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Introduction: Cancer is a collective name for a group of diseases consisting of

dozens of different types of malignant tumors, characterized by rapid and

uncontrolled proliferation of cells in the body. Cancer can start almost

anywhere in the human body such as the breast, prostate, colorectal, brain,

bones, lungs, bladder etc. The main differences between the different types of

cancer are related to the organ in which the tumor develops and the type of cells

that compose the tumor.

Method: This paper focused on the breast cancer. Breast cancer is a malignant

tumor that originates in the breast tissue. It is themost commonmalignant tumor

in women. There are several types of breast cancer, but in all types early diagnosis

and treatment is crucial. In this study, the treatment of breast cancer involving a

combination of two drugs was investigated: the oral estrogen receptor inhibitor

AZD9496 and the CDK4/6 protein inhibitor Palbociclib. The mathematical model

that described the interaction between the cancer cells, the treatment, and the

immune system cells includes a system of nonlinear ordinary differential

equations of the firs order. In general, dynamic variables of a given system

change each at a different rate. And it is not possible to know from the

mathematical model which variable is fast and which is slow. Therefore, in

order to reveal the hierarchy of the system of equations ,a numerical algorithm

called the singularly perturbed vector field (SPVF) was applied. This algorithm

transform the mathematical model to a new coordinate system in which the rate

of change of each dynamic variable of the system can be known.

Results and Discussion: After writing the mathematical model in new

coordinates, the equilibrium point was obtained analytically. The stability of the

equilibrium points is investigated, which is essential from a practical perspective.

Investigating the stability of the equilibrium points allows determination of when

the tumor does not continue to develop and thereby allows adjustment of

treatment continuation.
KEYWORDS

SPVF, cancer treatment, AZD9496, palbociclib, mathematical model, asymptotic
analysis method
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1 Introduction

Breast cancer accounts for approximately one-third of new

cancer cases among women annually. It is the most common

malignant disease among women worldwide (There were

2,296,840 new cases of breast cancer in 2022 among women (1)).

Currently, at least one in eight women may experience breast cancer

during their lifetime. The disease occurs mainly in women but is

also found in men (the risk for men is 100 times lower than that for

women). In cancer, uncontrolled cell proliferation occurs in an

organ of the body. Breast cancer develops in the breast tissues,

usually in the ducts that carry milk to the nipple and in the glands

that produce milk. The disease is caused by a set of factors, some of

which are congenital or depend on age and medical history, while

others are related to lifestyle. Only approximately 10% of cases are

due to heredity. Examination by a doctor (sometimes, self-

examination is sufficient to determine the presence of a breast

lump) is essential in cases where an unfamiliar breast lump is

noticed. Breast cancer awareness is key to health because the earlier

the disease is diagnosed, the higher are the chances of recovery.

Approximately 80% of the lumps detected in the breast are benign,

i.e., not malignant, and do not pose a risk. These include

fibroadenomas (lumps of fibrous tissue), cysts (fluid sacs), and

congestion. However, certain benign lumps may increase the risk

of developing breast cancer (2–6).

Women diagnosed with breast tumors usually undergo surgery

for tumor resection (lumpectomy or partial excision of the breast)

(7, 8). A sample is also obtained from the lymph nodes in the armpit

(sentinel gland biopsy). Sometimes, a more extensive operation is

necessary (9, 10), such as removal of the entire breast (mastectomy

or complete excision) or extensive excision of lymph nodes from the

armpit. In most cases, when a complete mastectomy is necessary,

breast reconstruction surgery can be performed immediately

(11–14).

Radiation. After surgery, complementary radiation therapy is

usually required, especially if a partial excision is performed.

Radiation can be administered to the entire breast, and

sometimes to the lymph nodes that drain the breast. In some

cases, one dose of radiation administered during the resection

surgery is sufficient (15–17).

Chemotherapy. Chemotherapy includes drugs that damage

tumor cells. Chemotherapy sometimes has side effects such as

nausea, vomiting, and hair loss. These side effects can be

alleviated by medication. Notably, every patient with breast

cancer patient may not require chemotherapy. Chemotherapy can

be administered before or after surgery (18–27).

Biological treatments. Unlike chemotherapy, biological

treatments are more specific to tumor cells and reduce damage to

the remaining body, resulting in fewer side effects. The biological

drugs used against breast cancer include Herceptin and Lapatinib

(28–31).

Antihormonal treatments. After completion of chemotherapy

and radiation treatment, some patients are recommended

complementary antihormonal treatment as pills for 5 10 years.

Such treatment is suitable for women whose tumors have hormone
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receptors, and it aims to reduce the risk of tumor recurrence. An

example of an antihormonal drug is tamoxifen (32–37).

In recent years, researchers, such as mathematicians and

physicists, have also been trying to find unconventional ways of

treating this disease. This usually involves the development of a

mathematical model; which on one hand includes models that take

as many variables and parameters related to the patient as possible

and on the other hand, models that can be studied, not necessarily

in a numerical manner (38–42).

The advantages of a mathematical model are that it does not

require a laboratory in the initial stage but only mathematical tools.

This also does not require a high budget. Another advantage is that

the parameters of the system can be easily changed and adapted to

different patients to allow personalized treatment. The disadvantages

are that a mathematical model does not reflect reality one-to-one but

only provides an approximation; however, many studies indicate that

the obtained approximation is sufficiently good (43–47).

In the present study, the investigation focused on a

mathematical model that describes cancer treatment using a

combination of two drugs: the oral estrogen receptor inhibitor

AZD9496 and a CDK4/6 protein inhibitor Palbociclib using an

asymptotic method called singular perturbed vector field (SPVFM),

which allows us to determine the equilibrium points of the system,

which is essential from a practical viewpoint of view.

The paper is organized as follows: In the next section the

mathematical model of breast cancer and its treatment is presented.

