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Lung bronchiectasisas a
paradigm of the interplay
between infection and
colonization on plastic
modulation of the pre-
metastatic niche
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Pavia, Italy, 2Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione
Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy,
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The lungs are most often a preferential target organ for malignant spreading and

growth. It is well known that chronic parenchymal inflammation and prolonged

injuries represents an independent risk factor for cancer onset. Growing

evidence supports the implication of lung microbiota in the pathogenesis of

lung cancer. However, the full interplay between chronic inflammation, bacterial

colonization, pathologic condition as bronchiectasis and malignant growth

deserves better clarification. We here aim at presenting and analyzing original

data and discussing the state-of-the-art on the knowledge regarding how this

complex milieu acts on the plasticity of the lung pre-metastatic niche to point

out the rationale for early diagnosis and therapeutic targeting.
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Highlights
• Due to the complex interplay between microenvironment, microbial coloniziation

and chronic inflammation, bronchiectasis can act as risk factors for cancer onset

and progression by priming the pre-metastatic niche.
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• A more efficient multidisciplinary management of

bronchiectasis should encompass oncologic screening for

early cancer diagnosis and personalized therapeutic design.
1 Introduction

Non-cystic fibrosis bronchiectasis (NCFB) is a chronic airway

disease defined by abnormal and permanent dilatation of the

bronchial lumen. It presents with a clinical syndrome of cough

and sputum production and is characterized by recurrent acute

exacerbations and respiratory infections. This heterogeneous

disorder, whose prevalence is higher in women and advanced age,

can frequently occur post infection. Other causes may be

inflammatory, allergic, autoimmune and immunodeficiency

associated processes. Moreover, bronchiectasis can be of congenital

and genetic origin or idiopathic (1, 2). The pathophysiology builds

on chronic inflammation and is supported by a vicious circle of

damage to the airways. Local defenses of bronchial wall, notably

mucociliary clearance, are compromised by inflammation as a

response to different stimuli, thus enhancing further infections and

perpetuating inflammatory state (3, 4). The most frequent isolated

microorganisms in the airways of patients with bronchiectasis are

Gram-negative, like Pseudomonas aeruginosa, Haemophilus

influenzae and Moraxella catarrhalis, but also Staphylococcus

aureus and Streptococcus pneumoniae between Gram-positive. In

addition, these patients are at an increased risk of nontuberculous

mycobacteria (NTM) infection (5–8). Chronic Pseudomonas

aeruginosa infection is recognized as a risk factor for adverse

outcome and, there is speculation that the presence of different

patterns of microbiome-inflammation interactions in patients with

this chronic infection impact on exacerbations (9). However, there

are still many questions about the mechanisms behind airway

inflammation in bronchiectasis, such as the existence of different

endotypes that are linked to different molecular pathways and can

lead to customized treatment. Inflammation has a prominent role to

subtype the disease in terms of clinical phenotypes and outcomes.

The dominant inflammatory endotype is neutrophilic inflammation,

featured by sputum purulence and tending towards bacterial load.

Eosinophilic inflammation, Th2 mediated, has been observed in

association with mucus plugging and asthma. The future

implications of this are that dominant neutrophilic disease may

respond to airway clearance, macrolides and log-term antibiotics,

instead eosinophilic inflammation may benefit from inhaled

corticosteroids (ICS) and innovative monoclonal antibody therapy

(10, 11). At the present time, these topics are of high interest,

together with microbiota and gene expression changes in airway

epithelial cells, in order to identify an increasingly tailored

therapeutic strategy. Lung cancer is the primary cause of cancer-

related mortality globally for both men and women. Tobacco

smoking is the most significant etiological factor for lung

carcinogenesis, with the cumulative smoking exposure in pack-

years serving as a critical metric for identifying individuals at high

risk for developing LC and potentially benefiting from screening (12,

13). Other contributory risk factors include genetic susceptibility,
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occupational exposures, air pollution, and previous respiratory

diseases (14). In COPD patients with chronic obstructive

pulmonary disease (COPD), chronic inflammation leading to

repeated airway injury and increased cellular turnover rates likely

plays a pivotal role in lung carcinogenesis. Similarly, hypotheses

linking previous lung infections to lung cancer suggest that

inflammatory dysplasia caused by infections may progress to

cancer (15). Consequently, NCFB should be hypothesized as a risk

factor for LC (16).

