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Background: Nasopharyngeal carcinoma (NPC) is a highly invasive malignant

tumor. Recurrence and distant metastasis represent the primary causes of

treatment failure. This study aimed to identify biomarkers highly associated

with NPC and investigate its roles in tumor progression.

Methods: Transcriptome sequencing (RNA-seq) data of NPC and normal tissues

were downloaded from the Gene Expression Omnibus (GEO) database. By

analyzing the RNA-seq data, we found that G Protein Subunit Alpha 14

(GNA14) is closely associated with the diagnosis and prognosis of NPC.

Immunohistochemistry (IHC) was used to detect the expression of GNA14 in

tumor tissues of 165 NPC patients, and we analyzed the relationship between

GNA14 expression and patient prognosis. The potential mechanisms by which

GNA14 affects tumor prognosis were preliminarily analyzed using

bioinformatics analysis.

Results: Analysis of RNA-seq data and IHC showed that GNA14 expression was

downregulated in NPC (p < 0.001, p < 0.01, respectively), and low expression of

GNA14 was closely associated with poor prognosis. IHC analysis showed that

patients with low GNA14 expression had significantly shorter progression-free

survival (PFS) and distant metastasis-free survival (DMFS) than those with high

GNA14 expression (p = 0.023, p = 0.008, respectively). Multivariate analysis

indicated that the GNA14 expression was an independent risk factor for DMFS

(p = 0.030). The DMFS nomogram included GNA14 expression, EBV DNA, and N

stage as prognostic factors and the concordance index (C-index) of the

nomogram was 0.73. Bioinformatics analysis indicated that NPC patients with

low GNA14 expression might represent lower levels of immune cell infiltration

and poorer drug sensitivity.

Conclusion: Low GNA14 expression may be a risk factor for poor prognosis

in NPC.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1482038/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1482038/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1482038/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1482038&domain=pdf&date_stamp=2024-11-26
mailto:jmftbh@sina.com
mailto:duyun2020@126.com
https://doi.org/10.3389/fonc.2024.1482038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1482038
https://www.frontiersin.org/journals/oncology


Hao et al. 10.3389/fonc.2024.1482038
Introduction

Nasopharyngeal carcinoma (NPC), a type of head and neck

squamous cel l carc inoma (HNSCC), or ig inates f rom

nasopharyngeal epithelial tissues (1). NPC is characterized by an

uneven geographical distribution, particularly prevalent in East and

Southeast Asia (2) The etiology of the disease is related to racial

susceptibility, genetic factors, environmental factors, and Epstein-

Barr virus (EBV) infection (1). In terms of treatment, NPC is treated

by a combined regimen of radiotherapy and chemotherapy. This

regimen has achieved significant success, with a marked increase in

the survival rate for patients (3). However, recurrence and distant

metastases remain the leading causes of death for NPC patients (2).

Therefore, identifying patients at high risk of recurrence and

metastasis before treatment can help oncologists develop

individualized treatment plans, which are essential for improving

outcomes and prolonging the survival of NPC patients. A recent

study proposes that NPC should be viewed as a multidimensional

spatiotemporal “unity of ecology and evolution” pathological

ecosystem (4). The ecological theory of NPC suggests that tumor

cells behave like invasive species in a dynamic ecosystem,

interacting with the tumor microenvironment (TME), the

immune system, and various factors. It is emphasized that certain

genes are not only markers of disease but also key players in

ecological interactions in the tumor microenvironment. For

example, genes associated with immune evasion, cell proliferation,

and metastasis contribute to the enhanced invasiveness of NPC.

Therefore, identifying such key biomarkers is crucial for elucidating

the molecular mechanisms of recurrence and distant metastasis

in NPC.

Identifying biomarkers closely associated with NPC and

exploring their value in the diagnosis and treatment of the tumor

is currently a major research focus (5, 6). RNA-seq technology has

been extensively applied in NPC research to elucidate the

association between biomarkers and disease mechanisms, tumor

biology, and prognosis (7). Against this backdrop, machine learning
Abbreviations: NPC, Nasopharyngeal carcinoma; RNA-seq, Transcriptome

sequencing; GNA14, G Protein Subunit Alpha 14; IHC, Immunohistochemical;

GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; EBV,

Epstein-Barr virus; C-index, Concordance index; CHOL, Cholangiocarcinoma;

HNSCC, Head and Neck squamous cell carcinoma; KIRC, Kidney renal clear cell

carcinoma; LIHC, Liver hepatocellular carcinoma; THCA, Thyroid carcinoma; UCEC,

Uterine Corpus Endometrial Carcinoma; HCC, Hepatocellular carcinoma; OSCC,

Oral squamous cell carcinoma; DEGs, Differentially expressed genes; FDR, False

discovery rate; RF, Random Forest; LASSO, Least Absolute Shrinkage and Selection

Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; ROC,

Receiver operating characteristic curve; HGB, Hemoglobin; ALB, Albumin; LDH,

Lactate dehydrogenase; WHO, World Health Organization; M, Male; F, Female; PFS,

Progression-free survival; OS, Overall survival; DMFS, Distant metastasis-free survival;

