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Objective: To develop and validate a deep learning signature for noninvasive

prediction of spread through air spaces (STAS) in clinical stage I lung

adenocarcinoma and compare its predictive performance with conventional

clinical-semantic model.

Methods: A total of 513 patients with pathologically-confirmed stage I lung

adenocarcinoma were retrospectively enrolled and were divided into training

cohort (n = 386) and independent validation cohort (n = 127) according to

different center. Clinicopathological data were collected and CT semantic

features were evaluated. Multivariate logistic regression analyses were

conducted to construct a clinical-semantic model predictive of STAS. The

Swin Transformer architecture was adopted to develop a deep learning

signature predictive of STAS. Model performance was assessed using area

under the receiver operating characteristic curve (AUC), sensitivity, specificity,

positive and negative predictive value, and calibration curve. AUC comparisons

were performed by the DeLong test.

Results: The proposed deep learning signature achieved an AUC of 0.869 (95%

CI: 0.831, 0.901) in training cohort and 0.837 (95% CI: 0.831, 0.901) in validation

cohort, surpassing clinical-semantic model both in training and validation cohort

(all P<0.01). Calibration curves demonstrated good agreement between STAS

predicted probabilities using deep learning signature and actual observed

probabilities in both cohorts. The inclusion of all clinical-semantic risk

predictors failed to show an incremental value with respect to deep

learning signature.
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Conclusions: The proposed deep learning signature based on Swin Transformer

achieved a promising performance in predicting STAS in clinical stage I lung

adenocarcinoma, thereby offering information in directing surgical strategy and

facilitating adjuvant therapeutic scheduling.
KEYWORDS

deep learning, lung adenocarcinoma, spread though air space, computer
tomography, prediction
Introduction

Lung cancer remains the leading lethal malignancy, responsible

for 12.4% of all newly-diagnosed cases worldwide in 2022 (1). As the

predominant cause of lung cancer-related mortality, lung

adenocarcinoma exhibits distinctive histological growth pattern and

molecular genotyping (2). Spread through air spaces (STAS) is a

unique invasion pattern separate from lymphatic-vascular and

visceral pleural invasion, with a predisposition in lung

adenocarcinoma. Initially introduced by Kadota et al. and explicitly

defined in the World Health Organization Classification of Lung

Cancer in 2015, STAS refers to the dissemination of tumor cells as

solid nests, micropapillary clusters or single cells into the peritumoral

alveolar airspaces (3). Multiply studies have consistently

demonstrated that STAS serves as a well-established prognosticator

for lung adenocarcinoma undergoing sublobectomy, indicating an

increased risk of postoperative relapse and worse prognosis (4–6).

STAS is recognized as a pathological indicator for identifying the

beneficiaries of adjuvant chemotherapy among stage IB patients (7).

Therefore, STAS is of great significance in identifying high-risk

patients and guiding personalized therapeutic strategies.

However, intraoperative pathological assessment for STAS

through rapid frozen sections has been proved to be of limited

sensitivity and reproducibility (8). The shifting of tumor cells to the

peritumoral alveolar airspaces caused by manual operations such as

extrusion, blade cutting and tissue dysfixation were hardly

distinguished from STAS cell clusters, thereby hindering the

reliable application of this approach. Several scholars exploited

CT semantic indicators for STAS by visual inspection or manual

measurement, such as tumor diameter, ground-glass opacity (GGO)

components, and pleural retraction (9, 10). Nevertheless, these

indicators rely on subjective judgement and professional skills,

making them unsuitable for widespread clinical practice due to

inconsistent interpretation criteria. Several studies developed CT-

based radiomics signature predictive of STAS, but the radiomics

approach involves several sequential processing steps such as tumor

delineation, dimension reduction and model building (11, 12). The

efficiency of radiomics modeling is highly influenced by

interobserver heterogeneity and handling quality at each step.
02
Deep learning is an end-to-end network architecture,

characterized by the ingestion of data from the input end and the

generation of prediction results from the output end. The error

between prediction result and actual observation is iteratively

propagated through each layer, facilitating model adjustment and

convergence. On account of the advantages of automatically

learning and extracting representative information, deep learning

has achieved remarkable efficacy in distinguishing histological

subtypes, evaluating treatment response, and predicting survival

(13–15). In this study, we employed Swin Transformer, a deep

learning framework exploited by Microsoft Research Asia, to

construct and validate a CT-based deep learning predictive model

for STAS in lung adenocarcinoma. This study also sought to

investigate the incremental value of clinical characteristics and

conventional CT semantic features over the deep learning signature.
Methods

Patients

This study was approved by the Ethics Committee and the

requirement for informed consent was waived due to its

retrospective nature. The patients who underwent radical

resection at the main campus of Tongji Hospital (Center 1) from

October 2021 to June 2022 were systematically reviewed. Inclusion

criteria were: (1) invasive lung adenocarcinoma confirmed by

pathology; (2) maximum tumor diameter on CT images ≤ 4 cm;

(3) no radiological signs of locoregional lymph node invasion or

distant metastasis; (4) no preoperative radiotherapy, chemotherapy

or targeted therapy; (5) interval time of preoperative CT

examination and operation within two weeks. The exclusion

criteria were: (a) rare histological variants; (b) simultaneous or

metachronous tumors; (c) unavailable thin-section CT images or

obvious image artifacts; (d) insufficient peritumoral parenchyma

reserved for STAS assessment; (e) subjected to other cancers.

