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Qiuxia Liu1, Lianyi Guo3 and Bindong Xu1*

1Department of Thoracic and Cardiovascular Surgery of the Affiliated Hospital of Putian University,
Putian, Fujian, China, 2Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding,
Fujian, China, 3Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical
University, Jinzhou, China
Background: Oxidative stress plays a significant role in aging and cancer, yet

there is currently a lack of research utilizing machine learning models to examine

the relationship between oxidative stress and prognosis in elderly non-small cell

lung cancer (NSCLC) patients.

Methods: This study included elderly NSCLC patients who underwent radical

lung cancer resection from January 2012 to April 2018, exploring the relationship

between Oxidative Stress Score (OSS) and prognosis. Machine learning

techniques, including Decision Trees (DT), Random Forest (RF), and Support

Vector Machine (SVM), were employed to develop predictive models for 5-year

overall survival (OS).

Results: The datasets consisted of 1647 patients in the training set, 705 in the internal

validation set, and 516 in the external validation set. An OSS was formulated from six

systemic oxidative stress biomarkers, such as albumin, total bilirubin, and blood urea

nitrogen, among others. Boruta variable importance analysis identified low OSS as a

key indicator of poor prognosis. The OSS was subsequently integrated into the DT,

RF, and SVMmodels for training. These models, optimized through hyperparameter

tuning on the training set, were then evaluated on the internal and external validation

sets. The RF model demonstrated the highest predictive performance, with an Area

Under the Receiver Operating Characteristic Curve (AUC) of 0.794 in the internal

validation set, compared to AUCs of 0.711 and 0.760 for the DT and SVM models,

respectively. Similarly, in the external validation set, the RFmodel achieved an AUCof

0.784, outperforming the DT and SVMmodels, which had AUCs of 0.699 and 0.730,

respectively. Calibration plots confirmed the RF model’s superior calibration,

followed by the SVM model, with the DT model performing the poorest.

Conclusion: The OSS-based clinical prediction model, constructed using

machine learning methodologies, effectively predicts the prognosis of elderly

NSCLC patients post-radical surgery.
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Introduction

Non-small cell lung cancer (NSCLC) is a prevalent malignancy

with a high incidence and mortality rate globally, particularly

affecting the elderly population (1). Elderly cancer patients exhibit

significant heterogeneity in physical, functional, psychological, and

social dimensions, limiting the TNM staging system’s ability to

accurately reflect their prognostic characteristics (2). Research has

identified specific oxidative stress markers, including albumin

(ALB), bilirubin, and uric acid (UA), that can induce malignant

transformations in normal epithelial cells through various biological

activities (3–5). Increased levels of reactive oxygen species and

oxidative stress products have been observed in malignant tumor

cells, playing a crucial role in tumor development and prognosis.

On the other hand, the imbalance between the production and

neutralization of oxidants in the elderly, along with reduced

antioxidant enzyme activity, leads to pathological processes such

as mitochondrial dysfunction, causing systemic disorders and thus

predisposing to malignancies, cardiovascular diseases,

neurodegenerative diseases, and more (6–9). In order to optimize

treatment and improve quality of life for elderly NSCLC patients,

clinicians should explore oxidative stress in these patients.

Oxidative stress markers are not currently used to predict survival

in elderly NSCLC patients.

The use of supervised machine learning methods in prognosis

prediction is widespread due to their greater flexibility, especially

when dealing with large and complex data sets (10–12). The

majority of existing models rely on known variables like TNM

staging and histological characteristics, which do not fully take into

account the complex modifications that occur in the elderly.

