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Synergizing traditional CT
imaging with radiomics: a
novel model for preoperative
diagnosis of gastric
neuroendocrine and mixed
adenoneuroendocrine carcinoma
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Yang You1, Yang Li1, Yu Li1, Gaofeng Shi1 and Li Yang1*

1Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical
University, Shijiazhuang, Hebei, China, 2Department of Computed Tomography and Magnetic
Resonance, Handan Central Hospital, Handan, Hebei, China, 3Department of Pharmaceuticals
Diagnostics, GE HealthCare, Beijing, China, 4Department of Computed Tomography, Zhengding
Country People’s Hospital, Shijiazhuang, Hebei, China
Objective: To develop diagnostic models for differentiating gastric

neuroendocrine carcinoma (g-NEC) and gastric mixed adeno-neuroendocrine

carcinoma (g-MANEC) from gastric adenocarcinoma (g-ADC) based on

traditional contrast enhanced CT imaging features and radiomics features.

Methods: We retrospectively analyzed 90 g-(MA)NEC (g-MANEC and g-NEC)

patients matched 1:1 by T-stage with 90 g-ADC patients. Traditional CT features

were analyzed using univariable and multivariable logistic regression. Tumor

segmentation and radiomics features extraction were performed with Slicer and

PyRadiomics. Feature selection was conducted through univariable analysis,

correlation analysis, LASSO, and multivariable stepwise logistic. The combined

model incorporated clinical and radiomics predictors. Diagnostic performance

was assessed with ROC curves and DeLong’s test. The models’ diagnostic

efficacy was further validated in subgroup of g-NEC vs. g-ADC and g-MANEC

vs. g-ADC cases.

Results: Tumor necrosis and lymph node metastasis were independent

predictors for differentiating g-(MA)NEC from g-ADC (P < 0.05). The clinical

model’s AUC was 0.700 (training) and 0.667(validation). Five radiomics features

were retained, with the radiomics model showing AUC of 0.809 (training) and

0.802 (validation). The combined model’s AUCs were 0.853 (training) and 0.812

(validation), significantly outperforming the clinical model (P < 0.05). Subgroup

analysis revealed that the combined model exhibited acceptable performance

in differentiating g-NEC from g-ADC and g-MANEC from g-ADC, with

AUC of 0.887 and 0.823 in the training cohort and 0.852 and 0.762 in the

validation cohort.
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Conclusion: A combined model based on traditional CT imaging and radiomic

features provides a non-invasive and effective preoperative diagnostic method

for differentiating g-(MA)NEC from g-ADC.
KEYWORDS

gastric carcinoma, neuroendocrine carcinoma, mixed adenoneuroendocrine
carcinoma, traditional X-ray computed tomography, radiomics
Introduction

Gastric neuroendocrine tumors represent a highly heterogeneous

group of tumors originating from neuroendocrine cells and peptidergic

neurons. Gastric neuroendocrine carcinoma (g-NEC) and gastric

mixed adenocarcinoma-neuroendocrine carcinoma (g-MANEC) are

both poorly differentiated neuroendocrine tumors, accounting for

approximately 0.4-0.6% of all malignant gastric epithelial tumors (1).

The biological behavior of g-(MA)NEC differs from that of the more

commonly encountered gastric adenocarcinoma (g-ADC). The former

exhibits higher aggressiveness, with a greater tendency for early

lymphatic and hematogenous spread, leading to a poorer prognosis

(2, 3). Treatment approaches also differ between these tumors. The

first-line treatment for g-(MA)NEC typically involves an etoposide and

cisplatin (EP) regimen, whereas g-ADC is more commonly treated

with a capecitabine and oxaliplatin (XELOX) regimen or a tegafur,

gimeracil, and oteracil potassium combined with oxaliplatin (SOX)

regimen (4). In terms of surgical techniques, procedures for g-(MA)

NEC generally follow those used for g-ADC. However, there remains

controversy regarding the extent of lymph node dissection and the use

of neoadjuvant therapy (5–8). Therefore, accurate preoperative

differentiation between g-(MA)NEC and g-ADC can aid in selecting

appropriate treatment strategies and assessing patient prognosis.