LRFS, Locoregional recurrence-free survival; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSEA, Gene set enrichment analysis; ssGSEA,

Single-sample gene set enrichment analysis; IC50, Half maximal

inhibitory concentration.
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algorithms and bioinformatics technologies have played a pivotal

role. Advances in bioinformatics enable comprehensive analysis of

RNA-seq data (8). The combination of bioinformatics analysis and

machine learning algorithms has facilitated the identification of

biomarkers highly associated with tumors (9). Identifying key

biomarkers in tumors is crucial for developing personalized

treatment strategies and understanding the molecular

mechanisms of NPC. For instance, in the treatment of NPC,

outcomes are often influenced by the unique immune evasion

mechanisms of the tumor. Recent studies have identified that

certain key biomarkers influence the number and proportion of

immune cells in the TME, thereby affecting the therapeutic

outcomes for patients (10, 11). By analyzing the characteristics of

immune infiltration associated with these biomarkers, new avenues

for targeted therapies can be identified (12).

The prognosis of NPC primarily depends on the extent of

tumor infiltration. However, in addition to the American Joint

Committee on Cancer (AJCC) tumor-node-metastasis (TNM)

staging, various other prognostic factors, including age, gender,

smoking history, EBV DNA load, and gene expression levels

(13–15), have been observed. Gene Expression Omnibus (GEO)

and The Cancer Genome Atlas (TCGA) provide a wealth of RNA-

seq data and corresponding clinical information (16, 17), which

play a crucial role in the discovery of new functional genes and

understanding of the pathogenesis of tumors. In this study, NPC-

related RNA-seq data were analyzed using bioinformatics methods,

identifying that GNA14 was strongly associated with the prognosis

of NPC. Immunohistochemistry was used to verify the prognostic

value of GNA14 in clinical samples. The intrinsic association

between GNA14 and NPC was investigated by functional

enrichment analysis, immune infiltration analysis, drug sensitivity

analysis, and other methods.
Materials and methods

Raw data acquisition and preprocessing

RNA-seq datasets related to NPC (GSE12452, GSE53819,

GSE64634, GSE61218, GSE102349) were downloaded from the

GEO database. Raw data were log-transformed and normalized

using the “limma” software package. Expression data of the same

genes in the GSE12452 and GSE53819 were merged to form a

merged expression matrix, which was subjected to batch effect

removal using the “sva” package to generate a training set for the

screening of key biomarkers. Using the same method, we merged

GSE64634 and GSE61218 as a validation set. The GSE102349

dataset contains clinical and survival information from 113 NPC

patients, which was used for survival analysis and subsequent

bioinformatics analysis. RNA-seq data and clinical information

from 33 solid tumors and corresponding normal tissues were

downloaded from the TCGA database for the subsequent pan-

cancer analysis. The characteristics of the GEO datasets and the

tumor types in the TCGA database are summarized in

Supplementary Table 1.
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Differential expression analysis and
machine learning algorithms

Differential expression analysis was performed on the training

set using the “limma” package, with |log2FC| > 1 and false discovery

rate (FDR) < 0.05 as screening criteria for identifying differentially

expressed genes (DEGs) (18). The DEGs were further screened

utilizing Random Forest (RF), Least Absolute Shrinkage and

Selection Operator (LASSO) logistic regression, and Support

Vector Machine-Recursive Feature Elimination (SVM-RFE)

algorithms. RF was performed using the “randomForest” package,

genes with a score > 1 were considered as key genes based on the

“importance” function. The LASSO regression model was

constructed utilizing the “glmnet” package (19) for variable

selection. The cross-validation method was used to determine the

optimal lambda value corresponding to the number of key genes.

SVM-RFE was performed using the “e1071” package to conduct 10-

fold cross-validation and feature elimination, identifying a set of key

genes based on the principle of error minimization.
Selection of the key biomarker

The overlapping genes identified by the three algorithms were

considered highly related to NPC. The diagnostic value of these

genes was assessed by receiver operating characteristic curve (ROC)

analysis and validated through the validation set. 88 patients from

GSE102349 with complete progression-free survival (PFS)

information were used for survival analysis. The RNA-seq data

and PFS information from the TCGA were used to conduct a pan-

cancer survival analysis. Grouping for survival analysis was based

on median expression levels of the overlapping genes (GNA14 and

LRRC34). Through the above process, we successfully identified a

key biomarker, GNA14, highly related to the diagnosis and

prognosis of NPC.
Study population in hospital and follow-up

Tissue specimens for immunohistochemical (IHC) examination

of GNA14 were obtained from 165 diagnosed NPC patients treated

at Zhongshan City People’s Hospital (Guangdong, China) from

January 2015 to December 2017, along with 30 patients diagnosed

with chronic rhinosinusitis during the same period. This study was

conducted in compliance with the Declaration of Helsinki. The

study received approval from the Clinical Research Ethics

Committee of the Zhongshan City People’s Hospital. All NPC

tissues were collected before anti-cancer treatment. All patients

following these criteria were retrospectively enrolled: (a)