Subsequently, the algorithm of singularly perturbed vector fields and

its application to the mathematical model were introduced. Finally,

the results of the research and their analysis are presented.
2 Mathematical model definition

In this section, a mathematical model derived from the article

(47) is presented for ER-positive breast cancer treatment using two

different drugs: AZD9496 and palbociclib. In this study, a new

personalized treatment based on analytical functions dependent on

two parameters is proposed: the dosage of the medicine and the

time interval between treatments. These two parameters enable us

to control the treatments such that the dosage and time intervals

can be modified depending on the tumor size. For this purpose, an

ODE equation describing the treatment function in relation to

tumor size wasted. The solution profiles of these equations show the

dosage and time interval as a function of the tumor size at each

given time. The dynamical variables of the model are as follows: CC

[cell] is the MCF-7 tumor cell population, NK [cellL−1], is the NK

cell population, WBC [cellL−1] is the WBC population, CTL[cellL
−1]

is the CTL population, Anc
ZD [mg] is the AZD9496 not in circulation,

Ac
ZD [mg] is the AZD9496 in circulation, Pnc

a [mg] is the Palbociclib

not in circulation, Pc
a [mg] Palbociclib in circulation, F [mg] and H

[mg] are functions of AZD9496 and Palbociclib treatments,

respectively, (qAZD
is the amount of AZD9496, and qPa is the

amount of Palbociclib). Based on the above assumptions, the

mathematical model is a system of first-order nonlinear ordinary

differential equations in the form:
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dCC

dt
= CC ae−a9P

c
a +

ce−a10A
c
ZDECC

1 + a1E + b1C2
C

� �
1 −

CC

K

� �

−
p1CCN

2
K

1 + a2CC + b2N2
K
−

p6C
2
CCTL

1 + a6C
2
C + b6CTL

≡ F1(~W), (1)

dNK

dt
= eWBC − fNK − p2NKCC +

p3NKCC

1 + a3CC + b3NK
≡ F2(~W), (2)

dWBC

dt
= a − bWBC ≡ F3(~W), (3)

dCTL

dt
=

CCKL − CTLCC

KL(a5 + CC)

� �
p4LN +

p5I
a4 + I

CTL

� �
− dCTL

≡ F4(~W), (4)

dAnc
ZD

dt
= −a7A

nc
ZD + F (t) ≡ F5(~W), (5)

dAc
ZD

dt
= a7A

nc
ZD − b4A

c
ZD ≡ F6(~W), (6)

dPnc
a

dt
= −a8P

nc
a +H(t) ≡ F7(~W), (7)

dPc
a

dt
= a8P

nc
a − b5P

c
a ≡ F8(~W), (8)

dF
dt

= F e1 (t)CC − F e2 (t) ≡ F9(~W), (9)

dH
dt

= He3 (t)CC −He4 (t) ≡ F10(~W) (10)

The initial conditions of the model at t = 0 are:

CC = 8:72 · 107,NK = 2:5 · 108,WBC = 4:3 · 109,CTL = 6:6 · 108,Anc
ZD = 0,

Ac
ZD = 0, Pnc

a = 0, Pc
a = 0,F (0, qAZD

) = q10,H(0, qPa ) = q20 :

(11)

The vector ~W will be define in section 4.1. The following

parameters are used for numerical simulations of the application.

Parameters
K = 109½cell�, Tumor cell carrying capacity,

c = 0:00147½LCell1Day−1pmol−1�, Tumor growth rate induced

by E2,

a10 = 0:2263 ½mg−1�, Tumor growth inhibition by AZD9496,

a1 = 0:507 ½Lpmol−1�, Half saturation constant,

b1 = 7:08 · 10−8 ½Cell−2�, Half saturation constant,

p1 = 8:7 · 10−4 ½L2Cell−2Day−1�, NK induced tumor death,

a2 = 7 · 106 ½Cell−1�, Half saturation constant,

b2 = 5:4 · 10−5 ½L2Cell−2�, Half saturation constant,

b = 6:3 · 10−3 ½Day−1�, WBC death rate,

a = 5 · 107 ½CellL−1Day−1�, WBC production rate,

e = 0:00486 ½Day−1�, Fraction of WBCs becoming NK cells,

f = 0:0693 ½Day−1�, NK cell death rate,
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p2 = 3:42 · 10−6 ½CellDay−1�, NK cell inactivation by tumor cells,

p3 = 1:87 · 10−8 ½Cell−1Day−1�, NK cell recruitment rate

a3 = 1:6 · 10−5 ½Cell−1�, Half saturation constant

b3 = 3:27 ½LCell−1�, Half saturation constant

p6 = 2:04 · 10−3 ½LCell−2Day−1�, CTL induced tumor death,

a6 = 0:268 ½Cell2�, Half saturation constant,

b6 = 4341 ½LCell−1�, Half saturation constant,

KL = 8 · 108 ½CellL−1�, CTL carrying capacity,

p5 = 4:14 ½LCell−2Day−1�, CTL growth rate induced by IL-2,

d0:41 ½Day−1�, CTL death rate,

a5 = 1000 ½Cell�, Half saturation constant,

a7 = 24:3659 Day−1�, Absorption rate of AZD9496,

b4 = 4:7541 ½Day−1�, Elimination rate of AZD9496,

p4 = 9 · 10−5 ½Day−1�, Fraction of naive CTL activated,

a4 = 2:3 · 10−11 ½gL−1�, Half saturation constant,

LN = 2:3 · 108 ½CellL−1�, Naive CTL population,

I = 2:3 · 10−11 ½gL−1�, IL-2 concentration,

b5 = 0:64 ½Day−1�, Elimination rate of palbociclib,

a8 = 14:1512 ½Day−1�, Absorption rate of palbociclib,

a9 = 0:01 ½mg−1�, Tumor growth inhibition by palbociclib,

a10 = 0:2263 ½mg−1�, Tumor growth inhibition by AZD9496,

ei = 1:01 dimensionless Free parameter.
3 Slow-fast subsystems, the singular
perturbed vector fields method

The singular perturbed vector field method is presented in

this section.