Tumor staging was based on the eighth edition of the TNM

staging system. Following the same criteria, patients undergoing

radical surgical resection at the Sino-Germany Guanggu Campus of
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Tongji Hospital (Center 2) from January 2022 to June 2022 were

retrospectively enrolled. Clinical information including gender, age,

smoking history, pack-year and serum CEA level were acquired

from clinical electronic records. The recruitment workflow is

illustrated in Figure 1.
Histological assessment

Pathological characteristics including histological subtype, Ki-

67 labeling index (LI), visceral pleural invasion, lymphatic-vascular

invasion, pathological TNM staging and STAS were documented.

The excision specimen was fixed in 10% formalin and embedded in

paraffin before sectioned. Hematoxylin-eosin staining,

immunohistochemistry staining and elastic fiber staining were

performed accordingly. Two pathologists with experiences of 5

years and 11 years independently interpreted STAS on the

sections. Initially, tumor smooth interfaces were recognized by

naked eyes and at low-magnification (×10). Subsequently, three

areas with the most abundant STAS were selected for interpretation

at high-magnification (×200). If any of the following forms of tumor

cells are observed within peritumoral alveolar airspaces, it is judged

to be STAS-positive: (1) micropapillary clusters without a central

fibrovascular core; (2) solid tumor nests; (3) discrete single tumor

cells. Ki-67 LI is determined by the percentage of cells with stained-

brown nuclei among 1000 tumor cells via immunohistochemical

staining. Invasive lung adenocarcinoma is categorized into five

histological subtypes based on growth architecture: lepidic, acinar,

papillary, micropapillary and solid predominant adenocarcinoma.
CT scanning protocol and semantic
feature interpretation

The patients were examined using multi-slice spiral CT

scanners including GE Discovery 750 HD, TOSHIBA Aquilion

One TSX-301A, Philips Brilliance ICT 256 and GE Optima CT 660.

The acquisition parameters were detailed in Supplementary Data

Sheet 1. CT semantic features were independently evaluated by two

radiologists with 12 and 7 years of experience, respectively, blinded

to the clinicopathological information. The lung window (width:

1600 HU; level: -600 HU) and mediastinal window (width: 400 HU;

level: 40 HU) were fixed, respectively. CT semantic features

included affiliated lobe, location, attenuation type, tumor total

diameter, tumor consolidation diameter, consolidation-to-tumor

ratio (CTR), shape, boundary, lobulation, spiculation, cavity,

vacuole, air bronchogram, and plural attachment. CTR is

quantified by the ratio of tumor consolidation diameter and total

diameter. The definitions of CT semantic features were elucidated

in Supplementary Data Sheet 1. The interobserver agreement for

categorical and continuous variables was evaluated using Cohen ‘s

kappa coefficient and intraclass correlation coefficient (ICC),

respectively. The average measured by two radiologists was taken
Frontiers in Oncology 03
as the final value for continuous variables. Consensus on divergent

categorical variables was reached through discussion involving a

third radiologist.
Tumor segmentation and deep learning
signature development

The automatic virtual adversarial training segmentation

algorithm, based on a three-dimensional U-shape convolutional

neural network known as 3D U-Net, was employed to achieve

tumor segmentation. The topology of U-net was showed in

Supplementary Data Sheet 1. For modeling, we proposed a deep

learning framework called Swin Transformer to develop a signature

predictive of STAS. The overall architecture consists of four

transformer stages comprising Patch Embedding/Merging and

Swin Transformer Blocks in each stage as revealed in Figure 2

and Supplementary Data Sheet 1. To mitigate overfitting due to

limited amounts of data, the model was pretrained in CT images of

lung cancer from the Cancer Imaging Archive followed by fine-

tuned in 13510 CT images of lung adenocarcinoma in the training

cohort. Furthermore, to compare the efficacy of different deep

learning methods in predicting STAS, we applied ResNet-50,

EfficientNet and ConvNeXt for modeling denoted as ModelResNet-

50, ModelEfficientNet and ModelConvNeXt. The original code for

implementing Swin Transformer can be acquired at https://

github.com/microsoft/Swin-Transformer. We implemented the

neural network using PyTorch 1.4.1 library in Python 3.7.0

(https://pytorch.org).
Clinical-semantic model construction

Univariate analysis was initially performed to identify

statistically significant clinical characteristics and CT semantic

features between STAS positive and negative subgroups (P < 0.05)