Considering the importance of oxidative stress in elderly NSCLC

patients, this study aims to investigate the relationship between

oxidative stress and prognosis. Moreover, it aims to create a

machine learning model that can predict 5-year survival after

surgery, thereby aiding in clinical decision-making.
Methods

Study population

Based on the thoracic surgery database at the Affiliated Hospital

of Putian University (AHPTH), 3,266 elderly lung cancer patients

underwent radical lung cancer resection by Video-Assisted

Thoracoscopic Surgery (VATS) between April 2012 and

December 2018. This study included patients with (1) a

postoperative pathological diagnosis of non-small cell lung

cancer; (2) a diagnosis of age 65 or older; (3) radical surgical

resection with no evidence of distant metastases; and (4)

complete clinical and pathological data available. Exclusion

criteria included: (1) tumors not originating in the lung; (2)

postoperative pathology confirmed as small cell lung cancer; (3)

incomplete clinical data. During the period of January 2012 to April

2018, 874 patients meeting the same inclusion criteria were

included in the external validation cohort at Fujian University of

Traditional Chinese Medicine. Ultimately, after exclusions, 2,352
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patients were included in the derivation cohort, and 516 patients

were included in the external validation cohort. The derivation

cohort was randomly divided into two datasets in a 7:3 ratio: a

training cohort (70%), used to train the three machine learning

models and adjust their parameters, and an internal validation

cohort (30%), used to test the developed models on unseen data and

fine-tune hyperparameters (Figure 1) (13). Calibration curves and

Area Under Receiver Operating Characteristic Curves (AUC) were

used in the training, internal validation, and external validation

cohorts to assess predictive performance. It was calculated that the

time to event or censoring would be calculated from the date of

surgery until the date of last contact (death or last follow-up). The

institutional review board waived informed consent requirements

because the research involved retrospective analysis of anonymized

database data.
Candidate predictive variables

Routine blood and biochemical tests were conducted from the

day of admission for each patient, including preoperative tests,

intraoperative conditions, postoperative recovery, and pathological

results. In accordance with the 8th edition of the American Joint

Committee on Cancer/Union for International Cancer Control

(AJCC/UICC) Cancer Staging Manual, TNM staging has been

reclassified. X-tile software was used to identify the best threshold

values for categorizing biochemical markers. The oxidative stress

markers studied included albumin (ALB), total bilirubin (TBIL),

direct bilirubin (DBIL), urea (BUN), uric acid (UA), creatinine

(Crs), and lactate dehydrogenase (LDH) were all conducted before

surgery. According to the optimal threshold values, biochemical

markers were classified as low or high (below or above the

threshold). The training set was used to develop a new Oxidative

Stress Score (OSS) based on variable coefficients in the Cox stepwise

regression model combined with the Akaike Information Criterion

(AIC). The best cut-off value of the OSS was used to stratify patients

into different risk levels, and both internal and external validation

cohorts validated this stratification (14, 15).

Other clinically relevant features for the machine learning

predictive model were selected through a consensus among

researchers, incorporating clinical reasoning, literature review,

and routine availability. This approach ensures the model’s broad

applicability across diverse clinical settings. Specifically, the

variables selected for the predictive model encompassed a

comprehensive range of clinical, preoperative, intraoperative,

postoperative, and pathological factors. Clinical variables included

gender, age, OSS, body mass index, Charlson comorbidity index,

American Society of Anesthesiologists (ASA) score, smoking

history, alcohol consumption history, history of diabetes, and

history of pulmonary disease. Preoperative variables comprised

hemoglobin, white blood cells, neutrophils, lymphocytes,

fibrinogen, CEA, and CA125. Intraoperative variables included

tumor location, tumor size, surgical time, and intraoperative

blood loss. Postoperative variables covered Clavien-Dindo

complication grading and adjuvant chemotherapy. Pathological

variables involved the degree of differentiation, pathological type,
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pathological T stage, pathological N stage, and pathological TNM

stage. To address potential collinearity, some predictors were

excluded, opting for pathological T and N stages instead of the

composite TNM stage. Variable standardization was conducted to

ensure scale comparability.
Construction and establishment of
machine learning models

To predict the survival status at 5 years post-surgery, we

analyzed the discriminative capabilities of three classification

machine learning algorithms: random forest (RF), decision tree

(DT), and support vector machine (SVM). These methods were

chosen due to their widespread application and superior

performance in cohort studies. All statistical analyses were

conducted using several established R packages: “randomForest,”