Generally, given a system of nonlinear differential equations, it

is impossible to obtain an analytical solution in most cases.

Various numerical methods can be applied to the system of

nonlinear differential equations. However, the numerical

solutions sometimes miss important and useless information

especially when dealing with a mathematical model of cancer

research. In addition, by applying numerical methods, graphs

representing the solution can be generated, from which it is

difficult to understand and draw conclusions from the solution

profiles of the system and data on the system. Therefore, in most

cases, applying asymptomatic methods or reduction methods that

reduce the number of equations and investigating the “small”

subsystems without losing important information about the entire

system are preferred. However, to reduce the original system, the

fast and slow variables of the system need to be determined; i.e.,

the exact hierarchy of the system of differential equations needs to

be known and this is why standard asymptotic methods cannot be

applied. Because in order to apply these methods, the

mathematical model should be of the form of SPS system, i.e.,

the hierarchy of the system of equations should be exposed.

Therefore, the primary objective of this section was to

determine the hierarchy of the system. A transformation of the

system to a new coordinate system will be applied. In the new

coordinates, the hierarchy of the system will be revealed by

calculating the eigenvalues and eigenvectors of the new system.

This is the main aim of this section.
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3.1 SPVFM

This section provides a detailed description of the SPVF

method. The mathematical model has the dimension n = 10. The

following steps are implemented

1: Select N vectors, G = ~x1,…,~xNf g,~xi ∈ Rn, where N ≫ n.

2: Compute the mean value of the vector filed over the point from

step 1: �F = 1
NoN

i=1
~F(~xi),

�F =  

1
NoN

I=1F1(~xi)

1
NoN

I=1F2(~xi)

⋮
1
NoN

I=1Fn(~xi)

 

0
BBBBB@

1
CCCCCA

=
1
No

N

i=1
 

F1(~xi)

F2(~xi)

⋮

Fn(~xi)

 

0
BBBBB@

1
CCCCCA

:

3: Define the following set: Gcs = ~xi ∈ G : �F(xi)k k > �Fk kf g for

simplicity let reindex Gcs = ~x1,…,~xNcs

� �
.

4: Build the ordered basis sets:

Bi = ~x(i−1)n+1,…,~xin
� �

with the corresponding matrix

Ai =

x1,(i−1)n+1 … x1,in

x2,(i−1)n+1 … x2,in

⋮ … ⋮

xn,(i−1)n+1 … xn,in

0
BBBBB@

1
CCCCCA

and let B = B1,B2,…,Bmf g, A = A1,A2,…,Amf g, where m =

⌊ Ncs
n ⌋.
5: Select only the reference basis set from step 4 which have

Det(Ai)j j above the average level over all determinate basis i.e., let

W = 1
mom

i=1 Det(Ai)j j, t h en th e r e f e r en c e b a s i s i s Brb =

Bi : Det(Ai)j j ≥ W, i = 1,…,mf g. Again let us reindex, Brb =

B1, B2,…,Bkf g with the matching reindex of vectors~x.

6: For each i = 1, 2,…, k compute the eigenvalues of following

matrix Ti that correspond to the matching basis Bi,

Ti =

F1(~x(i−1)n+1) … F1(~xin)

F2(~x(i−1)n+1) … F2(~xin)

⋮ … ⋮

Fn(~x(i−1)n+1) … Fn(~xin)

0
BBBBB@

1
CCCCCA

:

i.e., compute the determinant of the following matrix Ti − lIj j
where I is the unit matrix, and solve the equation:

Ti − lIj j = 0

7: let li
1, li

2,…, li
n

� �
be in ascending ordered eigenvalues of Ti.

For each Ti the maximum gap is computed as:

gapmaxi = max
n

( li
n+1(Ti)

�� ��= li
n(Ti

�� ��)) :
8: Denote by imax the index for which gapmaxi is maximal.

Compute the eigenvectors of Timax
, i.e, solve the system of equations:

Timax
−~w = 0

and obtain the eigenvectors: ~wimax
1 ,~wimax

2 ,…,~wimax
n

n o
, that

correspond to limax
1 , limax

2 ,…, limax
n

n o
consist of the desired

coordinate system. Let ns - be the index for which ( limax
n+1 (Timax

)
�� ��=
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limax
n (Timax

�� ��)) is maximal. Then the vectors ~wimax
1 ,~wimax

2 ,…,~wimax
ns

n o
and, ~wimax

ns+1
,~wimax

ns+2
,…,~wimax

n

n o
are the new slow and fast vectors of the

slow and fast system correspondingly.

9: Rewrite the original system in the new coordinate using the

eigenvectors ~wimax
1 ,~wimax

2 ,…,~wimax
n

n o
.

4 Analysis and results

In this section, the SPVF method was applied to a

mathematical model for cancer treatment. The mathematical

model was transferred to a new coordinate system, allowing the

model to be split into fast and slow subsystems. These subsystems

were studied, and equilibrium points were found and analyzed

for stability.
4.1 Transformation the mathematical
model to a new coordinates,
eigenvalues, eigenvectors

In this section, the mathematical model is transformed to new

coordinates using the eigenvectors of the vector field.