Currently, the differentiation between g-(MA)NEC and

g-ADC primarily relies on pathological examinations and

immunohistochemical analyses (9). However, the limited tissue

samples obtained from preoperative gastroscopic biopsies often

lead to misdiagnoses, with many cases of g-NEC and most cases

of g-MANEC being incorrectly identified as poorly differentiated g-

ADC (10, 11). Postoperative pathology, although definitive, offers

results that are too delayed to influence the choice of preoperative

treatments and surgical approaches effectively. Computed

Tomography (CT) is a commonly used imaging method for

evaluating gastric tumors (12). Nevertheless, traditional CT

imaging features of g-(MA)NEC and g-ADC are similar, making

differentiation challenging. Radiomics, an emerging field, enables

the extraction of quantitative features from images. By analyzing the

distribution and spatial relationships of pixel intensities within an

image, radiomics reflects tumor heterogeneity and detects subtle

differences that are not visible to the naked eye. There have been

studies reporting the application of radiomics in diagnosing gastric

tumors, staging, and predicting pathological features (13–15).
02
In this study, we conduct a retrospective analysis of the clinical

characteristics, traditional CT imaging features, and radiomic

features of patients with surgically confirmed g-(MA)NEC. We

explore the value of radiomics based on enhanced CT in

distinguishing g-(MA)NEC from g-ADC. This approach not only

aims to improve the accuracy of preoperative diagnoses but also

strives to refine the decision-making process for treatment

strategies, potentially leading to more personalized and effective

management of gastric tumors.
Materials and method

Patient

A retrospective analysis was conducted on the medical records of

patients with g-(MA)NEC who were treated at the Fourth Hospital of

Hebei Medical University from January 2015 to April 2022. Inclusion

criteria: (1) patients who underwent surgical resection without

receiving any anti-tumor treatments preoperatively, and whose

postoperative pathology confirmed g-NEC or g-MANEC with

complete pathological data; (2) patients who underwent abdominal

and pelvic enhanced CT scans within two weeks prior to surgery with

complete imaging data. Exclusion criteria: (1) poor gastric filling,

peristaltic artifacts, and residual stomach contents that impaired

tumor visualization; (2) tumors that were too small to be detected on

imaging. Flowchart of patient enrollment in Figure 1.
Image acquisition and preprocessing

Prior to their CT scans, patients were required to fast for 6-8

hours. Ten minutes before scanning, they were administered an

intramuscular injection of 10 mg of scopolamine (Hangzhou

Minsheng Pharmaceutical Industry, China) to reduce

gastrointestinal motility. Additionally, patients were instructed to

ingest 800-1000 ml of warm water to adequately distend the

stomach. The CT scans were performed using the Revolution CT

(GE Healthcare, USA) and the SOMATOM Definition Flash CT

(Siemens Healthcare, Germany). The scanning range covered the

area from the diaphragmatic dome to the pubic symphysis. The

main scanning parameters of the two scanners were as follows: tube
frontiersin.org
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voltage of 120 kV, automatic tube current, rotation time of 0.5s,

matrix of 512×512, slice thickness of 5mm, and interlayer spacing of

5mm. Non-ionic contrast agent (Iohexol, 300 mg/dL; GE

Healthcare, USA) was injected intravenously through the elbow

vein at a flow rate of 3 ml/s (2Ml/kg body weight). The enhanced CT

images of arterial phase and venous phase were acquired at 35 s and

70 s after the injection of contrast agent, respectively.
Clinical features analysis

Patient demographics such as gender and age were recorded. Two

radiologists with extensive experience in abdominal imaging, with 5

years (XXH), and 19 years (LY) analyzed the conventional CT imaging

features independently, without knowledge of the postoperative

pathology. Discrepancies in their assessments were resolved through

discussion until consensus was reached. The conventional CT imaging

features evaluated included: the location, shape, and size of the primary

tumor; the presence or absence of ulceration, mucosal coverage, and

necrosis; enhancement patterns; CT attenuation values across different

phases; normalized tumor enhancement ratio (NTER); and net

enhancement values (△CT) across different phases. The presence of

lymph node metastasis was also assessed. Additional, mucosal coverage

refers to the tumor surface exhibiting a complete or partial mucosal

layer, or symmetric mucosal elevation at both ends of the tumor (16).