“MASS,” “PRROC,” “rpart,” “caret,” and “e1071.” To select the

optimal hyperparameters and probabilities, models were trained

using a cross-validation scheme. DT are supervised machine

learning techniques used for both regression and classification

tasks. DT predicts the target variable’s value by learning simple

rules represented by a tree structure consisting of nodes, branches,

and leaves. The algorithm classifies each sample by traversing the

tree from the root to a leaf node. RF is an ensemble learning

algorithm suitable for classification, regression, and unsupervised

learning tasks. It consists of multiple unpruned decision trees

created through a recursive partitioning process. Each tree in the

forest is generated using the DT algorithm, enhancing the model’s

overall accuracy and robustness. SVM is another widely used

supervised learning algorithm for classification and regression

tasks. SVM constructs one or more hyperplanes in a high-
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dimensional space to optimally separate data into different

classes. For nonlinear classification problems, the Radial Basis

Function (RBF) kernel is employed to estimate and maximize the

margin between classes, enhancing the model’s performance in

complex scenarios.
Follow-up

Postoperative follow-up is recommended every 3-6 months

within the first two years after surgery. From three to five years

post-surgery, if the condition remains stable, follow-up visits are

advised every 6-12 months. Beyond five years, annual check-ups are

recommended. The follow-up includes tests such as complete blood

count, biochemical markers, tumor markers, chest CT (with or

without contrast), and ultrasound. Additional examinations may be

conducted as needed based on the patient’s condition. The primary

outcome was defined as overall survival (OS) after discharge, which

was measured from the date of surgery to the date of death from any

cause or to the last follow-up date for censored observations.
Statistical analysis

Data analysis was conducted using R version 4.3.1. Differences

in categorical variable distributions between groups were assessed

with Pearson’s chi-squared test and Fisher’s exact test. Overall

survival (OS) curves were generated using the Kaplan-Meier

method, with the log-rank test used to evaluate differences

between survival curves. Internal validation was carried out using

bootstrap resampling. Model parameters were trained on the

training dataset, and the performance of the trained models was
FIGURE 1

Study flow diagram. (A) Derivation set. (B) External validation set.
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evaluated using an independent validation dataset. The effectiveness

of the trained classifiers was measured using Area Under the Curve

(AUC) values, decision curves, and calibration curves.
Results

Study cohort

A total of 2,352 elderly lung cancer patients were included in the

derivation cohort of this study, with 516 patients in the external

validation cohort. The derivation cohort consisted of 1,368 males

(58.16%) and 984 females (41.84%), with an average age of 71.33 ±

5.17 years. This cohort was randomly divided into a training set and

an internal validation set in a 7:3 ratio. The external validation

cohort comprised 307 males (59.5%) and 209 females (40.5%), with

an average age of 71.6 ± 5.16 years. No significant differences in

clinical or pathological data were observed between the training set

and the internal validation set (Table 1, P > 0.05). While the external

validation cohort showed a difference in the tumor marker CEA (P

= 0.04), no significant differences were found in other variables

compared to the training cohort (P > 0.05).

Regarding survival rates, within the derivation cohort, 537

patients (22.73%) died within 5 years post-surgery. The 5-year OS

rates for the training set and internal validation set were 77.61%

(75.54%, 79.73%) and 78.64% (75.57%, 81.84%), respectively. The

5-year OS rate for patients in the external validation cohort was

79.95% (76.48%, 83.58%) (Supplementary Figure 1). Supplementary

Table S1 presents the comparison data of patients who died within 5

years post-surgery and those who survived, in both the derivation

and external validation cohorts (Supplementary Table 1).
Creating a novel oxidative stress score

Within the training set, the optimal threshold values for

oxidative stress markers were identified as follows: albumin (ALB)

