genes for each cell subtype by setting

logfc.threshold = 1 in the function FindAllMarkers.
2.10 Nomogram model construction

A nomogram was developed as a clinical tool to forecast the

prognosis of OV patients using the rms package and the cph function,

incorporating age, grade, and CNNM4 gene expression as predictors.

This nomogram was constructed by applying the regression

coefficients from the model to the nomogram function. Scores were

assigned to the levels of each variable, with total scores calculated by

summing these individual scores, thereby estimating the 1-year and

3-year survival probabilities. This nomogram provides a personalized

survival prediction for patients by integrating multiple variables.
2.11 Statistical analysis

Statistical analyses were conducted utilizing R software (version

4.2.2). The differential expression of the CNNM4 between normal

and OV tissues was assessed through the Wilcoxon test.

Additionally, logistic regression and the Wilcoxon test analyzed

the relationship between CNNM4 expression level and various

clinicopathological characteristics such as age, survival status, and

tumor grade. The influence of CNNM4 and other clinical

determinants on prognosis was explored via Cox regression and

Kaplan-Meier survival analysis. All statistical assessments were

performed using SPSS (Chicago, IL, USA), setting the significance
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threshold at P < 0.05. “*” indicates P < 0.05, “**” indicates P < 0.01,

“***” indicates P < 0.001, “****” indicates P < 0.0001.
3 Results

3.1 Elevated CNNM4 expression and
survival analysis in OV

Initially, CNNM4 expression levels were assessed in IOSE-80,

SKOV-3, and A2780 cells using qRT-PCR and WB. A notable

increase in CNNM4 expression level was observed in SKOV-3 and

A2780 cells compared to IOSE-80 cells (Figures 1A, B). H-scores

revealed significantly higher CNNM4 immunoexpression in tumor
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tissues (Figure 1C), and IHC revealed lower CNNM4 staining in the

cytoplasm of paracancerous cells (Figure 1D) than in tumor cells

(Figures 1E, F). Then a baseline table based on the data from TCGA

was created according to the expression level of CNNM4 (Table 1).

Integration with GTEx data (Figure 2A) demonstrated elevated

CNNM4 levels in OV tissues (Figure 2B). The overall survival

analysis revealed statistically significant differences in survival

probability between two groups when utilizing the median value

as the cut-off point (p=0.0054) (Figure 2C), persisting under

optimal cutoff value (p=0.00063) (Figures 2D, E). Both single-

factor and multi-factor Cox regression models identified age as a

risk factor (Figures 2F, G), and a significant association was found

between CNNM4 expression, patient age, and tumor grade in

survival analysis (Figures 2H–J).
FIGURE 1

Elevated expression of CNNM4 in OV cells and tissues. (A) qRT-PCR and (B) WB analysis was performed to quantify CNNM4 expression in IOSE-80, A2780,
and SKOV-3 cells, normalized against GAPDH expression. (C) Comparisons of relative CNNM4 protein expression in tumor tissues versus paracancerous
tissues using H-scores. Immunoexpression of CNNM4 protein in paracancerous tissue (D), OV tumor tissues (low expression) (E) and OV tumor tissues (high
expression) (F) (× 200 magnification). “ns” indicates P > 0.05, “**” indicates P < 0.01, “***” indicates P < 0.001, “****” indicates P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1483425
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang 10.3389/fonc.2024.1483425
3.2 The Biological Function Analysis
of CNNM4

To investigate the impact of CNNM4 on the progression of OV,

the pcDNA3.1-CNNM4 vector was constructed to enhance

CNNM4 expression. Following transfection, cells exhibited

efficient overexpression of CNNM4 (Supplementary Figure S1).