By applying the SPVF method to the system of Equations 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, The following eigenvalues and eigenvectors were

obtained:

l1 = 2645971:569, l2 = 7477:865, l3 = 4635:569, l4 = 7876:957,

l5 = 9666:424, l6 = 872:764, l7 = 563:466, l8 = 366:763,

l9 = 35:534, l10 = 2:077:

(12)

According to the algorithm of the SPVF, the maximum gap is

gapmaxi =
l1
l2

= 353:840. The corresponding eigenvectors are as

follows:

~w1 = (5:667,   1:536,   0:419,   2:644, 3:728,   1:012,   4:137,   4:123,   2:466,   3:532)T

~w2 = (2:667,   2:588,   1:688,   3:997,   3:476,   4:366,   4:477,   5:266,   4:373,   5:464)T

~w3 = (0:488,−1:346,−2:037,−3:156,−2:134,−3:544,−0:348,   4:478,   4:377,   0:743)T

~w4 = (2:334,−9:442, 3:204,−1:378,   4:326,   5:466,−6:378,   7:626,   6:773,   0:089)T

~w5 = (2:024, 3:244,−2:387,   2:377,−1:376,   2:525,   1:267,−3:987,   2:337,   0:377)T

~w6 = (0:876,   0:870,   0:875,   0:346,−4:565,   3:557,−3:765,−9:768,−2:975,−2:765)T

~w7 = ( − 1:121,   0:032,   0:578,   1:897,   2:543,   7:523,−1:876,   2:205,   2:880,−8:255, )T

~w8 = ( − 0:786,−5:879,   0:000,   0:000,   0:000,   0:876,   0:772,−0:012,   0:772,   0:766)T

~w9 = (0:877,−4:865,   0:000,   9:000,   7:000,   6:000,−1:099,−1:778,−9:765,−1:987)T

~w10 = ( − 0:000, 4:765,   3:865,   3:544,−5:544,−5:346,−4:897,−0:463,−0:984,−1:987)T ,

(13)

where T denote the transpose operator. This means that the

original system of equations can be decomposed into fast and slow

subsystems, where the fast direction of the system is in the direction

of the eigenvector ~w1 corresponding to the eigenvalue l1, and the

slow direction of the system is in the direction of the eigenvectors
~w2 −~w10 corresponding to the eigenvalue l2 − l10.

The next step of the SPVF method is to transform model (1-10)

using the above eigenvectors; hence, let ~W be a vector of the

dynamical variables of the mathematical model:
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~W = (CC ,NK ,WBC ,CTL,A
nc
ZD,A

c
ZD, P

nc
a , Pc

a,F ,H) and, ~V = (x1,

x2, x3, x4, x5, x6, x7, x8, x9, x10) be the variables of the model in the

new coordinates. Hence, the system can be rewritten as

~V = A~W , (14)

where the matrix A contains the eigenvectors obtained by

applying the SPVF method.

The next step is to express the old system variables as functions

of the new variables. To achieve this, multiply the set of Equations

14 by the inverse matrix of A

~W = A−1~V : (15)

Take the derivative of the system (14) with respect to time:

d~V
dt

= A d~W
dt

: (16)

Then substitute the expressions of the RHS (right-hand side)

from the system (1) â (10) instead of d~W
dt in (16); that is,

d~V
dt

= A d~W
dt

= A~F(~W), (17)

Where

~F(~W) = F1(~W), F2(~W), F3(~W), F4(~W), F5(~W), F6(~W), F7(~W), F8(~W), F9(~W), F10(~W)
� �T

(18)

Finally, substitute Equation 15 into Equation 17 to obtain the

original mathematical model in the new coordinates with the initial

conditions as follows:

d~V
dt = A ·~F(A−1~V) ≡~B(~V),

~V(0) = A~W(0) :
(19)

The system of differential equations obtained (19) is a system of

equations that only describes a mathematical model and has no

biological or physical meaning because the new variables are a

combination of the old variables without any expression meaning.

However, the great advantage of this system is that in these new

coordinates, the hierarchy of the system is precisely known;

therefore, the fast and slow variables are exactly known. This

procedure enables division of the new ODE system into fast and

slow subsystems. The procedure for splitting into fast and slow

subsystems is as follows:

dx1
dt

,
dx2
dt

,…,
dx10
dt

� �
=

1
e
Bfast(~x),~Bslow(~x)

� �
, (20)

Where ~x = (x1,…, x10) is the vector of dynamical variables of

the model in the new coordinates. As shown, variable x1 is a fast

variable of the new system that corresponds to the direction of the

eigenvector corresponding to the largest eigenvalue l1 obtained by

applying the SPVF algorithm. This procedure allows us to reduce

the system (19) written in new coordinates to only one significant
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subsystem (in this case, one equation). According to the theory of

asymptotic analysis for a given system in the singular perturbed

system (SPS) form, a fast subsystem can be studied while the slow

system is frozen. When investigating a fast system, no important or

relevant information regarding the entire system is lost. The main

aim of this study was to determine the equilibrium points of the

system and their stability. The advantage of the SPVF method is

that the eigenvalues do not change in size under a linear

transformation. Therefore, by determining the equilibrium points

of the new system and analyzing their stability, an inverse

transformation can be performed (using the inverse matrix of the

eigenvectors) to find the equilibrium points of the original system

and guarantee that these will be stable equilibrium points of the

original mathematical model. The equilibrium point of the new

system is determined by solving the following equation:

e
dx1
dt

= Bfast(~x), (21)

for dx1
dt = 0, i.e.,

Bfast(~x) = 0: (22)

While the other variables of the system remain constant

(frozen), they can be considered values of the initial conditions in

the new system. As stated before, the mathematical model is

transferred from the coordinates of the dynamical variables

presented by the vector to new coordinates presented by the

vector using the eigenvectors ~wi. The transformation process

involved expressing the new dynamic variables of the system as

functions of the original model’s dynamical variables, i.e., the new

variables are combinations of the old variables. The results are

presented in Figures 1 and 2 for different parameter values. In these

figures, the black line represents the solution profile of the

combination of the original variables, which cause the cancer cells

to achieve stability. The red line represents the solution profile of

cancer cells that achieve stability at the equilibrium point.

The parameters data that used in this research are presented in

the relevant Figure. Figure 1: This combination of variables and

parameters behaves in a roughly cyclic manner, meaning that it

rises and falls; however, the general trend is downward. The

intervals are approximately constant; however, the values on the

y-axis vary. For this combination, the cancer cells stabilize at a

relatively fast rate, meaning that there is a very sharp decrease at the

beginning, which then reaches an equilibrium state very quickly.