2 Bronchiectasis and lung cancer:
what we know from epidemiology
and clinics

It has long been hypothesized that there is a relationship

between lung inflammation and lung cancer because of the

repeated airway injury and its consequent high cell turnover.

Nevertheless, this aspect has been effectively investigated mainly

in chronic obstructive pulmonary disease (COPD) and the evidence

for this mechanism remains weak and somehow unclear, due to the

scarcity of mechanistic studies evaluating the association between

lung cancer (LC) and chronic inflammatory lung diseases other

than COPD (17–19). On the other hand, bronchiectasis is

characterized by the enlargement of bronchial tubes, due to an

inflammatory injury that undermines protective mechanisms of

airway walls, by exposing them to further damage (Figure 1).

Cytokines and chemotactic factors, such as interleukin 8 (IL-8

or CXCL-8), interleukin 1 beta (IL-1), interleukin 17 (IL-17),

tumour necrosis factor alfa (TNF) and leukotriene B4, attract

neutrophils from the blood to the airways, where they are

activated and can produce reactive oxygen species (ROS), release

granule products (myeloperoxidase, neutrophil elastase, heparin-

binding protein, resistin and matrix metalloproteinases) and form

neutrophil extracellular traps (NETs).

The latter are webs of DNA, histone proteins and neutrophil

proteases, the role of which is to trap and kill microbes; however,

their overabundance is involved in the progression of bronchiectasis

and chronicity of infection, along with impaired neutrophil

phagocytosis and disrupted mucociliary clearance (1, 20–22).

Moreover, the clearance of apoptotic cells by macrophages,

known as efferocytosis, is impaired in bronchiectasis and is linked to

an increase in inflammation and airway damage, by promoting

secondary necrosis. And by the way, lung macrophages may induce

an infiltration of neutrophils via TNF-a production (1, 20–22).

In bronchiectasis, any of these pathways can be affected, as

evidenced by decreased pathogen clearance and structural damage,

linked to an overabundance of neutrophil elastase, which can cleave

and inactivate host proteins including cell receptors involved in

efferocytosis, antimicrobial peptides and extracellular matrix

proteins. In addition, bacterial biofilm can be paradoxically

stabilized by neutrophils because it utilizes extracellular DNA

released from neutrophils and protects bacteria from the host

immune system hindering phagocytosis (1, 20–22).

Most of the mechanisms of airway inflammation in bronchiectasis

remains unclear and is still under study. On this basis, given
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inflammatory state is implicated in carcinogenesis, it begs the question

of a possible correlation between bronchiectasis and LC. Several

authors were interested in this inquest, obtaining mixed results (23–

26). A recent Italian systematic review (27) founds that bronchiectasis

are associated with a higher risk of developing LC and that this risk is

higher for males, the elderly, and smokers, whereas the effect of

concomitant COPD is unclear. Similarly, Chung et al. conducted a

longitudinal nationwide cohort study in Taiwan. According to their

findings, patients with bronchiectasis exhibit an increased risk of LC

compared with the general population (28). Identifying risk factors

and developing predictive scores are essential for determining patients

who may benefit from LC screening, which can be integrated into

clinical practice. McDonnel and colleagues recently developed the

Bronchiectasis Etiology Comorbidity Index (BACI) from a European

multicenter cohort to identify comorbidities associated with mortality

risk in patients with bronchiectasis (29). Their study demonstrated a

positive association between bronchiectasis and malignancies,

including lung cancer, highlighting the need for more detailed data

on factors associated with LC risk in these patients. However, the

presence of confounding factors in the analysis of this topic is not

negligible. Since smoking is one of the major factors that increase the

incidence of LC controlling for smoking is essential for evaluating this

causal relationship with chronic lung disease. Therefore, COPD is

another confounding factor in the analysis of the association between

bronchiectasis and LC. Interestingly, some Korean works have paid

attention to this aspect. Results of a matched case-control study

conducted at Seoul National University Boramae Medical Center

(30) showed that bronchiectasis was associated with a lower risk of

LC, assessing by histology (significant for squamous cell carcinoma)