in the training cohort. Afterwards, features with Spearman

correlation coefficient > 0.7 were removed in view of

multicollinearity inference. The remaining features as candidate

variables were included in multivariate logistic regression analysis

to determine the features independently associated with STAS. The

features were combined linearly weighted by their corresponding

regression coefficients to construct clinical-semantic model. Given

that the inherent design of preoperative prediction, pathological

indicators were not included in logistic regression analysis, but

compared across different STAS subgroups.
Statistical analysis

Statist ical analysis was performed using MATLAB

(MathWorksInc., Natick, MA) and SPSS (IBM, ver.26.0). Shapiro-

Wilk test and Levene test were used to analyze the normality and
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homogeneity of variance for continuous variables. The continuous

variables were compared using the Student’s t-test and Mann-

Whitney U test, as appropriate. The comparisons of categorical

variables were conducted by Chi-square test or Fisher exact test.

Pearson correlation analysis was used to evaluate the correlation

between features. The area under receiver operating characteristic
Frontiers in Oncology 04
curve (AUC), sensitivity, specificity, positive predictive value (PPV)

and negative predictive value (NPV) were used to quantify model

performance. The calibration curve and Hosmer-Lemeshow test

were employed to evaluate the consistency between predicted

probabilities by deep learning signature and actual observations.

A double-tailed P<0.05 indicated statistical significance.
FIGURE 1

The workflow diagram of patient recruitment.
FIGURE 2

The overall framework of STAS prediction model development and validation. (A) Patients with lung adenocarcinoma were respectively enrolled
from Center 1 and Center 2. (B) Imaging preprocessing included isotropic resample, intensity normalization and tumor automatic segmentation.
(C) Deep learning signature predictive of STAS was developed based on Swin Transformer. (D) Histological assessment and radiologist interpretation
were conducted for all patients in Center 1 and Center 2, and then model performance comparisons were performed. STAS, spread through
air spaces.
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Results

Baseline characteristics

In total, 126 eligible STAS-positive and 260 STAS-negative

patients from Center 1 were enrolled to construct a training

cohort (n=386). Accordingly, a total of 45 STAS-positive and 82

STAS-negative patients from Center 2 constituted an independent

validation cohort (n=127). As revealed in Table 1, all

clinicopathological characteristics and CT semantic features

exhibited a balanced distribution between the training cohort and

validation cohort. Of 513 patients, 239 (46.6%) were male [median

age (interquartile): 59.0 (53.0, 65.0)] and 274 (53.4%) were female

[median age (interquartile): 61.0 (54.0, 68.0)]. Totally, there were

171 (33.3%) and 342 (66.7%) patients pathologically-confirmed to

be STAS-positive and STAS-negative, respectively.
The interobserver consistency assessment
for CT semantic features

As shown in Table 2, ICC for tumor total diameter, tumor

consolidation diameter and CTR were 0.988 (95% CI: 0.985, 0.990),

0.991 (95% CI: 0.990, 0.993) and 0.982 (95% CI: 0.979, 0.985),

respectively. Cohen ‘s kappa coefficients for the categorical variables

ranged from 0.808 to 0.992, indicative of satisfactory interobserver

agreement in interpreting CT semantic features. The discrepant

numbers (frequency) of categorical variables between two

radiologists were also documented as revealed in Table 2.
The association of clinicopathological
characteristics with STAS

As shown in Table 3, STAS was more likely occurred in patients

with pack-year > 40 (P=0.002) and CEA > 5 ug/L (P<0.001), but it had

no significant association with gender, age and smoking history. STAS

wasmore frequently observed inmicropapillary and solid predominant

adenocarcinoma, but rarely occurred in lepidic predominant

adenocarcinomas (P<0.001). Furthermore, STAS was closely related

with visceral pleural invasion and lymphatic-vascular invasion

(P<0.001 and P<0.001). Ki-67 LI in STAS-positive subgroup

significantly exceeded that of STAS-negative subgroup (P<0.001).

Additionally, lung adenocarcinoma with higher pathological T and N

stages showed a higher prevalence of STAS (P<0.001 for both).
The association of CT semantic features
with STAS

Tumor total diameter, tumor consolidation diameter and CTR in

STAS-positive subgroup were significantly higher than those in STAS-

negative subgroup (all P<0.001; Figures 3 and 4). Solid tumors, obscure

boundary, spiculation, vacuole and pleural attachment were more

frequent in STAS, but air bronchogram was less common in STAS

(all P< 0.05). The tumor consolidation diameter and attenuation
Frontiers in Oncology 05
subtype were excluded from logistic regression analysis considering a

strong correlation with CTR (r=0.839 and 0.913, P< 0.001). Finally,

CEA (odds ratio [OR]: 2.022; 95% CI: 1.080, 3.784; P=0.028), vacuole

(OR: 3.509; 95% CI: 1.488, 8.278; P=0.004), obscure boundary (OR:

2.716; 95% CI: 1.628, 4.529; P<0.001) and CTR (OR: 1.023; 95% CI:

1.014, 1.033; P<0.001) were included to construct the clinical-semantic

model as the independent risk indicators for predicting STAS.
Model construction and efficacy evaluation

As shown in the Table 4 and Figure 5, the AUC for Swin

Transformer based deep learning signature in the training cohort

and validation cohort was 0.869 (95% CI: 0.831, 0.901) and 0.837

(95% CI: 0.761, 0.896), respectively. Encouragingly, Swin

Transformer based deep learning signature achieved significantly

higher AUC than ModelResNet -50, ModelEffic i entNet and

ModelConvNeXt in training cohort (0.869 vs. 0.800, 0.797 and

0.783; all P < 0.001), as well as than ModelEfficientNet and

ModelConvNeXt in validation cohort (0.837 vs. 0.775 and 0.795; P

= 0.025 and 0.027), as shown in Supplementary Table E2. Deep

learning signature showed an improvement in predictive

performance than ModelResNet-50 in validation cohort, but it did

not reach statistical significance (0.837 vs. 0.799, P = 0.087).

Meanwhile, The AUC for CTR alone and clinical-semantic model

was 0.709 (95% CI: 0.660, 0.754) and 0.764 (95% CI: 0.719, 0.806) in

training cohort, as well as 0.734 (95% CI: 0.648, 0.808) and 0.714

(95% CI: 0.627, 0.790) in validation cohort, respectively. In the

training cohort, deep learning signature performed far superior to

CTR (0.869 vs. 0.709, P < 0.001) and clinical-semantic model (0.869

vs.0.764, P < 0.001), with a statistically significant difference. Notably,

deep learning signature yielded significantly higher AUC than both

CTR (0.837 vs. 0.734, P=0.006) and clinical-semantics model (0.837

vs. 0.714, P=0.002) in validation cohort. The sensitivity, specificity,

PPV and NPV of deep learning signature in predicting STAS ranged

from 0.578 to 0.706, 0.892 to 0.951, 0.761 to 0.867 and 0.804 to 0.862

across two cohorts, respectively. According to the Hosmer-Lemeshow

test and calibration curve, the predicted STAS probabilities by deep

learning signature revealed good agreement with the actual

observations both in training cohort and validation cohort

(P=0.600 and 0.082, respectively). Furthermore, when deep learning

signature was incorporated into clinical-semantic model, all CT

semantic risk predictors were eliminated from multivariate

regression analysis, with merely deep learning signature remained.

Pearson correlation analysis revealed a strong correlation between

CTR and deep learning signature (r = 0.789, P < 0.001).
Discussion

This study revealed that CEA, tumor boundary, vacuolation and

CTR are the independent clinical-semantic features associated with

STAS in lung adenocarcinoma. The proposed deep learning model

predictive of STAS based on Swin Transformer yielded an AUC of

0.869 (95% CI: 0.821, 0.908) and 0.837 (95% CI: 0.742, 0.908) in the

training cohort and independent validation cohort, superior to
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TABLE 1 The distribution of clinicopathological characteristics in training cohort and validation cohort.

Characteristic
All patients Training cohort Validation cohort

P value
(n=513) (n=386) (n=127)

A. Clinical characteristics

Gender 0.108

Female 274 (53.4%) 214 (55.4%) 60 (47.2%)

Male 239 (46.6%) 172 (44.6%) 67 (52.8%)

Age* (year) 60.0 (54.0, 66.0) 59.0 (54.0, 67.0) 62.0 (53.0, 66.0) 0.320

Smoking history 0.728

Nonsmoker 369 (72.0%) 280 (72.5%) 89 (70.1%)

Former smoker 70 (13.6%) 50 (13.0%) 20 (15.7%)

Current smoker 74 (14.4%) 56 (14.5%) 18 (14.2%)

Pack-year 0.907

≤ 3 372 (72.5%) 280 (72.5%) 92 (72.4%)

4-40 89 (17.3%) 68 (17.6%) 21 (16.5%)

> 40 52 (10.2%) 38 (9.9%) 14 (11.1%)

CEA (ug/L) 0.930

≤ 5 435 (84.8%) 327 (84.7%) 108 (85.0%)

> 5 78 (15.2%) 59 (15.3%) 19 (15.0%)

Surgical modalities 0.367

Wedge resection 14 (2.7%) 12 (3.1%) 2 (1.6%)

Sublobectomy 25 (4.9%) 21 (5.4%) 4 (3.1%)

Lobectomy 474 (92.4%) 353 (91.5%) 121 (95.3%)

B. Histopathological characteristics

Histological subtype 0.352

Lepidic 88 (17.2%) 63 (16.3%) 25 (19.7%)