39.93 g/dL, total bilirubin (TBIL) 7.77 mmol/L, direct bilirubin

(DBIL) 3.01 mmol/L, urea (BUN) 6 mg/dL, uric acid (UA) 296.1

mmol/L, lactate dehydrogenase (LDH) 222 IU/L, and creatinine

(Crs) 99.33 mmol/L. Stepwise multivariate Cox regression analysis

was utilized to identify the best performing prediction model with

the lowest Akaike Information Criterion (AIC) value. Ultimately,

six variables with the lowest AIC values were determined: ALB,

TBIL, BUN, UA, LDH, and Crs (Table 2). Consequently, based on

the variable coefficients from the stepwise regression, a prognostic

model for lung cancer-related oxidative stress score (OSS) was

further developed: OSS=(ALB × (-0.4362)) + (BUN × (-0.2667)) +

(TBIL × (-0.3965)) + (UA × 0.3770) + (LDH × (-0.2101)) + (Crs ×

0.2679) (Table 2). Patients were then stratified into high-risk and

low-risk groups according to the optimal cut-off value (OSS=-

0.4767978) for the OSS. Supplementary Table 2 presents the

differences in pathological data among different OSS groups

within the training set (Supplementary Table 2). Kaplan-Meier

survival analysis results indicated that patients in the low OSS

group had significantly worse survival rates than those in the
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medium OSS and high OSS groups (P < 0.001, Supplementary

Figure 2A). Survival analysis in the external validation cohort also

showed similar results (P < 0.001, Supplementary Figure 2C), with

comparable observations in the internal validation cohort (P <

0.294, Supplementary Figure 2B).
Variable importance

The Boruta algorithm was employed to process all 36 included

clinical and pathological variables in order to reduce data dimensionality

and eliminate irrelevant features. Figure Supplementary Figure 3 displays

the output of the Boruta feature selection algorithm. Using this

algorithm, 10 features were identified as important, namely: pN, pT,

Diameter, CEA, Age, Hemoglobin, CA125, Operation_Time,

Neutrophils, and OSS (Supplementary Figure 3).
Model performance: development

We incorporated OSS along with 9 other variables into machine

learning, constructing three different models (RF, DT, SVM).

Figure 2 displays the receiver operating characteristic curves and

AUC values for these models in predicting 5-year follow-up

mortality across the training set, internal validation set, and

external validation set (Figure 2). The AUC for the RF model was

0.999 (95% CI: 0.999-1.000), 0.794 (95% CI: 0.754-0.834), and 0.784

(95% CI: 0.738-0.831) for the training, internal validation, and

external validation sets, respectively. For the DT model, the AUC

values were 0.707 (95% CI: 0.680-0.734), 0.711 (95% CI: 0.669-

0.753), and 0.699 (95% CI: 0.649-0.750) across the same sets. The

SVM model had AUC values of 0.821 (95% CI: 0.794-0.847), 0.760

(95% CI: 0.714-0.807), and 0.730 (95% CI: 0.673-0.787). The RF

model demonstrated superior AUC values across all datasets

compared to the DT and SVM models, indicating excellent

predictive performance and strong generalization ability. The

minimal variation in AUC values for the RF model across

different validation datasets underscores its efficiency and stability

in predicting overall survival in elderly lung cancer patients.
Model performance: calibration and
decision curves

The calibration plots reveal that the RF model consistently

aligns predicted probabilities with observed event frequencies,

particularly within the medium to low probability range

(Figures 3A–C), indicating its strong generalizability. Conversely,

the DT model’s predictions generally match actual outcomes across

most datasets but exhibit slight deviations in the external validation

set (Figures 3D–F), suggesting potential overfitting and poor

generalization to new data. The SVM model’s calibration remains

close to the 45° line in both the training and validation sets, with

minor deviations in certain probability intervals (Figures 3G–I),

indicating good calibration and consistent performance across

datasets. Additionally, decision curve analysis was used to assess
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TABLE 1 Demographic and clinical characteristics of the derived cohort, training set, and internal validation set of elderly patients undergoing radical
lung cancer surgery.

Derivation set
External validation set P valueb

Training set Internal validation set P valuea

n 1647 705 516

Age (mean (SD)) 71.35 (5.15) 71.28 (5.21) 0.767 71.60 (5.16) 0.294

Gender (%) 0.612

female 690 (41.9) 294 (41.7) 0.967 209 (40.5)

male 957 (58.1) 411 (58.3) 307 (59.5)

BMI (mean (SD)) 22.38 (3.27) 22.61 (3.63) 0.12 22.40 (3.24) 0.795

ASA (%) 0.314 0.071

1 65 (3.9) 22 (3.1) 18 (3.5)

2 1179 (71.6) 498 (70.6) 364 (70.5)