histopathologically confirmed NPC; (b) clinical stages I-IVa

according to the 8th edition AJCC/UICC staging system; (c)

received either solely intensity-modulated radiation therapy,

concurrent chemoradiotherapy, with or without induction

chemotherapy or adjuvant chemotherapy; (d) had complete

baseline data; (e) had no severe heart, lung, liver, kidney diseases,
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treatment were followed monthly for the first 3 months, every 3

months for the next 3 years, every 6 months for the next 2 years, and

annually thereafter. Follow-up ended in December 2023.
IHC and scoring strategies

All Tissues were fixed in 4% formaldehyde and embedded in

paraffin. To assess the expression level of GNA14, IHC

examinations were conducted using the GNA14 antibody

(Polyclonal, rabbit, 13350-1-AP-50UL, 1:200 dilution, Wuhan

Sanying). Tissues were cut into 4 mm sections, deparaffinized with

xylene, and subsequently rehydrated with graded ethanol. The

slides were then incubated with a 3% H2O2 solution for 10

minutes to quench endogenous peroxidase activity, and 0.01

mmol/L citrate buffer (pH 6.0) was used for antigen retrieval in a

high-pressure cooker. The sections were incubated with the primary

antibody for 3 hours at room temperature, followed by rinsing with

TBS. Following incubation with the secondary antibody (Anti-

Mouse/Rabbit Universal Immunohistochemical Test Kit,

PK10006, Wuhan Sanying), the sections were stained with DAB.

All slides were then re-stained with hematoxylin, examined under

the microscope, and photographed. Positive control sections were

provided by the antibody manufacturer. Cell staining intensity was

scored based on a previous study (20, 21). The IHC results were

assessed by calculating the total score (0-12) by multiplying the

intensity of positive staining (negative, 0; weak, 1; moderate, 2; or

strong, 3) by the proportion of target immunopositive cells (<25%,

1; 25-49%, 2; 50-75%, 3; or >75%, 4). IHC results were evaluated

independently by two pathologists, and any discrepancies were

resolved through consensus. Based on the median IHC score, the

high GNA14 expression group was defined as samples with an IHC

score > 4, and the low GNA14 expression group was defined as

samples with an IHC score ≤ 4.
Expression profile of GNA14

RNA-seq data were extracted from the training and validation

sets to compare the expression levels of GNA14 in NPC and normal

tissue. IHC staining was employed to detect and compare the

expression of GNA14 in nasopharyngeal tissues from patients

with chronic sinusitis and NPC. Furthermore, we assessed the

differential expression of GNA14 in multiple solid tumors by

analyzing RNA-Seq data from the TCGA database, covering 33

different types of tumors and their corresponding normal tissues.
Functional enrichment analysis

Based on the median GNA14 expression level, NPC samples in

GSE102349 were categorized into high and low GNA14 expression

groups. Identification of DEGs between two groups using the

“limma” package (|log2FC| >1, FDR < 0.05). Gene Ontology
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(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways of the DEGs were performed using the “clusterProfiler”

package. We selected “C5.go.Hs.symbols.gmt” from the Molecular

Signatures Database (MSigDB) as the reference gene set, and gene

set enrichment analysis (GSEA) was performed for genes in the

GNA14 high and low expression groups.
Immune infiltration and drug
sensitivity analysis

The “estimate” package in R was employed to predict the

ImmuneScore, StromalScore, and their combined scores (ESTIMATE

score) in tumor samples. Expression levels of GNA14 and 79 immune

checkpoint genes were extracted, followed by Spearman correlation

analysis to evaluate the association between GNA14 and each immune

checkpoint gene. Genes with a p-value less than 0.001 were identified as

immune checkpoint genes highly associated with GNA14. The list of

immune checkpoint genes was derived from previously published

literature (22). The single-sample gene set enrichment analysis

(ssGSEA) algorithm was utilized to assess the relationship between

the proportions of various immune cell types in NPC and GAN14

expression. The gene annotation file contains 28 tumor-infiltrating

immune cells from TISIDB. Furthermore, the “oncoPredict” package

was used to estimate the chemotherapeutic response of patients from

high and low GNA14 groups. The chemotherapeutic response was

determined by the half maximal inhibitory concentration (IC50) of

each NPC patient and the IC50 data was sourced from the GDSC

website (https://www.cancerrxgene.org/).
Statistical analysis

Descriptive statistical analysis was performed on the collected

data, expressed as mean ± standard deviation (SD) or percentage

(%). Continuous variables were compared using the independent

samples t-test or Mann-Whitney U test. Correlations between

variables were assessed using Pearson or Spearman correlation

analysis. The division of high and low GNA14 expression groups

was based on the median GNA14 expression level. Survival analysis

was performed using the Kaplan-Meier method, and log-rank tests

were used to compare differences. Correlations between GNA14

expression and clinicopathological features were analyzed using the

chi-square test or Fisher exact test. The cutoff value for the high and

low EBVDNA groups was chosen as 4000 copies per milliliter based

on a previous study of the prognostic value of EBV DNA (23).