Acinar 240 (46.8%) 185 (47.9%) 55 (43.3%)

Papillary 103 (20.0%) 78 (20.2%) 25 (19.7%)

Micropapillary 43 (8.4%) 28 (7.3%) 15 (11.8%)

Solid 39 (7.6%) 32 (8.3%) 7 (5.5%)

Ki-67 LI* (%) 10 (3.5, 20.0) 9 (5, 20) 10 (3, 20) 0.171

Ki-67 LI 0.817

< 10% 255 (49.7%) 193 (50.0%) 62 (48.8%)

≥ 10% 258 (50.3%) 193 (50.0%) 65 (51.2%)

Visceral pleural invasion 0.786

Present 93 (18.1%) 71 (18.4%) 22 (17.3%)

Absent 420 (81.9%) 315 (81.6%) 105 (82.7%)

Lymph-vascular invasion 0.112

Present 70 (13.6%) 58 (15.0%) 12 (9.4%)

Absent 443 (86.4%) 328 (85.0%) 115 (90.6%)

(Continued)
F
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conventional CTR and clinical-semantic model. Furthermore,

neither CTR nor clinical-semantic model exhibited an

incremental value over deep learning signature, further

confirming its superior predictive value.

For early-stage patients, sublobectomy can preserve more

pulmonary function, reduce surgical complications, and shorten

hospitalization time, particularly with an equivalent therapeutic

effect to lobectomy (16). However, sublobectomy is not appropriate

for STAS-positive patients due to a higher risk of locoregional

relapse and distant metastasis compared with lobectomy. Another

study proved that STAS had negligible adverse effects on prognosis

if surgical margin distance exceeded 2 cm in limited resection (17).

Thus, anatomic lobectomy and sufficient surgical margin should be

recommended for STAS-positive patients to prevent recurrence

caused by STAS. Dai et al. also demonstrated that recurrence-free

survival rates and overall survival rates of stage IA STAS-positive

patients were comparable to those of stage IB patients (18).

Furthermore, stage IB patients with STAS-positive can benefit

from adjuvant chemotherapy (7, 19). Consequently, STAS serves

as a pathological indicator for T upstaging and risk stratification, as

well as an effective biomarker for identifying the beneficiaries of

adjuvant chemotherapy in early-stage patients.

Currently, there is limited research on leveraging deep learning

technique to predict STAS, and the predictive capacity remains

modest. Tao et al. applied 3D convolutional neural network to

predict STAS in NSCLC, yielding an AUC of 0.790 in validation

cohort (20). Wang et al. presented SE-Resnet50 for risk estimation

of STAS in solid or part-solid lung adenocarcinoma, resulting a
TABLE 1 Continued

Characteristic
All patients Training cohort Validation cohort

P value
(n=513) (n=386) (n=127)

B. Histopathological characteristics

Pathological T stage 0.176

T1a 64 (12.5%) 48 (12.4%) 16 (12.6%)

T1b 238 (46.4%) 170 (44.1%) 68 (53.5%)

T1c 103 (20.1%) 85 (22.0%) 18 (14.2%)

T2 108 (21.0%) 83 (21.5%) 25 (19.7%)

Pathological N stage 0.402

N0 437 (85.1%) 328 (85.0%) 109 (85.8%)

N1 27 (5.3%) 23 (6.0%) 4 (3.1%)

N2 49 (9.6%) 35 (9.0%) 14 (11.1%)

STAS 0.563

Positive 171 (33.3%) 126 (32.6%) 45 (35.4%)

Negative 342 (66.7%) 260 (67.4%) 82 (64.6%)
Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; CTR, consolidation-to-tumor ratio; LI, labeling index; T, tumor; N, node; STAS, spread through air space.
TABLE 2 The interobserver agreement of CT semantic features for
lung adenocarcinoma.

CT semantic
feature

Disagreement Kappa
value/ICC

95% CI

Affiliated lobe‡ 2 (0.4%) 0.992 0.980, 1.000

Location‡ 20 (4.9%) 0.808 0.728, 0.888

Tumor
total diameter§

NA 0.988 0.985, 0.990

Tumor consolidation
diameter§

NA 0.991 0.990, 0.993

CTR§ NA 0.982 0.979, 0.985

Shape‡ 17 (3.3%) 0.883 0.826, 0.940

Boundary‡ 29 (5.7%) 0.844 0.789, 0.890

Lobulation‡ 9 (1.8%) 0.871 0.787, 0.955

Spiculation‡ 12 (2.3%) 0.953 0.928, 0.978

Cavity‡ 8 (1.6%) 0.941 0.900, 0.982

Vacuole‡ 11 (2.1%) 0.859 0.777, 0.941

Air bronchogram‡ 37 (7.2%) 0.856 0.811, 0.901

Pleural attachment‡ 13 (2.5%) 0.945 0.914, 0.976
§ICC was calculated for the continuous variables.
‡Cohen’s kappa coefficient was calculated for the categorical variables.
Disagreement was presented as numbers (percentages).
ICC, intraclass correlation coefficient; CTR, consolidation-to-tumor ratio; CI,
interval confidence.
NA, not applicable.
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TABLE 3 The relationships of clinicopathological characteristics and CT semantic features with STAS in training cohort.