The proliferative capacity of the cells was assessed using the CCK8

assay at time points of 0, 24, 48, and 72 hours post-transfection. In

IOSE-80 cells, viability was inhibited in the pcDNA3.1-CNNM4

group, whereas in A2780 and SKOV-3 cells, the results were

opposite (Figure 3A). Flow cytometry was employed to evaluate

apoptotic potential. In IOSE-80 cells, the percentage of early

apoptotic cells was reduced in the pcDNA3.1-CNNM4 group, but

there were no significant differences in the overall proportion of

apoptotic cells between the pcDNA3.1 and pcDNA3.1-CNNM4

groups, indicating a minor effect of CNNM4 on apoptosis of IOSE-

80 cells. In contrast, in A2780 and SKOV-3 cells, the proportion of

total apoptotic cells significantly decreased in the pcDNA3.1-

CNNM4 group, suggesting that CNNM4 overexpression reduced

apoptotic capacity (Figure 3B). In cell cycle assays, IOSE-80 cells

showed a higher G1 phase proportion in the pcDNA3.1-CNNM4

group, whereas the A2780 group displayed a reduction in G1 phase

cells, with increases in S and G2/M phases. No notable changes were

observed in the SKOV-3 cells (Figure 3C). Migration capabilities

were assessed using a wound-healing assay. In A2780 and SKOV-3

cells, the pcDNA3.1-CNNM4 group exhibited a significantly

reduced scratch wound distance (Figure 3D). These findings

suggest that CNNM4 may impact cellular proliferation and

migration. The influence of CNNM4 on OV cells was further

analyzed using gene loss-of-function data from the DepMap

portal. The results indicated that CNNM4 knockdown did not
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significantly reduce survival or inhibit proliferation in some OV cell

lines (Figure 3E; Supplementary Table S1).

To explore the potential biological functions of CNNM4

further, a correlation interaction network was established based

on expression profiles from the TCGA database, with a correlation

coefficient threshold of 0.4 and a significance level of 0.05. A total of

150 genes significantly associated with CNNM4 were identified,

with the top 10 displayed in a heatmap (Figure 4A) and illustrated

in a co-expression circle diagram (Figure 4B). Specific signaling

pathways in which CNNM4 is involved were also examined. GSVA

results indicated significant enrichment in pathways such as

HEME_METABOLISM, KRAS_SIGNALING_DN, and

IL6_JAK_STAT3_SIGNALING (Figure 4C). Additionally, GSEA

revealed significant enrichment in the Hedgehog, Notch, and PRL

signaling pathways (Figures 4D, E), suggesting that CNNM4 may

influence OV progression through these pathways.
3.3 The relationship between CNNM4
expression and immune infiltration

Additional studies were performed to clarify CNNM4’s role in

OV. Immune cell proportions and their correlations in patients were

analyzed (Figures 5A, B). After stratifying patients by median value of

CNNM4, significant variations were noted among resting NK cells,

CD4 memory resting T cells, and gamma delta T cells (Figure 5C).

The potential molecular mechanisms by which CNNM4 affects OV

progression were explored through analyses of the association

between CNNM4 expression and tumor immune infiltration.

Significant positive correlations were found between CNNM4

expression and T cells CD4 memory resting, NK cells resting, and

Macrophages M2, as well as significant negative correlations with T

cells gamma delta and NK cells activated (Figure 5D).
3.4 Map of the mutations associated
with CNNM4

Processed single nucleotide polymorphism (SNP) data for OV

were obtained and analyzed to identify disparities in mutated genes

among patient cohorts. A mutation landscape was constructed

using the R package Complex Heatmap, highlighting the top 30

genes with increased mutation rates, showing higher mutation

frequencies in TP53 and other genes among patients with

elevated CNNM4 expression (Figure 5E).
3.5 TMB, MSI, NEO and drug sensitivity

The correlation between CNNM4 expression and the sensitivity

of common chemotherapy drugs was investigated using the R

package “pRRophetic”. Significant associations were observed

between CNNM4 expression and the sensitivity of several drugs,

including AMG.706, EHT.1864, Cisplatin, ABT.888, GSK.650394,

and Imatinib (Figure 5F). Additionally, the relationship between

CNNM4 expression and well-known immunotherapy-related
TABLE 1 Relationships between CNNM4 expression and clinical
pathological features of patients with OV.