The sharp decrease at the beginning of treatment is attributed to the

high combination of variables and parameters at the beginning of

treatment, which causes a sharp decrease in cancer cells.

Figure 3: For these combinations of parameters and variables, it

can be observed that, initially, cancer cells increase relatively sharply

and then gradually fall, but not as in the previous case, where they

fell cyclically. In this case, cancer cells do not decrease quickly and

stabilize, but rather take relatively more time to stabilize.

Figure 2: For this combination of parameters, the values

constantly increase in the dynamic variables of the original system.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1482223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Nave 10.3389/fonc.2024.1482223
This indicates the aggressiveness of the treatment, that is, the variables

increase over time with the treatment. With this combination, the

cancer cells stabilized very quickly, indicating that they initially

decreased very quickly and then stabilized in a straight step.

In all cases, a correlation is observed between the variables and

parameters to the state where the equilibrium points stabilize.
4.2 Equilibrium points and stability
analysis (46)

The equilibrium points of the mathematical model are

examined in this section (written in the new coordinates) and
Frontiers in Oncology 06
their stability. In general, given a mathematical model presented by

nonlinear ODE system, where the hierarchy of the variables is

hidden, it is very hard and even impossible to study the stability of

the equilibrium points analytically. Therefore, the great advantage

of transforming the mathematical model to new coordinates is first

of all exposing the hierarchy of the dynamic variables of the system,

that is, of the mathematical model, subsequently, the model is split

into a fast subsystem and a slow subsystem. by orders of magnitude

of the eigenvalues ˆaaˆof the matrix that represents the vector field

of the mathematical model. After splitting the mathematical model

into subsystems, the fast subsystem can be analyzed, the equilibrium

points can be found analytically in most cases as a function of the

system parameters, while the other variables remain constant, and
FIGURE 2

The solution profiles of the system of equations for a combination of parameters and the cancer cells stability. The parameters used for calculations
are K = 76, c = 0.0633, a10 = 0.6467, a1 = 0.756, b1 = 2.89 · 10−7, a2 = 6 · 104, b2 = 1.2 · 10−5, b = 7.3 · 10−3, a = 3 · 107, e = 0.646, f = 2.84739, p2 =
3.455 · 10−5, p3 = 2.45 · 10−8, b3 = 2.66 p6 = 2.76 · 10−4, a6 = 3.766, b6 = 9875, KL = 5 · 105, p5 = 2.45, d = 0.65, a5 = 1240, a7 = 59.8735, b4 = 4.3, p4
= 9 · 10−4, a4 = 5.5 · 10−10, LN = 7.2 · 109, I = 1.9 · 10−10, b5 = 1.89, a8 = 29.83, ei = 0.1.
FIGURE 1

The solution profiles of the system of equations for a combination of parameters and the cancer cells stability. The parameters used for calculations
are K = 109, c = 0.00147, a10 = 0.2263, a1 = 0.507, b1 = 7.08 · 10−8,a2 = 7 · 106, b2 = 5.4 · 10−5, b = 6.3 · 10−3,a = 5 · 107, e =0.00486,f = 0.0693, p2
= 3.42 · 10−6, p3 = 1.87 · 10−8, b3 = 3.27 p6 = 2.04 · 10−3, a6 = 0.268, b6 = 4341, KL = 8 · 108, p5 = 4.14,d = 0.41, a5 = 1000, a7 = 24.3659, b4 =
4.7541, p4 = 9 · 10−5, a4 = 2.3 · 10−11, LN = 2.3 · 108, I = 2.3 · 10−11, b5 = 0.64, a8 = 14.1512, ei = 1.01.
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can be taken as the values of the initial conditions of the model.

After finding the equilibrium points, their stability was analyzed,

followed by an inverse transformation to the equilibrium points,

based on principles from linear algebra, the equilibrium points and

their stability are preserved under the linear transformation.

According to the results of the eigenvalues presented above the

fast subsystem contain only the first variable i.e., x1 while x2,…, x10
are the slow variables.

The following steps are implements for finding the equilibrium

points of the mathematical model in the new coordinates and

determining their stability.

1. Substitute the slow variables as a constant into the fast subsystem

(one can take the initial condition of the slow variables as the constants).

2. Setting the fast variable derivative to zero i.e., solve the fast

subsystem (with slow variables as constants) and find the equilibria

points of the fast variables x*1

B1
fast(x

*
1 , x2(0), x3(0),…, x10(0)) = 0,

(where the star notation denoted the fast equilibrium points).

3. Substitute the equilibrium points from step 2(x*1 ) into the

slow subsystem, solve the slow subsystem and find the equilibrium

points of the slow variables (x*2 ,…, x*10)

~B2,…,10
slow (x*1 , x

*
2 , x

*
3 ,…, x*10) = 0 (23)

Here, the system consists of eight equations and eight unknown

variables (x*3 ,…, x*10).

4. Substitute the equilibrium points from steps 2 and 3 at the

Jacobian matrix of the full system (the model at the new coordinates).

5. Compute the eigenvalues of the Jacobian matrix of the

system (the model at the new coordinates) for each set of

equilibrium point (the stable points are those with a negative real

part of the eigenvalues).

6. Transform only the equilibrium points that are stable from

steps 2 and 3 to the original coordinates using the inverse matrix of

the eigenvectors, i.e., compute
Frontiers in Oncology 07
~V*stable = A−1~W
i*
stable (24)

where i indicates for different stable equilibrium points. In Figure 4

The solution profiles of the fast variable, depending on time t, are

presented. As one can see from the plot graph the stability point

reached after t ≈ 30 days. It is very important to note at this stage that

the mathematical model in the new coordinates has no biological

meaning since the new variables are a linear combination of the old

variables. The only variables that have biological significance are the old

variables. The important parameter from the stability analysis that can

be extracted from the graph shown in Figure 4 is time. An inverse

linear transformation to the equilibrium points shows that after the

same time parameter, both the cancer tumor and the whole system, as

described by the mathematical model, stabilize.