and smoking status, in COPD patients with moderate to very severe

airflow limitation. Another population-based study, using the Korean

National Health Insurance Service (NHIS) database from 2009 to 2018

or until the date of incident lung cancer/death, noted an overall

incidence of LC in bronchiectasis cohort of 1.9% with a significant
Frontiers in Oncology 03
higher risk for male sex, overweight, current smoking, living in rural

areas, and comorbid COPD (31). A similar population-based cohort

study conducted by Choi et al. on the Korean NHIS found that

patients with bronchiectasis had a significantly increased risk of

developing LC compared with those without bronchiectasis and this

association was significant in patients over 60 years of age (32). In

addition, two interesting data emerged. A significant interaction

between smoking status and bronchiectasis have not been detected

in increasing LC risk. Furthermore, despite bronchiectasis having a

significant impact on the LC risk in individuals without COPD, it did

not affect the risk of LC in those with COPD. Concerning the smoke,

in contrast, Sin et al. found a significant interaction between

bronchiectasis and smoking regarding the risk of LC-related

mortality (33). The Korean group also did a multi-center

retrospective study (34), analyzing the CT appearance of LC and

bronchiectasis as event variables on lung lobes. They revealed that pre-

existing bronchiectasis was associated with a significantly lower risk of

LC in the same lobe, suggesting that chronic inflammation involved in

bronchiectasis might produce different cytokines and acts in a different

way in carcinogenesis of the lung. In an interesting way, in a LC

screening study conducted by Sanchez-Carpintero Abad et al. (35),

using Pamplona (Clìnica Universidad de Navarra, Spain) sub-cohort

of the International Early Lung Cancer Action Program (I-ELCAP)

between 2000 to 2012, the prevalence of bronchiectasis in smokers

(most patients had mild bronchiectasis and were asymptomatic) was

high and had an impact on the need for additional tests, but not on the

incidence of cancer. Results of the study showed that having

bronchiectasis increases the probability of finding nodules on

baseline low dose computed tomography (LDCT), conditioning the

workup of benign nodules and having an impact on costs. By reaching

the most complex study part, increasing interest is being shown in the

potential molecular mechanisms involved. In LC associated to

bronchiectasis the microorganism balance is disturbed, and it was

thought that the microbiota would to play a significant role in disease
FIGURE 1

The vicious circle of damage to the airways in bronchiectasis.
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causation and progression. Recent studies focus on this point,

stimulating the use of genetic investigations. Ekanayake et al. have

researched bacteria in oropharyngeal swab and bronchoalveolar lavage

of two disease groups of patients with LC and bronchiectasis, using

16S rRNA gene-based metagenomics and basic bacterial culturing

(36). Also relevant is that Metagenomic Next-Generation Sequencing

(mNGS) shortens the turnaround time and shows to be a valuable tool

for bronchiectasis pathogen detection (37). Currently, a particular

focus is molecular profiling of the airway epithelium in bronchiectasis,

indeed several studies have identified gene expression alterations.

Decreased protocadherin gene expression affects cell adhesion and,

as noted by Xu et al., reduced expression in theWnt signaling pathway

in basal cells compromises the epithelial niche and the balance of

epithelial/mesenchymal interactions (38). In addition, increased

expression of genes involved in ciliogenesis, as a response to ciliary

damage, may result in overproduction of certain ciliary proteins that

can lead to defective cilia assembly. In this study, conducted on

individuals with radiological bronchiectasis but without a clinical

diagnosis, is also recognized the potential role of proteasome-related

proteins in the inflammatory process (upregulation of constitutively

expressed proteasome 20S subunit-b and IFN-g inducible

immunoproteasome subunits). The open question is whether these

bronchial gene expression changes in bronchiectasis may be involved

in the development or progression of LC. Do not overlook the data

coming from few studies that reports elevated serum TGF-b1
(Transforming Growth Factor-b1) in patient with bronchiectasis.