Univariate and multivariate Cox regression models were used to

identify the risk factors associated with the prognosis of NPC. A

nomogram was constructed to predict the 3-year and 5-year DMFS

of NPC patients based on the results of multivariate analysis, and

the predictive ability of the models was assessed by calculating the

consistency index (C-index). All tests were two-tailed, with

significance levels set at p < 0.05. All statistical analyses were

performed using R software (version 4.0.0) or SPSS software

(version 20.0, IBM, New York, USA).
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Results

Differential expression analysis and
machine learning algorithms based on
GEO datasets

A total of 795 DEGs were identified between NPC and normal

tissues based on GEO datasets (Supplementary Table 2). Among

these genes, 515 were up-regulated and 280 were down-regulated in

NPC samples (Figure 1A). Using the RF algorithm, LASSO

regression algorithm, and SVM-RFE algorithm, 4, 21, and 16

genes were identified as highly associated with NPC, respectively

(Figures 1B–F, Supplementary Table 3).

Differential expression analysis and machine learning

algorithms based on GEO datasets.
GNA14 may be a key biomarker in NPC

The Venn diagram showed two overlapping genes (GNA14,

LRRC34) identified by three machine learning algorithms

(Figure 2A, Supplementary Table 2). ROC curve analysis

demonstrated that GNA14 had an AUC of 0.982 (95% CI: 0.96-

0.99) in the training set (Figure 2B), and achieved an AUC of 0.941

(95% CI: 0.85-1.00) in the validation set (Figure 2C). The results of

the survival analysis indicated that the group with low GNA14

expression exhibited significantly shorter PFS compared to the

high-expression group (Figure 2D). Conversely, there were no

significant differences in PFS between the high-expression and low-

expression groups of LRRC34 (Figure 2E). In addition, we found that

in head and neck squamous cell carcinoma (HNSCC), thyroid

carcinoma (THCA), cholangiocarcinoma (CHOL), kidney renal

clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC),

and uterine corpus endometrial carcinoma (UCEC), the risk of tumor

progression was higher in the GNA14 low-expression group than in

the GNA14 high-expression group (Figure 2F). Therefore, GNA14

was selected as a key biomarker for further study.
Expression profile of GNA14

Analysis of the RNA-seq data demonstrated a significant

reduction in GNA14 expression in NPC compared to normal

nasopharyngeal tissues in training set (p < 0.001) (Figure 3A), a

result corroborated by the validation set (Figure 3B). Through IHC

examination, we observed that the expression level of GNA14 in

NPC samples was significantly lower than in non-cancerous

nasopharyngeal tissues (p < 0.01), and GNA14 was primarily

localized in the cell membrane (Figures 3C–E). Furthermore, it

was discovered that in various tumor samples, such as head and

neck squamous cell carcinoma (HNSCC), bladder urothelial

carcinoma (BLCA), liver hepatocellular carcinoma (LHIC), lung

squamous cell carcinoma (LUSC), and thyroid carcinoma (THCA),

the expression level of GNA14 was significantly lower than that of

the corresponding normal samples (p < 0.001) (Figure 3F).
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Patient characteristics and clinical
sample analysis

Of the 165 patients enrolled, 110 (66.7%) were male and 55

(33.3%) were female, with a male-to-female ratio of 2:1, and a median

age of 49 years (range: 22-76 years). 39 (23.6%) patients were

diagnosed as stage I-II and 126 (76.4%) as stage III-IV. The

majority of patients had a pathological diagnosis of WHO type III

(97.5%). The median duration of follow-up was 69 months (range: 4-

95). There were 92 cases in the GNA14 low expression group and 73
Frontiers in Oncology 05
cases in the GNA14 high expression group (Figures 4E, F). We found

that the low GNA14 expression was significantly associated with

advanced clinical stage (p = 0.013) and increased risk of distant

metastasis (p = 0.008) (Table 1, Figure 4G). The PFS (56.5% vs. 74.0%;

p = 0.023) and DMFS (70.0% vs. 87.7%; p = 0.008) of patients in the

GNA14-low expression group were significantly shorter than those in

the GNA14-high expression group (Figures 4A, B), while there was

no significant difference in overall survival (OS) and locoregional

recurrence-free survival (LRFS) between the two groups (p = 0.088,

p = 0.478, respectively) (Figures 4C, D). The results of the
FIGURE 1

Differential expression analysis and machine learning algorithms. (A) Volcano plot shows the differentially expressed genes (DEGs) in NPC and normal
tissues. (B) The relationship between the number of decision trees and the error rate in the random forest algorithm. (C, D) LASSO regression
analysis. (E, F) Accuracy and error curves for feature variables in the SVM-RFE.
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multivariate Cox regression analysis indicated that T stage and EBV