CT attenuation values were measured by selecting the largest cross-

section of the tumor on 5 mm thick axial images, avoiding necrotic

areas and surrounding gastric tissues. A circular region of interest
Frontiers in Oncology 03
(ROI) was delineated to measure the attenuation values of the solid

components of the tumor. The NTER was calculated as NTER =
CT   tumor   value
CT   aortic   value � 100%, and △CT was determined by subtracting the

non-enhanced CT value from the enhanced CT value DCT = CT   en

ahnced   value − CT non enhanced value. Lymph nodes meeting at

least one of the following criteria were defined asmetastatic (17, 18): (1)

short axis greater than 1 cm or a short-to-long axis ratio greater than

0.7; (2) high enhancement or heterogeneous enhancement; (3) lymph

nodes clustered in a drainage area. Univariable and multivariable

logistic regression analyses were performed on these clinical and

traditional CT imaging features to identify independent predictors

capable of distinguishing g-(MA)NEC from g-ADC, leading to the

development of a clinical model.
Radiomics features analysis

The radiomics workflow diagram of this study is presented in

Figure 2. Tumor segmentation was meticulously performed using

3D Slicer software (version 5.2.2, https://www.slicer.org). The

junior radiologist (XXH) manually delineated the region of

interest (ROI) along the tumor edges on axial images with a

thickness of 5mm during the venous phase, which was reviewed

and confirmed by the senior radiologist (LY) to ensure precision in

defining the tumor boundaries, essential for accurate subsequent

analyses. To account for variations in scanning equipment that

could affect voxel size and impact radiomic features, images were

standardized by resampling them to a uniform resolution of 1×1×1
FIGURE 1

Flowchart of patient enrollment.
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mm³. Additionally, image grayscale values were discretized into 25

levels to reduce the sparsity of the grayscale matrix, facilitating the

computation of texture features. The preprocessed images

underwent various transformations, including Laplacian of

Gaussian filtering, wavelet transforms, gradient filtering,

logarithmic filtering, and local binary pattern transformations to

extract high-dimensional features critical for detailed texture

analysis. Parameters for the Laplacian of Gaussian filters were set

at LoG s=5,7, with wavelet transformations incorporating eight

fi lter parameters, and local binary patterns including

three parameters.

Feature extraction was then conducted using the PyRadiomics

platform (https://pyradiomics.readthedocs.io/). To prevent model

overfitting and reduce redundancy in high-dimensional features, a

robust methodology was employed. Firstly, a month after the initial

ROI delineation, a random subset of 50 patients underwent a

second ROI delineation to ensure consistency, retaining features

with an Intraclass Correlation Coefficient (ICC) greater than 0.8.

Univariable analysis (Mann-Whitney U test) was employed to

retain features with P-values less than 0.05, and correlation

analysis was used to remove features with a correlation coefficient

greater than 0.9, ensuring feature independence. Finally, LASSO

regression and multivariable stepwise regression were conducted to

preserve features with independent predictive power. LASSO

performs both feature selection and regularization, effectively

handling multicollinearity and producing more generalizable

models. The selected radiomic features were used to construct a

radiomics model, culminating in the generation of a Radiomics

Score (Rad-score). This score quantitatively encapsulates the tumor

characteristics derived from the imaging data, providing a robust

tool for clinical assessment and decision-making, thus enhancing
Frontiers in Oncology 04
the predictive accuracy of the model and ensuring its applicability

across different patient populations by minimizing potential biases

associated with image processing and feature extraction techniques.

The independent predictive factors identified in the clinical model

along with the Radiomics Score (Rad-score) outputted by the

radiomic model were analyzed using multivariable stepwise

logistic regression to generate combined model.
Statistical analysis

Statistical analyses were performed using R software (version 3.8).