TGF-b1 is known to protect against carcinogenesis by regulating

cellular proliferation, differentiations, survival, but also adhesion and

cellular microenvironment. In addition, the DF508 deletion in CFTR

gene in patients with cystic fibrosis, which shows radiological

bronchiectasis, is inversely associated with malignancies. All this

data is the starting point for the investigation of a disease that is

more widely recognized and its potential impact on LC, resulting in

the constantly evolving management of bronchiectasis. This could

have significant consequences for the management of follow-up and

treatment. There are several open points related to searching for

customized targets on pathology endotypes, but the lapel can also

trivially affect the control of the inflammatory state and the widely

debated use of corticosteroids.
3 The role of mucins and their
glycosylation in the respiratory
tract infections

Mucins are large glycosylated glycoproteins that have a

fundamental role in protecting mucosal surfaces throughout the

body. Due to their structure, by providing ligands for pathogen

binding and the ability to shed the bound extracellular domain,

mucins can act as a releasable decoy barrier to mucosal pathogens.

They can also sterically block binding to underlying cellular receptors.

The cytoplasmic tail domain is capable of initiating signal

transduction cascades and due to their conservation across species,

may play an important biological role in cellular signaling. MUC1 is

one of the most extensively studied of the cs-mucin family (Figure 2).
Frontiers in Oncology 04
It has been demonstrated to play a dynamic role in protection of the

host from infection and to regulate inflammatory responses to

infection. It has also been studied for its aberrant expression and

role in cancer (39). It doesn’t only provide a physical barrier, limiting

infection and colonization, but it also plays a significant role as a

modulator of pathogen-induced inflammation (40–42). The

cytoplasmic tail (-CT) of MUC1 which is conserved throughout

most species, possesses seven tyrosine residues, 4 of which can be

phosphorylated by kinases and initiate signal transduction cascades.

The presence of extracellular EGF-like domains and phosphorylation

sites in the cytoplasmic tail suggest that MUC1 is able to have a

functional role in signaling cascades, enabling recycling of the

MUC1-ED for re-glycosylation after degradation in the lumen, or

as a result of microbial interaction (43, 44).

It encompasses a large, extracellular, O-glycosylated backbone

defined by variable sequences of tandem repeats (T.R). The

juxtamembrane portion of the protein is made by the sea-urchin

sperm protein, enterokinase and agrin (SEA) domain, linked to N-

glicans. MUC1 transmembrane domain (T.D.) is made of 28 amino

acids and binds the protein across the plasma membrane (P.M.) of

the cell. Notably, the protein cytoplasmatic tail (C.T.) displays a

multifunctional docking sites (D.S.) which allows intercation with

kinases and other proteins.

In respiratory tract infections, MUC1 plays a crucial role in

controlling inflammatory responses. It acts as an adhesion site for

the flagellin of Pseudomonas aeruginosa (45). Research has shown

that mice lacking MUC1 (Muc1−/−) reduced the retention time of

P. aeruginosa in their lungs compared to wild-type (WT) mice. In a

murine model of P. aeruginosa infection,in MUC1 deficient mice

the reduced colonization was associated with better pathogen

clearance due to a stronger early infiammatory response

compared to WT mice (46). Interestingly, the host enzyme

Neuraminidase 1 (NEU1) affects the ability of MUC1 to protect

against P.aeruginosa. The flagellin from this bacter activates NEU1,
FIGURE 2

The transmembrane structure of MUC1.
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which desialates MUC1 and other cell surface receptors, making it

easier for P.Aeruginosa to bind and increase infection risk (47).

Infections by P. aeruginosa and respiratory syncytial virus activate

Toll-like receptors (TLRs) in airway epithelial cells and

macrophages, leading to the production of inflammatory

mediators like IL-8 and TNFa, which recruit immune cells to the

site of infection (48). In response, MUC1 is upregulated and acts to

suppress TLR signaling, thereby reducing inflammation. While the

exact timing and degree to which MUC1 inhibits TLR pathways to

reduce inflammatory responses remain unclear, this process is

thought to be critical in controlling the severity of infection.

MUC1 also plays a role in Streptococcus pneumoniae infections.

The bacterium’s ability to bind to epithelial cells is MUC1-

dependent, and their interaction may trigger phagocytosis.

MUC1-deficient macrophages have been shown to be inefficient

at phagocytosing the pneumococci (49).