3 401 (24.3) 182 (25.8) 129 (25.0)

4 2 (0.1) 3 (0.4) 5 (1.0)

Smoking history (%) 0.925 0.083

No 1196 (72.6) 514 (72.9) 355 (68.8)

Yes 451 (27.4) 191 (27.1) 161 (31.2)

Pulmonary Disease (%) 0.64 0.11

No 1603 (97.3) 683 (96.9) 494 (95.7)

Yes 44 (2.7) 22 (3.1) 22 (4.3)

CEA (mean (SD)) 13.60 (72.06) 11.45 (56.28) 0.481 6.75 (21.05) 0.04

CA125 (mean (SD)) 15.67 (71.04) 14.34 (31.62) 0.633 13.48 (14.92) 0.513

Diameter (mean (SD)) 4.25 (2.52) 4.24 (2.40) 0.909 4.12 (2.38) 0.284

pT (%) 0.311 0.061

1 651 (39.5) 281 (39.9) 223 (43.2)

2 442 (26.8) 189 (26.8) 145 (28.1)

3 492 (29.9) 219 (31.1) 140 (27.1)

4 62 (3.8) 16 (2.3) 8 (1.6)

pN (%) 0.554 0.341

0 1041 (63.2) 460 (65.2) 339 (65.7)

1 282 (17.1) 107 (15.2) 69 (13.4)

2 201 (12.2) 91 (12.9) 70 (13.6)

3 123 (7.5) 47 (6.7) 38 (7.4)

pTNM (%) 0.696 0.34

I 605 (36.7) 870 (37.0) 208 (40.3)

II 565 (34.3) 248 (35.2) 173 (33.5)

III 477 (29.0) 192 (27.2) 135 (26.2)

Tumor Histology (%) 0.061

Adenocarcinoma 1197 (72.7) 515 (73.0) 0.885 387 (75.0)

(Continued)
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the clinical utility of these models. The RF model demonstrated the

highest net benefit across most threshold probabilities in the

training set, while the DT and SVM models showed similar net

benefits, both lower than that of the RF model (Supplementary

Figure 4A). In the internal validation set, the RF model continued to

show higher net benefit across most thresholds, with DT and SVM

performing similarly and both lower than RF (Supplementary

Figure 4B). Even though performance declined for all models in

the external validation set, RF still outperformed DT and SVM

across most thresholds (Supplementary Figure 4C).
Discussion

As a distinct population, elderly individuals, due to their unique

biopsychosocial characteristics, may be at increased risk when

undergoing surgery for lung cancer, facing greater challenges such

as more comorbidities, increased frailty, reduced stress tolerance,

decreased physical function, and cognitive decline, making their

postoperative survival outcomes subject to more complex factors

(16, 17). In assessing the long-term care quality of oncological

surgery, the 5-year survival rate following curative surgery for

malignancy is an important audit indicator. Consequently,

establishing a prognostic model for elderly patients with NSCLC

can aid in guiding individualized treatment and follow-up strategies
Frontiers in Oncology 06
for this demographic. By developing machine learning models (DT,

RF, SVM), this study has effectively predicted the 5-year survival rate

of elderly lung cancer patients following surgery. The RF model

demonstrated superior performance, achieving AUC values of 0.794

(95% CI: 0.754-0.834) and 0.784 (95% CI: 0.738-0.831) in the

validation cohorts. This model can make individualized predictions

about postoperative survival for elderly NSCLC patients based on

their clinical and pathological data, thereby enabling targeted follow-

up strategies for patients. This includes shortening or extending the

intervals between follow-ups, adding or omitting items from the

follow-up schedule, which can alleviate the economic burden on

patients and society, and also allows for the timely detection of risk

factors affecting patient survival and their active treatment.