High (N=210) Low (N=210) P-value

Fustat

Alive 82 (39.0%) 104 (49.5%) 0.0391

Dead 128(61.0%) 106(50.5%)

Age

≥59 97(46.2%) 114(54.3%) 0.118

<59 113(53.8%) 96(45.7%)

Grade

G1 0(0%) 1(0.5%) 0.0215

G2 13(6.2%) 34(16.2%)

G3 189(90.0%) 172(81.9%)

G4 1(0.5%) 0(0%)

GB 1(0.5%) 1(0.5%)

GX 4(1.9%) 2(1.0%)

unknow 2(1.0%) 0(0%)
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tumor markers was examined, revealing associations with MSI

(Figure 5G), NEO (Figure 5H), and TMB (Figure 5I) across

groups with varying levels of CNNM4 expression.
3.6 Analysis of CNNM4 expression in
single cells

Single-cell transcriptomics data from GSE184880 were analyzed

using Seurat package. Employing the tSNE algorithm, 18 cell

subtypes were identified (Figure 6A), and these were further

categorized into nine groups using SingleR: T cells, NK cells,

monocytes, B cells, epithelial cells, fibroblasts, tissue stem cells,

endothelial cells, and smooth muscle cells (Figure 6B). CNNM4

expression across these cell types was also investigated

(Figure 6C, D).
3.7 Prediction analysis of CNNM4
expression and clinical indicators

Given the results suggesting a role for CNNM4 in OV

development, a nomogram was created integrating age, grade, and

CNNM4 expression to predict 1- and 3-year overall survival (OS)

outcomes (Figure 7A). The predictive accuracy of the nomogram

was validated, showing close alignment between predicted and

observed OS, thus confirming the model’s robust predictive

capability (Figure 7B).
4 Discussion

Mg is a crucial cation in cellular environments, essential for

various biological functions through interactions with intracellular

molecules including lipids, proteins, and nucleotides (32).

Disruptions in Mg homeostasis are implicated in the

pathophysiology of numerous diseases, including cancer, although

the connection between Mg and cancer initiation remains debated.

There is substantial evidence indicating an inverse relationship

between Mg intake and cancer development, a relationship that

becomes more complex in advanced tumor stages. The necessity of

Mg for cell proliferation suggests that rapidly dividing tumor cells

are particularly dependent on Mg uptake, with studies confirming

elevated intracellular Mg levels in such cells (16). CNNM4, part of

the CNNM family, was initially discovered as a membrane protein

with domains conserved across bacterial species, highlighting its

fundamental biological role (33). CNNM4 was the first identified

member of this family with Mg2+-transporting capabilities (15), and

its interaction with PRL is known to regulate Mg homeostasis (14).

The role of CNNM4 in cancer may be linked to its association with

PRL, which promotes Mg2+ accumulation intracellularly, thereby

supporting tumor growth and metastasis. High CNNM4 expression

is observed in various cancers, where it correlates with poor

prognosis due to its impact on cellular growth and immune

modulation (17). Current research indicates that CNNM4 is

significantly upregulated in OV and that its overexpression
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correlates with poor prognosis, likely due to its effects on cell

growth and immune responses. This suggests that CNNM4

expression may serve as a reliable predictive marker for OV.

We conducted CNNM4 expression analysis in OV tissues and

cells, and found that the levels of CNNM4 are significantly higher in

tissues and cells of OV compared to paracancerous tissues and

normal cells. The same trend has been reported in various tumors,

such as esophageal carcinoma and adenocarcinoma of the pancreas,

stomach, colon, and rectum (17). Thus, CNNM4 is assumed to be

critical for tumor development. Moreover, the overexpression of

CNNM4 was associated with poor prognosis. Though there are

different points of view, many researchers have indicated that

CNNM4 may serve as a predictive marker for cancers. The

downregulation of CNNM4 has been detected by IHC in

colorectal cancer tissues, showing an inverse correlation with

malignancy grade of tumors (14). Further survival analysis

conducted showed that higher CNNM4 expression was strongly

associated with reduced OS, similarly observed in cases of

pancreatic adenocarcinoma (17). This would hence mean that the

role of CNNM4 is different in some cancers and requires further

investigation. Additionally, patient age and histological grade were

identified as independent prognostic factors for OV, hence further

confirming the potential of CNNM4 as a prognostic marker.