Characteristics
Training cohort STAS positive STAS negative

P value
(n=386) (n=126) (n=260)

A. Clinical characteristics

Gender 0.201

Female 214 (55.4%) 64 (50.8%) 150 (57.7%)

Male 172 (44.6%) 62 (49.2%) 110 (42.3%)

Age* (year) 59.0 (54.0, 67.0) 59.0 (53.8, 68.3) 59.0 (54.0, 65.0) 0.422

Smoking history 0.051

Nonsmoker 280 (72.5%) 84 (66.7%) 186 (75.4%)

Former smoker 50 (13.0%) 24 (19.0%) 26 (10.0%)

Current smoker 56 (14.5%) 18 (14.3%) 38 (14.6%)

Pack-year 0.002

≤ 3 280 (72.5%) 84 (66.7%) 196 (75.4%)

4-40 68 (17.6%) 20 (15.9%) 48 (18.5%)

> 40 38 (9.9%) 22 (17.4%) 16 (6.1%)

CEA < 0.001

≤ 5 ug/L 327 (84.7%) 95 (75.4%) 232 (89.2%)

> 5 ug/L 59 (15.3%) 31 (24.6%) 28 (10.8%)

Surgical modalities 0.147

Wedge resection 12 (3.1%) 3 (2.4%) 9 (3.5%)

Sublobectomy 21 (5.4%) 3 (2.4%) 18 (6.9%)

Lobectomy 353 (91.5%) 120 (95.2%) 233 (89.6%)

B. Histopathological characteristics

Histological subtype < 0.001

Lepidic 63 (16.3%) 5 (4.0%) 58 (22.3%)

Acinar 185 (47.9%) 51 (40.5%) 134 (51.5%)

Papillary 78 (20.2%) 24 (19.0%) 54 (20.8%)

Micropapillary 28 (7.3%) 26 (20.6%) 2 (0.8%)

Solid 32 (8.3%) 20 (15.9%) 12 (4.6%)

Ki-67 LI* (%) 10.0 (5.0, 20.0) 10.8 (7.4, 30.0) 5.0 (3.0, 10.0) < 0.001

Ki-67 LI < 0.001

< 10% 193 (50.0%) 35 (27.8%) 158 (60.8%)

≥ 10% 193 (50.0%) 91 (72.2%) 102 (39.2%)

Visceral pleural invasion < 0.001

Present 71 (18.4%) 36 (28.6%) 35 (13.5%)

Absent 315 (81.6%) 90 (71.4%) 225 (86.5%)

Lymph-vascular invasion < 0.001

Present 58 (15.0%) 47 (37.3%) 11 (4.2%)

Absent 328 (85.0%) 79 (62.7%) 249 (95.8%)

(Continued)
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TABLE 3 Continued

Characteristics
Training cohort STAS positive STAS negative

P value
(n=386) (n=126) (n=260)

B. Histopathological characteristics

Pathological T stage < 0.001

T1a 48 (12.4%) 10 (7.9%) 38 (14.6%)

T1b 170 (44.1%) 42 (33.3%) 128 (49.3%)

T1c 85 (22.0%) 29 (23.1%) 56 (21.5%)

T2 83 (21.5%) 45 (35.7%) 38 (14.6%)

Pathological N stage < 0.001

N0 328 (85.0%) 82 (65.1%) 246 (94.6%)

N1 23 (6.0%) 17 (13.5%) 6 (2.3%)

N2 35 (9.0%) 27 (21.4%) 8 (3.1%)

C. CT Semantic characteristics

Affiliated lobe 0.044

Upper lobe 236 (61.1%) 68 (54.0%) 168 (64.6%)

Middle/lower lobe 150 (38.9%) 58 (46.0%) 92 (35.4%)

Location 0.060

Central 47 (12.2%) 21 (16.7%) 26 (10.0%)

Peripheral 339 (87.8%) 105 (83.3%) 234 (90.0%)

Attenuation type < 0.001

GGO 26 (6.7%) 4 (3.2%) 22 (8.5%)

Sub-solid 208 (53.9%) 46 (36.5%) 162 (62.3%)

Solid 152 (39.4%) 76 (60.3%) 76 (29.2%)

Tumor total diameter (mm)* 22.0 (17.0, 27.0) 25.0 (19.0, 31.0) 21.0 (16.0, 26.0) < 0.001