Previous clinical studies have preliminarily established the

predictive value of specific clinical-pathological biomarkers in the

recurrence, metastasis, and overall survival of lung cancer post-

surgery. These biomarkers include tumor size, differentiation status,

inflammatory markers, and TNM staging (18–20). Despite this,

these predictive biomarkers fail to reflect the complex prognostic

situation of elderly lung cancer patients. As for oxidative stress, it

catalyzes glycolysis, stimulates tumor cell migration, and enhances

tumor growth (21). Additionally, oxidative stress has been

associated with overexpression of ferritin metabolic genes, thereby

interfering with prognosis (22). Studies in animal models have

shown that oxidative stress factors rise following external stimuli in

mice, leading to significant increases in biochemical markers such

as TBIL, LDH, creatinine, and BUN, which can promote

tumorigenesis and development (23, 24). In elderly patients with

malignant tumors, the oxidative stress process is often imbalanced,

potentially affecting the migration and invasion capabilities of

malignant tumor cells and possibly impacting the prognosis of

these patients, though long-term prognostic studies have not yet

been reported. Building on this, our study introduces the lung

cancer oxidative stress indicator OSS, which includes ALB, TBIL,

BUN, UA, LDH, and Crs, all closely linked to oxidative stress. Our

results show that patients with low OSS have a poorer prognosis

compared to those with high OSS. The OSS was formulated by

training on a cohort of patients from our institution, utilizing

detailed clinical data and extended follow-up. Consequently, we

hypothesize that a predictive model incorporating OSS could more

accurately forecast the prognosis of elderly lung cancer patients.
TABLE 1 Continued

Derivation set
External validation set P valueb

Training set Internal validation set P valuea

Adenosquamous
carcinoma

83 (5.0) 38 (5.4) 14 (2.7)

Squamous carcinoma 367 (22.3) 152 (21.6) 115 (22.3)

Adjuvant Therapy (%) 0.712

No 1138 (69.1) 499 (70.8) 0.444 364 (70.5)

Yes 509 (30.9) 206 (29.2) 152 (29.5)
ameans comparing the training cohort with the internal validation group.
bmeans comparing the derivation set with the external validation group. Data are expressed as numbers (percentages) of participants, unless otherwise indicated.
BMI, Body Mass Index; ASA physical status, American Society of Anesthesiologists physical status; CEA: Carcinoembryonic Antigen; CA125: Cancer Antigen 125.
TABLE 2 Results of stepwise selection of variables based on AIC.

Variable Coef
Exp
(Coef)

Std.Err z P value

Albumin -0.4362 0.6465 0.1267 -3.444 0.000574

Urea -0.2667 0.7659 0.1134 -2.353 0.018632

Total Bilirubin -0.3965 0.6727 0.1156 -3.43 0.000603

Uric Acid 0.377 1.458 0.1151 3.275 0.001057

Lactate
Dehydrogenase

-0.2101 0.8105 0.1401 -1.499 0.133856

Creatinine 0.2679 1.3073 0.1172 2.287 0.022185
Oxidative stress score = (Albumin × (-0.4362)) + (Urea × (-0.2667)) + (Total_Bilirubin ×
(-0.3965)) + (Uric_Acid × 0.3770) + (Lactate_Dehydrogenase × (-0.2101)) + (Creatinine
× 0.2679).
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FIGURE 2

Receiver operating characteristic (ROC) curves plots of the classification models. ROC curve plot in the (A) Training set; (B) Internal validation set;
(C) External validation set. RF, Random Forest; DT, Decision Tree; SVM, Support Vector Machine.
FIGURE 3

Calibration curves plot for different classification models. Calibration curves for RF model on training (A), internal validation (B), and external
validation (C) sets. Calibration curves for DT model on training (D), internal validation (E), and external validation (F) sets. Calibration curves for SVM
model on training (G), internal validation (H), and external validation (I) sets. RF, Random Forest; DT, Decision Tree; SVM, Support Vector Machine.
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Previous reports have described several models for predicting