The Shapiro-Wilks test was employed to assess the normality of

continuous variables. For variables that followed a normal

distribution, the independent samples t-test was utilized, whereas the

Mann-Whitney U test was used for variables that did not exhibit

normal distribution. Categorical variables were analyzed using either

Fisher’s exact test or the chi-square test, depending on the data size and

distribution, with a significance level set at P < 0.05. The diagnostic

performance of the clinical model, radiomic model, and combined

model was evaluated using Receiver Operating Characteristic (ROC)

curves. The Area Under the Curve (AUC), accuracy (ACC), sensitivity

(SEN), and specificity (SPE) were calculated to assess each model’s

effectiveness. The DeLong test was applied to compare the AUC of the

three models, providing a statistical basis for evaluating the superiority

of one model over the others in differentiating between tumor types.

Model calibration was examined using calibration curves, and the

goodness-of-fit for each model was assessed with the Hosmer-

Lemeshow test. Decision Curve Analysis (DCA) was performed to

evaluate and compare the clinical usefulness of the three models.
FIGURE 2

Schematic diagram of the radiomics workflow.
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Result

Patient characteristics

A total of 44 cases of g-NEC and 46 cases of g-MANEC met the

inclusion and exclusion criteria. Postoperative pathological T

staging identified 9 cases at T2, 78 at T4a, and 3 at T4b. These

cases were matched 1:1 by pathological T stage with 90 cases of

gastric adenocarcinoma that were also confirmed postoperatively

and met the inclusion and exclusion criteria. The study ultimately

included 180 patients, who were randomly divided into a training

set (n=126) and a validation set (n=54) as shown in Figure 1.
Clinical model evaluation

The distribution of clinical and traditional CT imaging features

within the training cohort of patients is detailed in Table 1.

Univariable analysis of this cohort revealed statistically significant

differences between g-(MA)NEC and g-ADC in terms of tumor

location, thickness, presence of necrosis, △CTvp and the presence

of lymph node metastasis (P < 0.05). Further multivariable logistic

regression analysis identified the presence of necrosis and lymph

node metastasis as independent predictive factors for differentiating

g-(MA)NEC from g-ADC (P<0.05). Based on these findings, a

clinical model was constructed. The performance of this model

in the training cohort and validation cohort demonstrated AUC

of 0.700 (95% CI, 0.619-0.781) and 0.667 (95% CI, 0.533-

0.800), respectively.
Radiomics model evaluation

From the preprocessed original images, a total of 107 features

were extracted, categorized as follows: 14 three-dimensional (3D)

morphological features, 18 first-order statistical features, and 75

texture features. The texture features were further subdivided into

various types based on different statistical matrices: 24 features from

the gray level co-occurrence matrix (GLCM), 16 from the gray level

run length matrix (GLRLM), 16 from the gray level size zone matrix

(GLSZM), 14 from the gray level dependence matrix (GLDM), and

5 from the neighboring gray tone difference matrix (NGTDM).

From the preprocessed filter image, 1395 features were extracted,

totaling 1502 radiomics features. The feature selection process was

rigorous and methodologically sound to ensure the robustness of

the final radiomics model. Initially, through intraclass consistency

analysis (ICC > 0.8), the feature set was narrowed down to 317.

Subsequent univariate analysis further reduced this number to 133.

Correlation analysis was then applied, retaining only 30 features

that demonstrated minimal redundancy. LASSO regression helped

in narrowing down these features to 17, and multivariable analysis

finally selected 5 key features, including one first-order feature and

four texture features (Figure 3). The first-order feature, root mean

square, held the highest weight among them (Figure 4). These

selected features were used to construct a radiomics model that
Frontiers in Oncology 05
TABLE 1 Clinical and CT features of the patients in the training cohort.

Feature (MA)NEC (n=63) ADC (n=63) P

Gender 0.180

Female 9 (14.3%) 16 (25.4%)

Male 54 (85.7%) 47 (74.6%)

Age 65.0 [59.0;70.0] 63.0 [56.0;69.0] 0.198

Location <0.001

Upper 49 (77.8%) 19 (30.2%)

Middle 9 (14.3%) 7 (11.1%)

Lower 5 (7.9%) 37 (58.7%)

Borrmann 0.273

Localized type 28 (44.4%) 21 (33.3%)

Diffuse type 35 (55.6%) 42 (66.7%)

Length 4.7 [3.3;5.8] 4.6 [3.6;5.5] 0.944

Length Grade 1.000

<5cm 38 (60.3%) 39 (61.9%)

≥5cm 25 (39.7%) 24 (38.1%)