Conclusions

This study improves upon the mathematical model presented by

(47), and added a system of differential equations that describe the

treatment method depending on the dose and time of drug
FIGURE 4

The solution profiles of the fast variable as a function of the time t.
FIGURE 3

The solution profiles of the system of equations for a combination of parameters and the cancer cells stability. The parameters used for calculations
are K = 76, c = 0.0633, a10 = 0.6467, a1 = 0.756, b1 = 2.89 · 10−7, a2 = 6 · 104, b2 = 1.2 · 10−5, b = 7.3 · 10−3,a = 3 · 107, e = 0.00486, f = 0.766, p2 =
6.42 · 10−5, p3 = 1.87 · 10−8, b3 = 5.43 p6 = 2.76 · 10−4, a6 = 0.688, b6 = 8765, KL = 5 · 106, p5 = 4.14, d = 0.41, a5 = 1400, a7 = 49.6533, b4 = 4.3522,
p4 = 9 · 10−5, a4 = 4.5 · 10−11, LN = 1.2 · 108, I = 2.3 · 10−11, b5 = 0.64, a8 = 14.6544, ei = 0.09.
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administration. The application of the SPVFM algorithm allowed for the

reduction of the system’s dimensions. The model was then rewritten

using the new coordinates to clearly expose its hierarchy. Representing

the model in this manner allowed us to split the system into fast and

slow subsystems. The fast subsystem was explored while the slow

subsystem remained frozen in time. The equilibrium points of the fast

subsystem were determined, and their stability was then studied. This

information was transferred back to the original system of equations

through an inverse transformation. A strong correlation was found

between the combination of dynamic variables, system parameters, and

cancer cells. The higher the values of the dynamic variables of the

system, which also means that the more aggressive the treatment, the

faster is the decrease in cancer cells, which tend to reach a state of

equilibrium as quickly as possible.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

ON: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,
Frontiers in Oncology 08
Resources, Software, Supervision, Validation, Visualization, Writing –

original draft, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. World Cancer Research Fund International. Available online at: https://www.wcrf.org/.
(Accessed November 28, 2024)

2. National Breast Cancer Foundation. Available online at: https://www.
nationalbreastcancer.org/dcis/. (Accessed November 28, 2024)

3. American Cancer Society. Available online at: https://www.cancer.org/cancer/types/
breastcancer/about/how-common-is-breast-cancer.html. (Accessed November 28, 2024)

4. World Health Organization. Available online at: https://www.who.int/news-
room/fact-sheets/detail/breastcancer. (Accessed November 28, 2024)

5. Centers for Disease Control and Prevantion and Breast Cancer Statistics.
Available online at: https://www.cdc.gov/cancer/breast/statistics/index.htm. (Accessed
November 28, 2024)

6. Natinal Cancer Institute. Cancer Stat Facts: Female Breast Cancer. Available online
at: https://seer.cancer.gov/statfacts/html/breast.html. (Accessed November 28, 2024)

7. Wen X, Guo X, Wang S, Lu Z, Zhang Y. Breast cancer diagnosis: A systematic
review. In: Biocybernetics and Biomedical Engineering, vol. 44. Elsevier BV (2024). p.
119–48. doi: 10.1016/j.bbe.2024.01.002

8. He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, et al. A review on methods for
diagnosis of breast cancer cells and tissues. In: Cell Proliferation, vol. 53. Wiley (2020).
doi: 10.1111/cpr.12822

9. Magnoni F, Alessandrini S, Alberti L, Polizzi A, Rotili A, Veronesi P, et al. Breast
cancer surgery: new issues. Curr Oncol. (2021) 28:4053–66. doi: 10.3390/
curroncol28050344

10. Riis M. Modern surgical treatment of breast cancer. In: Annals of Medicine and
Surgery, vol. 56. Ovid Technologies (Wolters Kluwer Health (2020). p. 95–107.
doi: 10.1016/j.amsu.2020.06.016

11. Bhushan A, Gonsalves A, Menon JU. Current state of breast cancer diagnosis,
treatment, and theranostics. Pharmaceutics. (2021) 13:723. doi: 10.3390/
pharmaceutics13050723

12. Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal
H. Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent
Patents and Technologies. In: Breast Cancer: Basic and Clinical Research, vol. 9s2.
SAGE Publications (2015). p. BCBCR.S29420. doi: 10.4137/bcbcr.s29420
13. Idowu MO, Shah PA, Hackney MH, Grimes MM, Geyer CE, Arthur DW, Bear
HD eds. Diagnosis and Management of Breast Tumors. Springer International
Publishing (2018). doi: 10.1007/978-3-319-57726-5

14. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in
breast cancer. Br J Cancer. (2020) 124:13–26. doi: 10.1038/s41416-020-01161-4

15. Purswani JM, Hardy-Abeloos C, Perez CA, Kwa MJ, Chadha M, Gerber NK.
Radiation in early-stage breast cancer: moving beyond an all or nothing approach. Curr
Oncol. (2022) 30:184–95. doi: 10.3390/curroncol30010015

16. Ruan H, Okamoto M, Ohno T, Li Y, Zhou Y. Particle radiotherapy for breast
cancer. Front Oncol. (2023) 13:1107703. doi: 10.3389/fonc.2023.1107703

17. Poland S, Ebina W, Muggia F, Guth A. Breast radiation-associated secondary
Malignancies: A review. Clin Surg Oncol. (2023) 2:100010. doi: 10.1016/j.cson.2023.100010