Mg2+ has been long recognized for its critical role in regulating cell

proliferation (34). CNNM4 is known to influence cellular Mg2+

concentrations (15). Disruption of magnesium homeostasis is linked

to various diseases, including cancer. In this study, we analyzed

CNNM4 expression in IOSE-80, A2780, and SKOV-3 cell lines,

exploring its effects on cellular proliferation and migration. Our

analysis showed elevated levels of CNNM4 in A2780 and SKOV-3

cells compared to IOSE-80 cells, indicating a possible role in

facilitating OV progression. We also examined the effect of CNNM4

on cell proliferation and apoptosis, observing that CNNM4 inhibits

proliferation and migration in IOSE-80 cells while showing opposite

effects in A2780 and SKOV-3 cells. Recent research revealed that

deficiency in CNNM4 boosts proliferation in mouse colonic epithelial

cells, leading to an increase in polyp formation and the presence of

invasive cancer cells in these mice, suggesting that CNNM4 disruption

promotes tumor development and malignancy, thereby characterizing

it as a tumor suppressor (14, 35). These different results may be due to

the operational mechanisms of CNNM4 in OV may differ from the

PRL-CNNM4 regulatory pathway. Further detailed studies are

required to clarify the role of CNNM4 as an oncogene and the

mechanisms through which Mg2+ dysregulation contributes to

cancer progression in OV. The loss-of-function screening data

showed that CNNM4 gene loss did not significantly affect survival

rates in OV cell lines, nor did it significantly inhibit proliferation

across some cell lines. These outcomes vary from those obtained in

CCK8 assays, potentially due to differences in cell type, knockout

efficiency, or experimental conditions. Although DepMap data

indicates a minimal dependency on CNNM4 in certain OV cell

lines, our in vitro findings provide direct evidence that CNNM4

overexpression in specific cell lines indeed enhances cell

proliferation, supporting its pro-oncogenic role in OV.

In the analysis of CNNM4’s biological roles in OV, GSVA

identified associations of CNNM4 expression with pathways such
frontiersin.org
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as HEME_METABOLISM, KRAS_SIGNALING_DN, and

IL6_JAK_STAT3_SIGNALING. Heme is crucial for gas transport,

oxidative metabolism, and detoxification processes (36). Previous

studies have indicated that HEME_METABOLISM is associated with

the colon cancer and invasion of OV cells (37, 38). Moreover,
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KRAS_SIGNALING_DN has been associated with gastric and

glioblastoma cancers (39, 40), and IL6_JAK_STAT3_SIGNALING

is implicated in the progression of gliomas, bladder, and prostate

cancers (41–43). Moreover, GSEA revealed significant enrichment for

Hedgehog, Notch, and PRL signaling pathways. These pathways
FIGURE 2

Elevated CNNM4 expression and survival analysis in OV. (A) Component analysis flash point diagram. (B) Variations in CNNM4 gene expression
between control (blue) and tumor (pink) groups (C) Disparity in survival probabilities using median value as the cutoff. (D) Discrepancy in survival
probabilities with the optimal value as the cutoff. (E) P value volcano plot. Single-factor (F) and multi-factor (G) Cox prognostic factor analyses in OV.
Clinical relevance of CNNM4 expression assessed in OV. (H) Age, (I) Fustat, (J) Grade.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1483425
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang 10.3389/fonc.2024.1483425
affect tumorigenesis, development, and malignant phenotype in