Thick 2.1 [1.5;2.3] 1.7 [1.4;2.1] 0.021

Thick Grade 0.152

<2cm 30 (47.6%) 39 (61.9%)

≥2cm 33 (52.4%) 24 (38.1%)

Mucosal coverage 1.000

Negative 42 (66.7%) 42 (66.7%)

Positive 21 (33.3%) 21 (33.3%)

Necrosis 0.005

Negative 42 (66.7%) 56 (88.9%)

Positive 21 (33.3%) 7 (11.1%)

Ulcer 1.000

Negative 1 (1.6%) 2 (3.2%)

Positive 62 (98.4%) 61 (96.8%)

Enhancement
pattern

0.099

Homogeneous 52 (82.5%) 59 (93.7%)

Heterogeneous 11 (17.5%) 4 (6.3%)

CTNON 40.7 [37.8;46.1] 40.8 [37.1;44.4] 0.620

CTAP 68.7[59.8;89.2] 74.7[60.7;96.2] 0.146

CTVP 85.6 [75.9;100.3] 92.2 [81.9;105.3] 0.056

NTERAP 0.3 [0.3;0.3] 0.3 [0.3;0.4] 0.243

NTERVP 0.6 [0.6;0.7] 0.7 [0.6;0.8] 0.121

△CTAP 29.0 [18.9;48.1] 38.0 [22.8;54.0] 0.111

△CTVP 43.9 [35.5;60.2] 53.9 [39.9;63.2] 0.037

(Continued)
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outputs a Rad-score, depicted in Figure 5. The performance of this

model in the training and validation cohort was remarkable, with

AUC of 0.809 (95% CI, 0.731-0.887) and 0.802 (95% CI, 0.685-

0.920), respectively.
Model integration and comparison

The presence or absence of tumor necrosis, lymph nodemetastasis,

and the Rad-score were identified as independent predictive factors for

distinguishing between g-(MA)NEC and g-ADC, each demonstrating

statistical significance (P < 0.05) as shown in Table 2. Utilizing these

insights, a combined (clinical-radiomic) model was constructed, which

significantly improved diagnostic accuracy. The effectiveness of this

combined model was evident in its performance metrics, where it

achieved AUC of 0.853 (95% CI, 0.786-0.919) in the training cohort

and 0.812 (95% CI, 0.699-0.925) in the validation cohort. Additionally,

a nomogram was created based on the combined model, as depicted in

Figures 6, 7. The diagnostic threshold was set at 0.36; predictions falling

below this threshold suggest a diagnosis of g-(MA)NEC, while those

above indicate g-ADC.
Frontiers in Oncology 06
The ROC curves of the clinical model, radiomics model, and

combined model are shown in Figure 8. Table 3 shows ACC, SEN, SPE

of the three models. The DeLong test revealed that in the training

cohort, the combined model had a higher AUC compared to the

clinical and radiomics models (P<0.001, P=0.031). In the validation

cohort, the combined model had a higher AUC than the clinical model

(P=0.019). However, there was no statistically significant difference in

the AUC between the combined model and the radiomics

model (P=0.734).

The calibration curves of the combined model in the training and

validation cohort indicated strong concordance between the predicted

values and the observed values (P=0.342, 0.297) (Figure 9). The DCA

curves of the three models displayed are all higher than the two

reference lines. Both the combined model and the radiomics model

demonstrating greater net benefits than the clinical model (Figure 10).
Differentiation of different
pathologic subtypes

To further validate the diagnostic capabilities of the combined

model, its performance was assessed using cases of g-NEC and g-ADC,

as well as cases of g-MANEC versus g-ADC, which were included in

the study cohort. The results of this validation process demonstrated

high efficacy of the model in differentiating between these distinct

gastric cancer subtypes. Specifically, the AUC for the model in

distinguishing g-NEC from g-ADC were impressively high, recorded

at 0.887 in the training cohort and 0.852 in the validation cohort.