In the case of Influenza A virus (IAV), MUC1 has been

demonstrated to bind to viral particles due to its sialylated

structure, potentially reducing the virus’s ability to infect host

cells. Elevated MUC1 levels are seen in various respiratory

conditions, suggesting a functional role in these disorders. The

sialylated carbohydrate antigen KL-6, identified as human MUC1,

serves as a biomarker for interstitial lung disease. Additionally,

increased MUC1 levels have been found in patients with cystic

fibrosis, severe pneumonia, asthma exacerbations, measles

pneumonia, and COPD.

Infection-induced cancers are the fourth leading cause of

cancer-related deaths globally. Microbes interact with the host

through glycosylated mucin proteins forming a protective barrier.

Mucin protein MUC1, a key regulator of NF-kB, plays a protective
role during microbial invasion by reducing inflammatory responses.

However, prolonged microbial interaction can alter MUC1

glycosylation, compromising the epithelial barrier and shifting

MUC1’s role from anti-inflammatory to proinflammatory,

enhancing oncogenic signaling through its cytoplasmic tail (50, 51).

In bronchiectasis, mucins and their glycosylation play a crucial

role in both protecting the airways and disease progression. Altered

glycosylation of mucins can lead to bacterial colonization, chronic

infections, and imbalances in the lung microbiome, which further

exacerbates respiratory complications. In bronchiectasis, excessive

mucus production and abnormal mucin glycosylation can impair the

clearance mechanism. This dysfunction allows bacteria to colonize

the lungs more easily, leading to persistent infections and chronic

airway inflammation, further aggravating the disease (52, 53).
4 The lung hypoxia, microbes
and pre-metastatic niche:
a dynamic milieu

The tumor microenvironment is made up of stromal (immune

cells, fibroblasts and endothelial cells) and cancer cells, extracellular

matrix and different mediators released in the tumor site. Metabolic

changes, hypoxia, and infiltration of immunosuppressive cells
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(myeloid-derived suppressor cells, tumor-associated macrophages,

tumor-associated neutrophils and regulatory T cells) are all possible

factors that can influence the resistance and progression of malignant

cells in this intertwined network (54, 55). Besides, anticancer drug

resistance seems to be affected by intracellular pathogens in the tumor

microenvironment because bacteria can metabolize chemotherapeutic

drugs and alter cytotoxicity, as well as acting as reservoirs in the

development of metastasis (56). Between immunosuppressive cells,

great attention is given to macrophages, which are distinguished in

anti-tumoral (M1-MQ, that produce pro-inflammatory cytokines

such as tumor necrosis factor-alpha [TNF-a], interferon-g [IFN-g]
and interleukin-12) and pro-tumoral (M2-MQ, involved in

hemostasis, wound-healing and tissue remodeling phenomena)

populations in the tumor microenvironment, where hypoxia leads

to MQ polarization toward the M2 phenotype. This cell population

play a key role in different phases of tumorigenesis, including

immunosuppression, angiogenesis and metastasis (57). Hypoxia

may also influence gene expression profiles, like the upregulation of

hypoxia-responsive transcription factors (hypoxia-inducible factor

(HIF)− 1a as the main) in macrophages. HIFs are implicated in

various mechanisms promoting cancer progression: angiogenesis,

epithelial-mesenchymal transition, cell motility, metabolic

reprogramming, extracellular matrix, immune evasion and cancer

stem cell specification (58–61). Moreover, hypoxia can trigger a type of

programmed cell death, associated closely with inflammatory

responses, called pyroptosis (62). This is a secondary necrosis,

where apoptotic cells are not promptly removed by phagocytosis

and instead go on to display necrotic cell death with the release of

intracellular contents. This process may elicit adaptive immune

responses and, at the same time, it is primarily initiated by the

induction of inflammation (63). Metastatic progression defines the

aggressivity and high malignancy of neoplastic diseases. Distant

spreading of cancer cells is orchestrated by a series of biologic

processes which encompass a complex interplay between genetic

drivers and immune-inflammatory and hypoxic settings (64–67).