DNA were significant factors for OS (p = 0.024 and p = 0.029,

respectively). EBV DNA was identified as a significant factor for PFS

(p = 0.012), while T stage was a significant factor for LRFS (p = 0.031).

GNA14 expression was an independent risk factor affecting DMFS in

NPC (p = 0.030) (Table 2). We constructed a nomogram that

incorporates the GNA14 expression (Figures 4H, I), EBV DNA,

and N stage to predict the 3-year and 5-year DMFS in NPC patients

(Figure 4G). The C-index of the nomogram was 0.73 (Figure 4H).
Functional enrichment analysis

We identified 280 DEGs between high and low GNA14

expression groups in GSE102349, with 266 genes exhibiting

upregulation and 14 showing downregulation (Supplementary

Table 4). GO analysis indicated that these DEGs were

predominantly enriched in pathways related to immune response

and cell migration, including B-cell activation, proliferation of

various immune cells, and ciliary movement (Figure 5A). KEGG

enrichment analysis revealed that the DEGs were significantly

concentrated in pathways such as chemokine signaling, NF-kB
Frontiers in Oncology 06
signaling, and cytochrome P450-mediated drug metabolism

(Figure 5B). According to Gene Set Enrichment Analysis (GSEA),

pathways related to cell division, DNA, and chromosome

replication were up-regulated in the low GNA14 expression

group, and pathways related to immune cell activity and adaptive

immune response were down-regulated compared to patients in the

high GNA14 expression group (Figures 5C, D).
Immune cell infiltration and drug
sensitivity analysis

It was found tumor tissues with low GNA14 expression

represented lower immune and stromal scores (Figure 6A).

Furthermore, in NPC patients with low GNA14 expression, the

majority of immune checkpoint genes exhibit lower expression

levels (p < 0.001) (Figure 6B, Supplementary Table 5). Results from

the immune infiltration analysis showed that a decrease in GNA14

expression level was correlated with a reduced proportion of most

immune cells such as B cells, CD8 T cells, and NK cells (Figure 6C).

Through drug sensitivity analysis, we observed that most

chemotherapy drugs such as 5-fluorouracil, Gemcitabine, and
FIGURE 2

GNA14 may be a key biomarker in NPC. (A) Venn diagram showing the overlapped genes from machine learning algorithms. (B, C) ROC curve of
GNA14 in the training set and validation set, with the horizontal axis representing the false positive rate (FPR) and the vertical axis indicating
sensitivity. (D) Kaplan-Meier curves of PFS for 88 patients between high GNA14 expression group and low GNA14 expression group. (E) Kaplan-Meier
curves of PFS for patients between high LRRC34 expression group and low LRRC34 expression group. (F) Pan-cancer survival analysis between high
and low GNA14 expression groups.
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Oxaliplatin exhibited higher IC50 values in patients with GNA14-

low expression (Figure 6D).
Discussion

Exploring the key biomarkers that affect the prognosis of NPC is crucial

for identifying new therapeutic targets and prolonging the survival of

patients. In this study, through a comprehensive analysis of RNA-seq data,

we ultimately identified GNA14 as a potential key biomarker for NPC.

Subsequently, we performed IHC to examine the expression of GNA14 in

NPC and to explore its correlation with the clinical characteristics of

patients. Analysis of RNA-seq data and IHC analysis consistently showed

that GNA14 expression was downregulated in NPC tissues.

GNA14 is a gene encoding the G protein subunit alpha 14. G

proteins (guanine nucleotide-binding proteins) are widespread

intracellular signal transduction molecules. Some studies have

shown that GNA14 can act as an oncogene to promote cancer

development. For example, a study by Wang et al. found that

GNA14 is highly expressed in endometrial carcinoma tissue and
Frontiers in Oncology 07
that GNA14 promotes the malignant growth of endometrial

carcinoma by stimulating KLF7 to upregulate HAS2 expression

(24). Interestingly, more research indicates that GNA14 may

function as a tumor suppressor gene For example, Song et al. found

that GNA14 was downregulated in hepatocellular carcinoma (HCC),

and negatively associated with hepatitis B virus (HBV) infection,

vascular invasion, and HCC prognosis (25). Huang et al. reported

lower GNA14 expression in oral squamous cell carcinoma (OSCC)