many cancers. Deregulation of the Hedgehog signaling pathway is

associated with several cancer, such as basal cell carcinoma,

medulloblastoma, breast, pancreatic, ovarian, colon and small-cell
Frontiers in Oncology 08
lung carcinomas (44). PRL plays a significant role in certain cancers,

including OV (45, 46), and the co-expression of PRL with CNNM

inhibits CNNM-mediated Mg2+ efflux, affecting intracellular

magnesium levels linked to cancer progression (14). Notch
FIGURE 3

Impacts of CNNM4 on cellular growth and migration. (A) CCK8 assays to evaluate cell proliferation at 0, 24, 48, and 72 hours in cells overexpressing
CNNM4. (B) Apoptosis in cells transfected with pcDNA3.1 and pcDNA3.1-CNNM4, analyzed via flow cytometry. (C) Cell cycle analysis depicted in
flow cytometry images, presented as a percentage of total cells. (D) Migration assessed in cells transfected with pcDNA3.1 and pcDNA3.1-CNNM4
using wound healing assays, with images captured at 0 and 24 hours across three independent experiments. The data presented in this study are
reported as the mean ± SEM. “*” indicates P < 0.05, “**” indicates P < 0.01, “***” indicates P < 0.001. (E) Gene loss-of-function screening results of
CNNM4 gene in ovarian/fallopian tube (OV) cell lines.
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signaling pathway has been implicated in the development and

homeostasis of tissues and organs, the deregulation of which results

in diseases or cancers. It would appear that recent data support the

idea of the Notch signaling pathway playing a dual role in tumor

promotion and inhibition (47). Notch signaling pathway could

modulate immune cells which involved in anti- or pro-tumor

responses, and this pathway also could be a potential target for

cancer immunotherapy (48). These findings indicate that CNNM4

may promote OV progression by engaging multiple interacting

molecular pathways. The occurrence and development process of

tumor is very complex, and there are many signaling pathways and

cytokines involved in it, and the specific situation needs to be

confirmed by further research.

The tumor microenvironment, a complex environment

comprising immune cells, nutrients, chemokines, and various other

components (49), significantly influences tumor growth, invasion,

metastasis, and chemoresistance (50, 51). Immunotherapy, which

leverages this microenvironment to activate the immune system

against tumor cells, underscores the importance of understanding

the role of immune cells within this context to identify new

immunotherapeutic targets. However, the specific interactions

between CNNM4 and immune cell infiltration in OV remain

unclear. In this study, we investigated the correlation between

CNNM4 expression levels and 21 immune cell types in OV,
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revealing a significant relationship between CNNM4 expression and

the content of NK cells resting, T cells CD4 memory resting, and T

cells gamma delta. A comprehensive analysis revealed that CNNM4

exhibited a positive regulatory impact on the infiltration level of T

cells CD4 memory resting, NK cells resting and Macrophages M2

while exerting a negative regulatory influence on T cells gamma delta

and NK cells activated. These results underscore the significant role of

CNNM4 in the tumor microenvironment and its influence on OV

prognosis. Immune cells are critical in both promoting and inhibiting

tumors; they can destroy cancer cells and prevent infections, yet

tumors may evade immune detection (52). Particularly, T cells CD4

memory resting are crucial in the antitumor immune response (53).

Alterations in NK cell resting and T cells CD4 memory resting

populations have been observed in the tumor microenvironments

of colon and bladder cancer patients (54, 55). Furthermore,

Macrophages M2 are involved in the alternative activation of the

Th2 cell response and can secrete factors like IL-10, TGF-b, PGE2,
and VEGF that promote tumorigenesis and angiogenesis (56, 57). T