Tumor consolidation diameter
(mm)*

15.5 (10.0, 23.0) 21.0 (15.8, 28.3) 13.0 (8.0, 20.0) < 0.001

CTR* (%) 78.6 (46.5, 100.0) 100.0 (78.5,100.0) 64.1 (38.1, 100.0) < 0.001

Shape 0.065

Round or oval 324 (83.9%) 112 (88.9%) 212 (81.5%)

Irregular 62 (16.1%) 14 (11.1%) 48 (18.5%)

Presence of obscure boundary 101 (26.2%) 53 (42.1%) 48 (18.5%) < 0.001

Presence of lobulation 359 (93.0%) 121 (96.0%) 238 (91.5%) 0.105

Presence of spiculation 188 (48.7%) 76 (60.3%) 112 (43.1%) 0.001

Presence of cavity 54 (14.0%) 18 (14.3%) 36 (13.8%) 0.907

Presence of vacuole 29 (7.5%) 19 (15.1%) 10 (3.8%) < 0.001

Presence of air bronchogram 200 (51.8%) 56 (44.4%) 144 (55.4%) 0.044

Presence of pleural attachment 118 (30.6%) 48 (38.1%) 70 (26.9%) 0.025
F
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Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; LI, labeling index; T, tumor; N, node; GGO, ground-glass opacity; CTR, consolidation-to-tumor ratio; STAS, spread through air space.
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highest AUC of 0.933 achieved so far in training cohort.

Nevertheless, their model exhibited a substantial performance

reduction in validation cohorts (AUC=0.783-0.806), which

approximated the performance of our developed ModelResNet-50 in

training and validation cohorts (AUC=0.799-0.800)This

unfavorable generalization may attribute to model overfitting by

reason of complicated architecture (21). Lin et al. enrolled 581
Frontiers in Oncology 10
patients with tumor smaller than 3 cm and CTR less than 0.5 from

two institutions. They extracted the deep learning features from

solid components and the entire tumors respectively, thereby

developing deep learning models with and without solid

component gate (SCG). The results revealed deep learning model

with SCG achieved higher AUCs than deep learning model without

SCG (22). Thus, further investigation is required to develop deep
FIGURE 3

CT image and pathological image obtained from a 65-year-old man with spread though air spaces negative lung adenocarcinoma. (A) Th axial CT
image (width, 1600 HU; level, -600 HU) shows a sub-solid nodule in the right lower lobe. (B) The photomicrograph of hematoxylin-eosin-stained
histological section (magnification × 200) shows clean alveolar spaces (yellow polygon) beyond the boundary (dashed line) of the tumor (black star).
FIGURE 4

CT image and pathological image obtained from a 59-year-old woman with spread though air spaces positive lung adenocarcinoma. (A) Th axial CT
image (width, 1600 HU; level, -600 HU) shows a solid nodule in the right upper lobe. (B) The photomicrograph of hematoxylin-eosin-stained
histological section (magnification × 200) shows several solid nests of tumor cell (yellow arrow) beyond the boundary (dashed line) of the tumor
(black star).
TABLE 4 The model performances in the training cohort and validation cohort.

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Training cohort

CTR 0.709 (0.660,0.754) 0.706 (0.619, 0.784) 0.692 (0.632, 0.748) 0.527 (0.449, 0.604) 0.829 (0.773, 0.877)

Clinical-semantic model 0.764 (0.719,0.806) 0.778 (0.695, 0.847) 0.669 (0.608, 0.726) 0.533 (0.458, 0.606) 0.861 (0.806, 0.906)

Deep learning signature 0.869 (0.831,0.901) 0.706 (0.619, 0.784) 0.892 (0.848, 0.927) 0.761 (0.673, 0.835) 0.862 (0.815, 0.901)

Validation cohort

CTR 0.734 (0.648,0.808) 0.689 (0.534, 0.818) 0.744 (0.636, 0.834) 0.596 (0.450, 0.731) 0.813 (0.707, 0.894)

Clinical-semantic model 0.714 (0.627,0.790) 0.778 (0.629, 0.888) 0.671 (0.558, 0.771) 0.565 (0.431, 0.691) 0.846 (0.735, 0.924)

Deep learning signature 0.837 (0.761,0.896) 0.578 (0.422, 0.723) 0.951 (0.880, 0.987) 0.867 (0.693, 0.962) 0.804 (0.711, 0.878)
CTR, consolidation-to-tumor ratio; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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learning signature with SCG based on Swin Transformer, in

expectation to further improve the prediction efficacy. In this

study, Swin Transformer was adopted as the backbone

architecture in modeling, achieving a satisfactory and comparable

performance in training and validation cohorts with AUC ranging

from 0.837 to 0.869, which was superior to ModelResNet-50,

ModelEfficientNet and ModelConvNeXt. This finding lent support to

the potential of our proposed Swin Transformer in predicting STAS

in lung adenocarcinoma. The state-of-the-art Swin Transformer is

regarded as the new backbone of machine vision. With two key

strengths of non-overlapping shifted windows and hierarchical

structures, Swin Transformer can flexibly process images at

various scales and reduce computational complexity from the

exponential level to the linear level. Growing evidence validated

the efficient processing capabilities of Swin Transformer in

handling multitasking such as image classification and density

detection (23–25). Our previously published study has affirmed

the remarkable efficiency of Swin Transformer in predicting lymph
Frontiers in Oncology 11
node metastasis in lung adenocarcinoma (26). Aside from that,