cell lines and tissues, indicating a poorer prognosis for OSCC (26). In

a study conducted by Pan et al., GNA14 exhibited low expression in

papillary thyroid carcinoma and patients in the GNA14 low

expression group demonstrated a diminished disease-free survival

(DFS) rate (27). The function of GNA14 in tumor development may

depend on the specific tumor type, with the protein exhibiting either

tumor-promoting or tumor-suppressing properties. It is noteworthy

that thyroid carcinoma, oral squamous cell carcinoma, and

nasopharyngeal carcinoma are all clinically common head and neck

tumors. Similarly, our study also found that GNA14 expression was

down-regulated in NPC, and patients with low GNA14 expression

had significantly lower PFS and DMFS than those with high GNA14
FIGURE 3

GNA14 expression profile. (A, B) Box plot showing differential expression of GNA14 in normal nasopharyngeal mucosa and NPC tissues, with the left
graph representing the training set and the right graph representing the validation set. (C) Box plot showing differential expression of GNA14 in
chronic rhinosinusitis tissues (Non-NPC) and NPC tissues (Based on IHC results). (D, E) IHC examination of GNA14 expression in NPC tissues and in
non-NPC tissues [magnification 40x (left) and 200x (right)]. (F) Differential expression analysis was conducted on GNA14 in various tumor samples
and normal controls (*** p < 0.001, ** p < 0.01, * p < 0.05).
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expression. Considering that the processing of the specimens might

negatively affect the GNA14 measurements, we employed an antigen

retrieval step in the experiment to ensure antibody binding to the

target antigen. For instance, antigen retrieval was performed under
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high-pressure conditions using a 0.01 mmol/L citrate buffer (pH 6.0)

in a pressure cooker. This approach has been demonstrated to restore

the antigenicity of many proteins, ensuring reliable antibody binding

(28, 29). Additionally, tissue fixation time or the extent of paraffin
TABLE 1 Baseline information of enrolled patients.

Characteristics
GNA14 expression

P value overall
Low High

n 92 73 165

Sex, n (%) 0.912

female 31 (33.7%) 24 (32.9%) 55 (33.3%)

male 61 (66.3%) 49 (67.1%) 110 (66.7%)

Smoking, n (%) 0.059

No 75 (81.5%) 67 (91.8%) 142 (86.1%)

Yes 17 (18.5%) 6 (8.2%) 23 (13.9%)

Age, n (%) 0.356

<60 73 (79.3%) 62 (84.9%) 135 (81.8%)

≥60 19 (20.7%) 11 (15.1%) 30 (18.2%)

T.Stage, n (%) 0.304

T1-T2 43 (46.7%) 40 (54.8%) 83 (50.3%)

T3-T4 49 (53.3%) 33 (45.2%) 82 (50.7%)

N.Stage, n (%) 0.067

N0-N1 36 (39.1%) 39 (53.4%) 75 (45.5%)

N2-N3 56 (60.9%) 34 (46.6%) 90 (54.5%)

TNM.Stage, n (%) 0.013

I-II 15 (16.3%) 24 (32.9%) 39 (23.6%)

III-IV 77 (83.7%) 49 (67.1%) 126 (76.4%)

EBV DNA (copies/mL), n (%) 0.201

≥4000 47 (51.1%) 30 (41.1%) 77 (46.7%)

<4000 45 (48.9%) 43 (58.9%) 88 (53.3%)

Death, n (%) 0.086

No 68 (73.9%) 62 (84.9%) 130 (78.8%)

Yes 24 (26.1%) 11 (15.1%) 35 (21.2%)

Recurrence, n (%) 0.605

No 74 (80.4%) 61 (83.6%) 135 (81.8%)

Yes 18 (19.6%) 12 (16.4%) 30 (18.2%)

Distant metastasis, n (%) 0.006

No 64 (69.6%) 64 (87.7%) 128 (77.6%)

Yes 28 (30.4%) 9 (12.3%) 37 (22.4%)

WHO type, n (%) 0.457

III 91 (98.9%) 70 (95.9%) 161 (97.6%)

I 1 (1.1%) 3 (4.1%) 4 (2.4%)
Bold values indicate statistically significant results (p < 0.05).
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infiltration may compromise the accuracy of GNA14 quantification

due to antigen masking. Therefore, we included positive control

sections provided by the manufacturer, which helped to confirm

the validity of the staining protocol.
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In this study, we preliminarily investigated the possible reasons for

the poor prognosis of NPC patients due to low GNA14 expression, as

well as to explore the potential therapeutic approach of GNA14 as a

target. It was observed that the expression level of GNA14 was lower in
FIGURE 4

Low expression of GNA14 predicts poor prognosis in NPC patients. Kaplan–Meier curves of OS (A), PFS (B), LFRS (C), and DMFS (D) for high and low
GNA14 expression in NPC patients. (E, F) Representative images of high and low expression groups of GNA14 immunohistochemical staining in NPC
tissue (100×). (G) Representative images of GNA14 expression in the clinical staging group and the distant metastasis group. (H) The nomogram was
used to predict the 3-year and 5-year DMFS rates for patients with NPC. (I) The calibration curve for the nomogram.
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patients with advanced clinical stages (III or IVa) compared to those

with early stages (I or II). It was hypothesized that GNA14may function

as an oncogene, with low expression promoting the development and
Frontiers in Oncology 10
progression of NPC. Strategies to restore GNA14 expression in NPC

cells may have the potential to inhibit tumor growth and metastasis.