This dynamic dialogue is the basis not only for the gain by

malignant cells of those features and properties which are required

to leave the niche (68, 69), but also determine the site/organ where

they will stop and will give rise to secondary masses (70–72). Since the

Paget’s hypothesis of “seed and soil” (73), the concept that tumor

surrounding stroma plays a role in disease progression has been

widely expanded ultimately leading to the development of

immunotherapy against cancer (74–76). In this context, the primary

lesion can actively select and modify the microenvironment of distant

sites to facilitate and support metastatic growth. Circulating tumor

cells (CTCs) cooperating with biochemical mediators, growth factors

and exosomes secreted by the primary tumor assure disease

progression by interacting with the pre-metastatic niche (77). The

latter is, thus, characterized by the appearance of the following

features: increased vascular permeability, extracellular matrix

remodeling, bone marrow-derived cells recruitment, angiogenesis,

and immunosuppression (78); namely those features defining the

epithelial-to-mesenchymal transition process (79). Notably,

inflammatory cells such as neutrophil extracellular traps (NETs)

and proteins as metalloproteinases can play a role in awakening
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dormant cancer cells to acquire invasive phenotype (80). On these

premises, a recent amount of data points out the role of microbiota

and microbiome during cancer onset and progression. We and others

have reported that microbiota plays a role not only in cancer disease

predisposition and risk but also in its initiation and progression, with

an impact on patients’ prognosis (81). The question regarding the role

of microbes in cancer cell invasion capacity is still a debated issue. The

local microbiota can affect migration and motility of primary tumor

cells (82–84), as shown in colorectal (85–88), breast (89), head and

neck (90–94), pancreatic (95), prostate (96), bladder (97) cancer and

melanoma (98). Within respect to the lung cancer, it is well known

that although the NSCLC patients had similar microbial communities

with non-cancer controls, rare species such as Lactobacillus rossiae,

Bacteroides pyogenes, Paenibacillus odorifer, Pseudomonas

entomophila, Magnetospirillum gryphiswaldense , fungus

Chaetomium globosum et al. showed obvious difference between

NSCLC patients and non-cancer controls, namely defining a

dysbiosis condition (99, 100). Notably, a specific association between

microbial species and cancer patient gender and smoking habit has

been reported (101) and species in NSCLC patients are also associated

with gene expression profile as reported for the EGFR status (102).

Thus, a certain impact microbes of on cancer progression is

documented, although fewer data are available on how lung chronic

infection could affect metastatic phenotype and contribute to the

construction of the pre-metastatic niche.
TABLE 1 Clinical and demographic data of the cohort of patients, affected by NCFB who developed cancer, in care of the Unit of Respiratory Diseases
Fondazione IRCCS Policlinico San Matteo Pavia in the last year.

GENDER
F M

15 4

SMOKE
Never Current Past

11 4 3

BMI < 18 3

MEDIAN CMI 3.7

COMORBIDITY
COPD Asthma GERD Cardiopathy Rheumatic

4 1 7 9 3

MEDIAN AGE AT NCFB DIAGNOSIS (AGE) 68.6

ORIGIN OF BRONCHIECTASIS
Idiopathic Post infective

12 4

TYPE OF BRONCHIECTASIS
Cylindric Cystic Varicose

19 0 0

BSI
Mild Moderate Severe

4 7 8

EXACERBATIONS
Frequent Free/rare

11 8

SITE OF CANCER ORIGIN
Skin/melanoma Breast Bladder

6 9 4
F
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BSI, bronchiectasis severity index; CMI, Charlson comorbidity index; BMI, body mass index; COPD, chronic obstructive pulmonary disease; GERD, gastro-esophageal reflux disease.
TABLE 2 Data regarding microbial infection and colonization of the
patients enrolled.

AETIOLOGICAL AGENT OF EXACERBATION

Streptococcus spp 1

Haemophilus influenzae 5

Staphylococcus aureus 1

Aspergillus fumigatus 3

Nocardia 1

Moraxella catarrhalis 1

Achromobacter spp 1

NTM 3

SARS CoV-2 4
COLONIZATION

Pseudomonas spp. 2

Staphylococcus. aureus 1

Aspergillus spp. 1

NTM 3

More than one pathogen 2
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5 Personal insights

The lung can be the site of growth of secondary lesions [Kolling]

and of primary massese and the effect of dysbiosis and/or infections

and colonization should be investigated under these two perspectives.