automatic tumor segmentation was conducted in this study using a

3D U-shape convolutional neural network. This deep learning

architecture serves as a highly effective tool for accurate, robust,

and efficient segmentation. It surpasses the time-consuming and

labor-intensive manual delineation or semi-automated

segmentation, as evidenced by the Dice similarity coefficients

across multiple institutions (27, 28).

Further exploring the relationship between STAS and

histopathological factors, micropapillary and solid predominant

adenocarcinoma were more commonly observed in STAS. Our

findings demonstrated a significant association between STAS and

visceral pleural invasion, lympho-vascular invasion and higher

pathological T stage, consistent with previous literature (29).

Additionally, lymph node invasion was more frequently found in

STAS-positive subgroup (34.9% vs 5.4%). In line with our results,

Vaghjiani et al. also reported that STAS was an independent

predictor of occult lymph node metastasis in clinical stage IA
FIGURE 5

The performance comparisons of deep learning signature, CTR and clinical-semantic model in predicting STAS. (A, B) The receiver operating
characteristic curves of CTR, clinical-semantic model and deep learning signature in training cohort (A) and validation cohort (B). Number in
parenthesis is the area under receiver operating characteristic curve. (C, D) The calibration curves depicted the good agreements between predicted
probabilities by deep learning signature and actual observed probabilities of STAS in training cohort (C) and validation cohort (D).
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lung adenocarcinoma (30). Although the underlying mechanism of

STAS remains unclear till now, it has been found that epithelial-

mesenchymal transition (EMT) prominently promotes the

occurrence of STAS (31). EMT is widely recognized as a

biological process wherein polarized epithelial cells transform into

loosely connected interstitial cells; this process is regarded as the key

driver of tumor genesis, invasion and metastasis. This may account

for the strong association between STAS and the aforementioned

invasive histopathological factors.

In clinical-semantic model, tumor boundary, vacuolation and

CTR were the independent CT semantic features in predicting

STAS. As a reflection of tumor aggressiveness, CTR weighted

heavily in regression analysis with a 1.25-fold increased risk of

STAS for every 10% increase. In accordance with our finding, Ding

et al. and Chen et al. confirmed that CTR was independently

associated with STAS (32, 33). Unexpectedly, the inclusion of all

clinical-semantic risk predictors failed to show an incremental value

with respect to deep learning signature. We found a strong

correlation between CTR and deep learning signature (r = 0.789,

P < 0.001), which might account for this result. These findings also

lead to speculation on whether deep learning signature contains

biological information regarding tumor boundary and vacuolation,

which should be explored by future in-depth research. We also

found CTR and clinical-semantic model showed equivalent NPV

and sensitivity to deep learning signature. Notably, in both training

and validation cohorts, the deep learning signature exhibited far

superior AUC, specificity, and PPV compared to CTR and the

clinical-semantic model, which lent support to its predominant

efficacy in predicting STAS.

There are some limitations to this study. First, data were

retrospectively collected from different CT equipment, so

heterogeneity in acquisition parameters and reconstruction protocols

might be inevitable. The class-imbalance in sample should be addressed

using resample techniques in the future. Second, it is necessary to

expand sample size and enroll multi-institutional data to further affirm

the repeatability and generalization of deep learning signature. Besides,

long-term follow up and survival data should be warranted to affirm

the prognostic value of STAS, as well as the relationship of deep

learning signature with prognosis. Further investigation is required to

enhance the biological interpretability of deep learning, which

inherently possesses a black box nature, thereby facilitating its

application in clinical practice. Common approaches involve

employing the Grad-CAM algorithm for generating visualizations of

deep learning and incorporating attentional mechanisms into deep

learning networks to achieve the significance weight of diagnosis and

decision-making based on attention regions. Additionally, exploring

the associations between deep learning and genomics or proteomics

can further improve the biological interpretability of deep learning.

Last, given that biological behavior varies in different histological

subtypes of lung cancer, future research needs to supplement the

predictive value of the deep learning signature for STAS in other

histological subtypes.

In conclusion, the proposed deep learning signature based on

Swin Transformer offers a promising predictive performance for

STAS in clinical stage I lung adenocarcinoma, surpassing the
Frontiers in Oncology 12
conventional clinical-semantic model. The end-to-end deep

learning approach harbors the potential as a well-established tool

for noninvasive estimation of STAS, directing surgical strategy and

facilitating adjuvant therapeutic scheduling.
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