postoperative survival in lung cancer patients. Larsen A developed a

model based on a general inflammatory score, exploring the

prognostic value of albumin, C-reactive protein, neutrophil count,

lymphocyte count, hemoglobin, and the neutrophil-to-lymphocyte

ratio (NLR) for NSCLC through a non-machine learning model

(25). However, this study was limited by its inclusion of only

hematological indicators, lacking the generalizability and

automation offered by machine learning, potentially missing

critical prognostic factors. To overcome this limitation, She and

colleagues included a more comprehensive set of 127 features,

encompassing patient characteristics, tumor staging, and

treatment strategies, and established a deep learning model. This

survival neural network model demonstrated better results in

predicting lung cancer-specific survival compared to tumor,

lymph node, and metastasis stages with a C index of 0.739, both

in internal modeling and external validation cohorts (26). However,

this model did not stratify elderly patients separately. Ganti used

data from 38 centers on lung cancer cases to create a predictive

model for the overall survival of elderly NSCLC patients, finding

that male gender, poor performance status, distant metastasis, and

recent weight loss were reasons for poorer prognosis in this group,

with an area under the ROC curve for 1-year and 2-year OS

prediction of 0.6 and 0.65, respectively (27). However, this model

suffered from an inability to reflect the physiological characteristics

of the elderly adequately, and the predictive efficiency of the model

was low. Similarly, for prognosis prediction in elderly NSCLC

patients, Wang and colleagues used frailty indices, indicators

reflecting the physiological state and general pathological

response of the elderly, to evaluate prognosis in elderly lung

cancer patients, demonstrating that frail patients had a higher

overall risk of mortality and higher prognostic value for survival

(AUC range = A) (28). However, this study was limited to single-

center data and a median follow-up time of less than two years,

potentially limiting the broader application of the model. In this

study, various machine learning models were developed and

validated to enhance the predictive accuracy for 5-year overall

survival (OS) in elderly NSCLC patients. The RF model exhibited

superior performance compared to the other models, with excellent

calibration and predictive capabilities. Our model leverages

commonly available perioperative clinical data, focusing on seven

critical variables influencing 5-year postoperative survival: pT, pN,

tumor location, OSS, tumor size, degree of differentiation, and

perineural invasion. This approach underscores the significance of

preoperative oxidative stress, overall systemic health, surgical

performance, postoperative recovery, and tumor staging in

predicting long-term survival rates in elderly lung cancer patients.

Decision curve analysis was utilized to compare the clinical utility of

the different models across various thresholds, further aiding in

model selection and application. The RF model consistently

demonstrated higher net benefits across training, testing, and

validation datasets, suggesting robust generalizability and

effectiveness in clinical practice.

In numerous studies, RF models have demonstrated superior

performance compared to DT and SVM models, primarily attributed

to their unique structure and algorithmic characteristics (29). The
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ensemble learning approach inherent to RF models confers robust

feature processing capabilities, enabling excellent performance in

handling high-dimensional data and feature selection (30). This

ensemble method also enhances the model’s stability and

generalization ability. These advantages not only contribute to the

RF model’s exceptional accuracy but also allow it to maintain stable

performance across various complex application scenarios (31). Our

innovative RF model achieved a higher AUC value than previous

models, likely due to its incorporation of a broader range of clinical

evaluation indicators for elderly patients, such as oxidative stress

markers, age-adjusted comorbidity indices, and comprehensive

complication indices. Variables pN and pT emerged as the most

critical for model prediction, with their significance surpassing that

of other variables. Hemoglobin, tumor markers, OSS, and tumor size

also demonstrated considerable importance. These findings highlight

the key factors that influence the model’s performance, facilitating its

further optimization and interpretation. Consequently, when

developing a model for predicting long-term survival after lung

cancer surgery, it is crucial to consider these prognostic

factors comprehensively.

We must acknowledge certain limitations of our study. The

retrospective design precluded the collection of more specialized

oxidative stress indicators, such as superoxide dismutase,

malondialdehyde, and redox potential, while our retrospective

design limited the biomarkers we could include, we acknowledge

the value of additional markers, we expect that more potential

biomarkers that could be included in future studies to strengthen

the OSS and enhance the model’s predictive power. Additionally,

our database did not include other significant factors influencing

lung cancer, such as high-risk gene mutations, immunotherapy

usage, and socioeconomic status, which could impact model

performance. We hope that future multicenter, large-sample, and

multi-ethnic studies can further enhance the model’s applicability.
Conclusions

The clinical prediction model based on OSS and developed

using machine learning techniques demonstrates effective

prognostic capabilities for elderly lung cancer patients following

curative surgery.
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