During lung infection, it has been shown that bacterial endotoxins,

through endotoxin receptor TLR4 that is expressed in endothelial

cells and leukocytes, act by increasing immuno-inflammatory

reactions characterized by increasing vascular permeability and

leukocyte mobilization (103). The primary tumor can act on innate

immune reaction which, in turn cooperate in priming the pre-

metastatic niche (104). Indeed, cancer cells produce chemokine

CCL2 a potent chemoattractant for monocytes, macrophages,

memory T lymphocytes, and natural killer (NK) cells which is

known to be implicated in cancer progression (105–108). CCL2

derives from hypoxic primary cancer and is associated to

immunosuppression which characterizes the lung premetastatic

niche by promoting the infiltration of dysfunctional myeloid and

NK cells with decreased capacity to eliminate incoming invasive

tumor cells (109). Moreover, CCL2 by paracrine signal, can induce

lung overexpression of endogenous TLR4 ligands such as the myeloid

cell-derived proteins S100A8 and SAA3 (110–113). Tumor-derived

extravesicles are also implicated in suppression of T cells in the niche

through a link with cancer-associated fibroblasts (114–116). Indeed,

they can secrete CCL1, a chemokine which is involved in

inflammatory diseases (117), which induced Treg differentiation by

activating its specific receptor CCR8, ultimately contributing to the

establishment of an immunologically tolerant niche (118, 119). On

the other hand, in some instances bacteria can prepare the niche

since they can favour tumor distant spreading by acting on vascular

permeability. It has been reported in colorectal cancer (CRC) where

resident bacteria Escherichia coli can disrupt the gut vascular barrier

thus facilitating liver metastatization, as shown by the increase of

plasmalemma vesicle-associated protein-1 (PV-1) which is a protein

associated to endothelial fenestration (120–122). Even dietary factors,

as capsaicin, can increase barrier permeability by facilitating

proliferation of e of mucin-related bacteria like Akkermanisa and

Muribaculaceae and bacteria involved in bile acids metabolism,

whose alterations are implicated in the recruitment of NK cells in

the pre-metastatic niche (123). Within respect to the pathogens that

are frequently associated to bronchiectasis, causative relationship

between microbial infection and cancerogenesis is still

controversial. Chronic infection by NTBCs, as Mycobacterium

Avium Complex (MAC), is known to be implicated in different

steps of lung carcinogenesis (124). MAC infection has been

reported to be associated to the arousal of squamous cell tumors,

mainly localized in peripheral lung parenchyma (overlying bacterial

infection in distal airways) and mainly effecting non-smoker

women (125). Indeed pathogen-induced inflammation activates

proliferative pathways in machrophages and epithelial cells

through the nuclear factor NF-kB, direct DNA damage and

enhances expression of cyclooxygenase-2 and ultimately promotes

tumor angiogenesis (126). A different mechanism sustains the

crosstalk between Pseudomonas aeruginosa and cancer since it

has been reported an antiproliferative effect induced by
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upregulation of the Pseudomonas-secreted cupredoxin azurin,

according to a dual relationship between tumor and bacteria,

based on the modulation of secretion of aldolase A in response to

contact with azurin. Coherently, cancer patients with concomitant

detection of P. aeruginosa display an increased overall survival

(127, 128).

In the cohort of 119 patients affected byNCFB diagnosed (mainly of

idiopathic origin) and followed in our Institution (Unit of Respiratory

Diseases Fondazione IRCCS Policlinico San Matteo Pavia) in the last

year, the percentage of subsequent diagnosis of solid cancer is of 17.5%

(19 cases). Interestingly none of the patients developed primary lung

cancer, being over 73% of patients past or never smokers. The arousal of

cancer occurred in patients featuring moderate/severe bronchiectasis,

with frequent exacerbation rates. Demographic and clinical features of

the cohort analyzed and infection/colonization history and tumor data

are reported in Tables 1 and 2 respectively.

Overall, these observations might allow some clinical

considerations. Bronchiectasis can act as risk factors for cancer

onset and progression by acting on modulating the pre-metastatic

niche. It is conceivable that infection and/or chronic colonization

patterns could impact on the site of tumor growth by modulating

invasive potential of transformed cells. Recommendations for

oncologic screening for bronchiectasis patients should be

underlined in the clinical context.
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