18. Wang J, Wu S-G. Breast Cancer: An Overview of Current Therapeutic Strategies,
Challenge, and Perspectives. In: Breast Cancer: Targets and Therapy, vol. 15. Informa
UK Limited (2023). p. 721–30. doi: 10.2147/bctt.s432526

19. Moo T-A, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy.
PET Clinics. (2018) 13:339–54. doi: 10.1016/j.cpet.2018.02.006

20. Claessens AKM, Ibragimova KIE, Geurts SME, Bos MEMM, Erdkamp FLG,
Tjan-Heijnen VCG. The role of chemotherapy in treatment of advanced breast cancer:
an overview for clinical practice. Crit Rev Oncology/Hematol. (2020) 153:102988.
doi: 10.1016/j.critrevonc.2020.102988
21. Park YH, Lal S, Lee JE, Choi Y-L, Wen J, Ram S, et al. Chemotherapy induces

dynamic immune responses in breast cancers that impact treatment outcome. In:
Nature Communications, vol. 11. Springer Science and Business Media LLC (2020).
doi: 10.1038/s41467-020-19933-0

22. Jacobo Jacobo M, Donnella HJ, Sobti S, Kaushik S, Goga A, Bandyopadhyay S.
An inflamed tumor cell subpopulation promotes chemotherapy resistance in triple
negative breast cancer. In: Scientific Reports, vol. 14. Springer Science and Business
Media LLC (2024). doi: 10.1038/s41598-024-53999-w

23. Pavlov MV, Bavrina AP, Plekhanov VI, Golubyatnikov G, Orlova AG, Subochev
PV, et al. Changes in the tumor oxygenation but not in the tumor volume and tumor
vascularization reflect early response of breast cancer to neoadjuvant chemotherapy.
Breast Cancer Res. (2023) 25. doi: 10.1186/s13058023-01607-6
frontiersin.org

https://www.wcrf.org/
https://www.nationalbreastcancer.org/dcis/
https://www.nationalbreastcancer.org/dcis/
https://www.cancer.org/cancer/types/breastcancer/about/how-common-is-breast-cancer.html
https://www.cancer.org/cancer/types/breastcancer/about/how-common-is-breast-cancer.html
https://www.who.int/news-room/fact-sheets/detail/breastcancer
https://www.who.int/news-room/fact-sheets/detail/breastcancer
https://www.cdc.gov/cancer/breast/statistics/index.htm
https://seer.cancer.gov/statfacts/html/breast.html
https://doi.org/10.1016/j.bbe.2024.01.002
https://doi.org/10.1111/cpr.12822
https://doi.org/10.3390/curroncol28050344
https://doi.org/10.3390/curroncol28050344
https://doi.org/10.1016/j.amsu.2020.06.016
https://doi.org/10.3390/pharmaceutics13050723
https://doi.org/10.3390/pharmaceutics13050723
https://doi.org/10.4137/bcbcr.s29420
https://doi.org/10.1007/978-3-319-57726-5
https://doi.org/10.1038/s41416-020-01161-4
https://doi.org/10.3390/curroncol30010015
https://doi.org/10.3389/fonc.2023.1107703
https://doi.org/10.1016/j.cson.2023.100010
https://doi.org/10.2147/bctt.s432526
https://doi.org/10.1016/j.cpet.2018.02.006
https://doi.org/10.1016/j.critrevonc.2020.102988
https://doi.org/10.1038/s41467-020-19933-0
https://doi.org/10.1038/s41598-024-53999-w
https://doi.org/10.1186/s13058023-01607-6
https://doi.org/10.3389/fonc.2024.1482223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Nave 10.3389/fonc.2024.1482223
24. Burstein HJ, Curigliano G, Loibl S, Dubsky P, Gnant M, Poortmans P, et al.
Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen
International Consensus Guidelines for the primary therapy of early breast cancer
2019. Ann Oncol. (2019) 30:1541–57. doi: 10.1093/annonc/mdz235

25. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, et al. Intrinsic
resistance of tumorigenic breast cancer cells to chemotherapy. JNCI J Natl Cancer Instit.
(2008) 100:672–9. doi: 10.1093/jnci/djn123

26. Lazebnik T. Cell-level spatio-temporal model for a bacillus calmette-guerinBased
immunotherapy treatment protocol of superficial bladder cancer. Cells. (2022) 11:2372.
doi: 10.3390/cells11152372

27. Mutebi M, Anderson BO, Duggan C, Adebamowo C, Agarwal G, Ali Z, et al.
Breast cancer treatment: A phased approach to implementation. Cancer. (2020)
126:2365–78. doi: 10.1002/cncr.32910

28. LawsonM, Cureton N, Ros S, Cheraghchi-Bashi A, Urosevic J, Darcy S, et al. The
next-generation oral selective estrogen receptor degrader camizestrant (AZD9833)
suppresses ER+ Breast cancer growth and overcomes endocrine and CDK4/6 inhibitor
resistance. Cancer Res. (2023) 83:3989–4004. doi: 10.1158/0008-5472.can-23-0694

29. Hopcroft L, Wigmore EM, Williamson SC, Ros S, Eberlein C, Moss JI, et al.
Combining the AKT inhibitor capivasertib and SERD fulvestrant is effective in
palbociclib-resistant ER+ breast cancer preclinical models. NPJ Breast Cancer. (2023)
9. doi: 10.1038/s41523-02300571-w

30. Yaniv-Rosenfeld A, Savchenko E, Rosenfeld A, Lazebnik T. Scheduling BCG and
IL-2 injections for bladder cancer immunotherapy treatment. Mathematics. (2023)
11:1192. doi: 10.3390/math11051192

31. Neupane N, Bawek S, Gurusinghe S, Ghaffary EM, Mirmosayyeb O, Thapa S,
et al. Oral SERD, a novel endocrine therapy for estrogen receptor-positive breast
cancer. Cancers. (2024) 16:619. doi: 10.3390/cancers16030619

32. Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al.
New approaches and procedures for cancer treatment: Current perspectives. In: SAGE
Open Medicine, vol. 9. SAGE Publications (2021). p. 205031212110343. doi: 10.1177/
20503121211034366

33. Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment:
current perspectives and new challenges. In: Ecancer Medical Science, vol. 13. Ecancer
Global Foundation (2019). doi: 10.3332/ecancer.2019.961

34. Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, et al. Cancer
chemotherapy and beyond: Current status, drug candidates, associated risks and
progress in targeted therapeutics. In: Genes & Diseases, vol. 10. Elsevier BV (2023).
p. 1367–401. doi: 10.1016/j.gendis.2022.02.007
Frontiers in Oncology 09
35. Advancing Cancer Therapy. Nature Cancer Vol. 2. Springer Science and
Business Media LLC (2021) p. 245–6. doi: 10.1038/s43018-021-00192-x

36. Zhou Z, Li M. Targeted therapies for cancer. BMC Med. (2022) 20. doi: 10.1186/
s12916-022-02287-3

37. Naser R, Dilabazian H, Bahr H, Barakat A, El-Sibai M. A guide through
conventional and modern cancer treatment modalities: A specific focus on
glioblastoma cancer therapy (Review). Oncol Rep. (2022) 48. doi: 10.3892/or.2022.8405

38. Vieira LC, Costa RS, Valerio D. An overview of mathematical modelling in
cancer research: fractional calculus as modelling tool. Fractal Fraction. (2023) 7:595.
doi: 10.3390/fractalfract7080595

39. Brady R, Enderling H. Mathematical Models of Cancer: When to Predict Novel
Therapies, and When Not to. In: Bulletin of Mathematical Biology, vol. 81. Springer
Science and Business Media LLC (2019). p. 3722–31. doi: 10.1007/s11538019-00640-x

40. Yin A, Moes DJAR, van Hasselt JGC, Swen JJ, Guchelaar H. A Review of
Mathematical Models for Tumor Dynamics and Treatment Resistance Evolution of
Solid Tumors. In: CPT: Pharmacometrics & Systems Pharmacology, vol. 8. Wiley
(2019). p. 720–37. doi: 10.1002/psp4.12450

41. Savchenko E, Rosenfeld A, Bunimovich-Mendrazitsky S. Mathematical
modeling of BCG-based bladder cancer treatment using socio-demographics. Sci
Rep. (2023) 13. doi: 10.1038/s41598-023-45581-7

42. Adam JA. Mathematical Models of Tumor Growth: From Empirical Description
to Biological Mechanism. In: Advances in Experimental Medicine and Biology. Springer
US (2003). p. 287–300. doi: 10.1007/978-1-4419-9019-819

43. Bellomo N, Preziosi L. Modelling and mathematical problems related to tumor
evolution and its interaction with the immune system. Math Comput Model. (2000)
32:413–52. doi: 10.1016/s08957177(00)00143-6

44. Adongo D, Fister KR. Delay Dynamics of Cancer and Immune Cell Model. In:
Mathematical Modelling of Natural Phenomena, vol. 7. EDP Sciences (2012). p. 261–78.
doi: 10.1051/mmnp/20127112

45. Lestari D, Sari ER, Arifah H. Dynamics of a mathematical model of cancer cells
with chemotherapy. J Phys: Conf Ser. (2019) 1320:12026. doi: 10.1088/1742-6596/1320/
1/012026

46. Khalil HK. Lyapunov Stability Theory. In: Baillieul J, Samad T, editors. Encyclopedia
of Systems and Control. Springer, Cham (2021). doi: 10.1007/978-3-03044184-5-77

47. Wei H-C. Mathematical modeling of ER-positive breast cancer treatment with
AZD9496 and palbociclib. In: AIMS Mathematics, vol. 5. American Institute of
Mathematical Sciences (AIMS (2020). p. 3446–55. doi: 10.3934/math.2020223
frontiersin.org

https://doi.org/10.1093/annonc/mdz235
https://doi.org/10.1093/jnci/djn123
https://doi.org/10.3390/cells11152372
https://doi.org/10.1002/cncr.32910
https://doi.org/10.1158/0008-5472.can-23-0694
https://doi.org/10.1038/s41523-02300571-w
https://doi.org/10.3390/math11051192
https://doi.org/10.3390/cancers16030619
https://doi.org/10.1177/20503121211034366
https://doi.org/10.1177/20503121211034366
https://doi.org/10.3332/ecancer.2019.961
https://doi.org/10.1016/j.gendis.2022.02.007
https://doi.org/10.1038/s43018-021-00192-x
https://doi.org/10.1186/s12916-022-02287-3
https://doi.org/10.1186/s12916-022-02287-3
https://doi.org/10.3892/or.2022.8405
https://doi.org/10.3390/fractalfract7080595
https://doi.org/10.1007/s11538019-00640-x
https://doi.org/10.1002/psp4.12450
https://doi.org/10.1038/s41598-023-45581-7
https://doi.org/10.1007/978-1-4419-9019-819
https://doi.org/10.1016/s08957177(00)00143-6
https://doi.org/10.1051/mmnp/20127112
https://doi.org/10.1088/1742-6596/1320/1/012026
https://doi.org/10.1088/1742-6596/1320/1/012026
https://doi.org/10.1007/978-3-03044184-5-77
https://doi.org/10.3934/math.2020223
https://doi.org/10.3389/fonc.2024.1482223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Asymptotic analysis of mathematical model describing a new treatment of breast cancer using AZD9496 and palbociclib
	1 Introduction
	2 Mathematical model definition
	3 Slow-fast subsystems, the singular perturbed vector fields method
	3.1 SPVFM

	4 Analysis and results
	4.1 Transformation the mathematical model to a new coordinates, eigenvalues, eigenvectors
	4.2 Equilibrium points and stability analysis (46)

	Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