cells gamma delta play a role in associations of various cancers, such

as OV, hepatocellular carcinoma and prostate cancer (58–60). There

is still a lot of uncertainty regarding the molecular mechanism of the

relationship between CNNM4 and immune cells in OV, this is worthy

to further exploration. The study findings indicated that patients

categorized as high-risk exhibited poor prognosis in comparison to
FIGURE 4

Biological function analysis of CNNM4. (A) Correlation coefficients showing positive and negative correlations among the top 10 genes. (B) Co-
expression correlation circle diagram, red for positive and green for negative correlations. (C) GSVA utilized to evaluate pathway activities of key
genes in high and low CNNM4 expression groups, identifying potential pathway disparities between the high-risk and low-risk groups. Hallmark sets
served as the background gene set. (D, E) Analysis of KEGG signaling pathways and gene involvement in pathway regulation performed by GSEA.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1483425
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang 10.3389/fonc.2024.1483425
those in the low-risk group. The difference in outcomes may be

attributed to the presence of an immunosuppressive

microenvironment in the high-risk group. This could be attributed

to the repressive microenvironment interfering with the normal

functioning of tumor cytotoxic cells, hence promoting cancer

progression and increasing the mortality rate in patients (61). Such

an immunosuppressive state, if addressed through targeted therapies,

will provide a better treatment modality for OV patients. Recently,
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chemotherapy has remained a mainstay treatment for OV cases.

However, chemoresistance is likely to constitute the main

determinant of therapeutic failures in most patients. Our drug

sensitivity analysis identified that CNNM4 expression correlates

with the responsiveness against several anticancer drugs, including

AMG.706, EHT.1864, Cisplatin, ABT. 888, GSK.650394, and

Imatinib. This could reflect that higher CNNM4 expression might

be an indicator of drug sensitivity as well as resistance and thus can be
FIGURE 5

CNNM4 expression is correlated with immune infiltration, mutations, drug sensitivity, MSI, NEO and TMB. (A) Relative percentages of 22 immune cell
subtypes. (B) Pearson correlations for 21 immune cell types, with blue for negative and red for positive correlations. (C) Differences in immune cell
quantities between patients with high and low CNNM4 expressions, colored blue and pink, respectively. “ns” indicates P > 0.05, “*” indicates P <
0.05, “**” indicates P < 0.01. (D) Correlation between CNNM4 expression and immune cell content. (E) Analysis of the top 30 high-frequency
mutated genes from SNP data in OV to explore differences between patient groups. (F) Prediction of potential therapeutic agents from the GDSC
database data: AMG.706, EHT.1864, Cisplatin, ABT.888, GSK.650394, and Imatinib. (G) Correlation analysis between CNNM4 expression and MSI. (H)
Correlation analysis between CNNM4 expression and NEO. (I) Correlation analysis between CNNM4 expression and TMB.
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regarded as a potential biomarker in the prediction of

chemotherapeutic outcome in OV cells.

In conclusion, elevated CNNM4 expression in OV is associated

with advanced histological grades and poor prognosis, affecting

cellular proliferation and migration. The upregulation of CNNM4

influences multiple signaling pathways and correlates with changes in
Frontiers in Oncology 11
immune cell infiltration, underscoring its importance as a biomarker

for diagnosing and predicting OV outcomes. Furthermore, the

relationship between CNNM4 expression and the sensitivity of OV

cells to antitumor treatments highlights its potential utility in

therapeutic strategies. These findings collectively emphasize the

value of CNNM4 as a biomarker for OV diagnosis and prognosis.
FIGURE 6

Single cell annotation. (A) Division of cells into 18 clusters via tSNE algorithm based on significant PCA components. (B) Annotations of 18 clusters
identifying 9 as T cells, NK cell, Monocyte, B cell, Epithelial cells, Fibroblasts, Tissue stem cells, Endothelial cells, Smooth muscle cells in the 9 cell
categories. (C) CNNM4 expression flash point map in cells. (D) Overview of CNNM4 expression in cells.
FIGURE 7

Establishment and validation of the prognostic nomogram. (A) Construction of a nomogram incorporating the CNNM4 signature and clinical data to
forecast 1- and 3-year overall survival for OV patients in the TCGA dataset. (B) Utilization of calibration curves to verify the agreement between
predicted and actual 1- and 3-year outcomes.
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