This restoration can be achieved through gene therapy techniques, such
TABLE 2 Univariate and multivariate analysis of prognostic risk factors in NPC patients.

Characteristics Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

OS Univariate analysis Multivariate analysis

GNA14 expression (high vs. low) 0.542 (0.266 - 1.107) 0.093 0.619 (0.299 - 1.279) 0.195

Sex (Female vs. male) 1.222 (0.586 - 2.544) 0.593

Age (<60 vs. ≥60) 2.207 (1.081 - 4.509) 0.030 1.856 (0.899 - 3.832) 0.095

Smoking (No vs. Yes) 1.357 (0.562 - 3.275) 0.497

T.Stage (T1-T2 vs. T3-T4) 3.324 (1.557 - 7.096) 0.002 3.045 (1.160 - 7.996) 0.024

N.Stage (N0-N1vs. N2-N3) 1.746 (0.868 - 3.511) 0.118

TNM.Stage (I-II vs. III-IV) 2.669 (0.942 - 7.562) 0.065 0.794 (0.202 - 3.116) 0.741

EBV DNA (<4000 vs.≥4000) (copies/mL) 2.729 (1.336 - 5.573) 0.006 2.283 (1.086 - 4.799) 0.029

PFS Univariate analysis Multivariate analysis

GNA14 expression (high vs. low) 1.866 (1.080 - 3.224) 0.025 1.705 (0.973 - 2.987) 0.062

Sex (Female vs. male) 2.207 (1.170 - 4.162) 0.014 1.850 (0.957 - 3.577) 0.067

Age (<60 vs. ≥60) 1.554 (0.864 - 2.793) 0.141

Smoking (No vs. Yes) 0.976 (0.463 - 2.058) 0.950

T.Stage (T1-T2 vs. T3-T4) 1.479 (0.884 - 2.474) 0.136

N.Stage (N0-N1vs. N2-N3) 1.957 (1.133 - 3.381) 0.016 1.226 (0.621 - 2.421) 0.557

TNM.Stage (I-II vs. III-IV) 2.330 (1.105 - 4.912) 0.026 1.202 (0.474 - 3.050) 0.698

EBV DNA (<4000 vs. ≥4000) (copies/mL) 2.530 (1.483 - 4.314) < 0.001 2.041 (1.173 - 3.551) 0.012

DMFS Univariate analysis Multivariate analysis

GNA14 expression (high vs. low) 2.677 (1.263 - 5.675) 0.010 2.330 (1.084 - 5.010) 0.030

Sex (Female vs. male) 2.275 (0.999 - 5.179) 0.050 1.597 (0.684 - 3.728) 0.279

Age (<60 vs. ≥60) 1.475 (0.696 - 3.126) 0.311

Smoking (No vs. Yes) 0.523 (0.161 - 1.703) 0.282

T.Stage (T1-T2 vs. T3-T4) 0.918 (0.481 - 1.752) 0.795

N.Stage(N0-N1vs. N2-N3) 4.033 (1.770 - 9.188) < 0.001 3.590 (1.084 - 11.894) 0.037

TNM.Stage (I-II vs. III-IV) 2.880 (1.020 - 8.132) 0.046 0.513 (0.112 - 2.343) 0.389

EBV DNA (<4000 vs. ≥4000) (copies/mL) 3.645 (1.763 - 7.537) < 0.001 2.772 (1.301 - 5.905) 0.008

LRFS Univariate analysis Multivariate analysis

GNA14 expression (high vs. low) 1.300 (0.626 - 2.701) 0.481

Sex (Female vs. male) 2.704 (1.035 - 7.067) 0.042 2.561 (0.978 - 6.702) 0.055

Age (<60 vs. ≥60) 1.734 (0.771 - 3.898) 0.183

Smoking (No vs. Yes) 2.042 (0.875 - 4.763) 0.099

T.Stage (T1-T2 vs. T3-T4) 2.420 (1.132 - 5.174) 0.023 2.309 (1.079 - 4.943) 0.031

N.Stage (N0-N1vs. N2-N3) 0.996 (0.486 - 2.041) 0.990

TNM.Stage (I-II vs. III-IV) 1.771 (0.678 - 4.627) 0.244

EBV DNA (<4000 vs. ≥4000) (copies/mL) 1.733 (0.841 - 3.570) 0.136
Bold values indicate statistically significant results (p < 0.05).
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as viral or nanoparticle-mediated delivery of GNA14, with the aim of re-

establishing its expression within tumor tissues. Furthermore, we

focused on DEGs in patients with high and low GNA14 expression.

The analysis of GO and KEGG indicates that these DEGs are primarily

enriched in pathways associated with immune response and cell

migration (30, 31). In addition, GSEA suggested that compared to

patients with high GNA14 expression, pathways such as cell division,

DNA, and chromosome replication were up-regulated in patients with

low GNA14 expression, while pathways such as immune cell activity

and adaptive immune response were down-regulated (32). Research has

demonstrated that the extent of immune infiltration is linked to

prognosis, with greater levels of immune infiltration generally

indicating a more favorable prognosis (33). Our study discovered that

NPC patients with low GNA14 expression had a significant decrease in

the proportion of most immune cells, such as B cells, CD4+, and CD8+

T cells, and had lower stromal scores and immunity scores, indicating

these patients had higher tumor purity and lower levels of immune

infiltration (22). It is anticipated that the restoration of GNA14

expression or activity will enhance the immune infiltration of tumors

and augment the capacity of the immune system to combat tumor

growth. The combination of GNA14-targeted therapy with immune

checkpoint inhibitors (e.g., PD-1/PD-L1) may result in a synergistic

effect and an improvement in therapeutic efficacy. In addition, we found
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that patients with low GNA14 expression were less sensitive to

chemotherapeutic agents such as 5-fluorouracil and gemcitabine,

which are commonly used chemotherapeutic agents in

nasopharyngeal carcinoma, suggesting that these patients may have

poorer response to chemotherapy.

Numerous studies have demonstrated a close association

between EBV infection and the development of NPC. EBV DNA

can be used as a biomarker for early diagnosis and prognostic

prediction of NPC (34, 35). In our study, multivariate Cox

regression analysis showed that pre-treatment EBV DNA was an

independent risk factor for PFS and DMFS in patients, which is

consistent with the findings of Tang et al. (36). In addition to EBV

DNA, many biomarkers have been reported to be associated with

the prognosis of NPC, such as EBV serum antibodies, miR-BART2-

5p, serum LDH, and C-reactive protein (CRP) (37–40). These

factors have limitations in clinical application due to their

susceptibility to patient conditions and the complexity of the

inspection techniques. We found that GNA14 expression and N

stage were equally independent risk factors for DMFS. We have

developed a nomogram based on GNA14 expression that can more

easily help clinicians evaluate patients with a high risk of distant

metastasis. For instance, a more intense regimen can be used in

individuals with low GNA14 expression.
FIGURE 5

Analysis of functional enrichment in GNA14 high and low expression groups in 113 NPC patients from GSE102349. Gene Ontology (A) and KEGG
pathways (B). Results of differentially expressed genes (DEGs) in patients with high and low GNA14 expression. GSEA analysis revealed gene pathways
that were significantly enriched in the high (C) and low (D) GNA14 expression groups.
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Our study had some limitations. First, this study was a single-

center study, and all patients were enrolled in a high-prevalence

area, thus not able to generalize to all NPC patients. It is

recommended that future studies integrate data from different

sources and a broader patient population for multicenter

validation. Second, due to practical constraints, we were unable to

collect data from a larger number of participants. A small sample

size may reduce the statistical power to detect differences. However,

if the results demonstrated statistical significance under these

circumstances, it emphasizes the robustness of the findings.

Third, immune cell infiltration and drug sensitivity analysis with

GNA14 expression has not been fully validated in cellular or other
Frontiers in Oncology 12
experimental studies. Future studies are needed to elucidate the

precise role of GNA14 in nasopharyngeal carcinogenesis, invasion,

and metastasis, along with its impact on immune cell infiltration

and drug sensitivity, through experiments like in vitro cellular

assays and animal models.
Conclusion

In conclusion, we found that GNA14 expression was down-

regulated in NPC tissues, and its low expression may be closely

associated with advanced tumor stage and distant metastasis.
FIGURE 6

Immune cell infiltration and drug sensitivity analysis in 113 NPC patients from GSE102349. (A) Box plots were used to compare the differences
between GNA14 high and low expression groups in terms of immunity score, stroma score, and estimate score. (B) Correlation between GNA14
expression levels and immune checkpoint genes. (C) The levels of multiple immune cell counts were compared between high and low GNA14
expression groups (*** p < 0.001, ** p < 0.01, * p < 0.05). (D) Box plots were used to compare drug sensitivity between GNA14 high and low
expression groups, the horizontal axis indicates the drug name and the vertical axis indicates drug sensitivity (IC50).
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GNA14 expression combined with pre-treatment EBV DNA load

and N stage shows potential for predicting NPC patients with a high

risk of distant metastasis.
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