Similarly, for differentiating g-MANEC from g-ADC, the model
TABLE 1 Continued

Feature (MA)NEC (n=63) ADC (n=63) P

cN <0.001

Negative 8 (12.7%) 27 (42.9%)

Positive 55 (87.3%) 36 (57.1%)
FIGURE 3

Violin plot of the five radiomics features in the radiomics model.
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achieved an AUC of 0.823 in the training cohort and 0.762 in the

validation cohort, as illustrated in Figures 11, 12.
Discussion

g-(MA)NEC is characterized by a high malignancy grade, typically

displaying aggressive growth patterns and poor prognosis compared to
Frontiers in Oncology 07
g-ADC. Due to these distinctions, treatment approaches for g-(MA)

NEC differ from those for g-ADC. This study has developed and

validated a predictive model based on traditional CT imaging and

radiomic features, providing a non-invasive, effective preoperative

diagnostic tool for differentiating g-(MA)NEC from g-ADC. The

diagnostic performance of this model surpasses that of clinical model

and holds promise in guiding the selection of preoperative treatment

and surgical approaches for patients with g-(MA)NEC.
FIGURE 5

Distribution of radiomics model Rad-score in the training (A) and validation (B) cohort.
TABLE 2 Results of multifactor analysis on clinical model and combined model.

Variables b Clinical model
OR (95%CI)

P b Combined model
OR (95%CI)

P

Intercept 1.319 -1.377

necrosis -0.985 0.373 (0.151-0.840) 0.0209 -1.127 0.324 (0.118-0.831) 0.0228

cN -1.551 0.212 (0.097-0.437) <0.001 -1.079 0.340 (0.139-0.794) 0.0143

Rad-score 5.851 115.898 (25.541-627.644) <0.001
FIGURE 4

Weights of the five radiomics features in the radiomics model.
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Currently, the clinical diagnosis of g-(MA)NEC relies heavily on

pathological and immunohistochemical examinations. However,

among the 90 g-(MA)NEC patients in this group, only 10 were

definitively diagnosed preoperatively through gastroscopic biopsy

(11.11%, 10/90). This low preoperative diagnostic rate may be
Frontiers in Oncology 08
attributed to the significant heterogeneity of gastric neuroendocrine

carcinomas and the small tissue samples typically obtained via

gastroscopy, which may not adequately reflect the pathological

changes of the disease. Immunohistochemical markers such as

chromogranin A (CgA) and synaptophysin (Syn) are crucial for
FIGURE 6

A 66-year-old male patient with g-NEC. (A) Axial CT image in the portal venous phase showed the thickening of the gastric wall in the upper part of
the stomach with necrosis (arrowheads), and enlarged lymph node along the lesser curvature of the stomach (arrow) with a short diameter of 1.8cm.
(B) The predicted risk value as illustrated by the Nomogram is below the critical point (0.36), hence leading to the diagnosis of g-(MA)NEC. (C) The
pathological diagnosis is confirmed as g-NEC (HE, ×100).
FIGURE 7

A 48-year-old female patient with g-ADC. (A) Axial CT image in the portal venous phase showed the thickening of the gastric wall in the middle
part of the stomach with necrosis (arrowheads), and enlarged lymph node along the lesser curvature of the stomach (arrow) with a short diameter of
1.7cm. (B) The predicted value of Risk in the Nomogram exceeds the critical point (0.36), therefore the diagnosis is determined as g-ADC. (C) The
pathological diagnosis is confirmed as g-ADC (HE, ×100).
FIGURE 8

ROC curves of the three models in the training (A) and validation (B) cohort.
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confirming neuroendocrine differentiation of tumors and are

indispensable in the diagnosis of neuroendocrine tumors. However,

these tests are not routinely performed on gastroscopic biopsy samples,

contributing to the low preoperative diagnostic rate for g-(MA)NEC.
Frontiers in Oncology 09
This study assessed the clinical characteristics and traditional

CT imaging features to evaluate their discriminative value between

g-(MA)NEC and g-ADC. The findings confirmed that the presence

of tumor necrosis and lymph node metastasis are independent

predictive factors for differentiating these conditions. It was noted

that g-(MA)NEC is more likely to exhibit tumor necrosis (33.3%)

compared to g-ADC (11.1%). In research conducted by Feng et al.

(19), the rate of necrosis in g-(MA)NEC was reported to be even

higher, reaching 87.1%, and histopathological examinations

frequently revealed extensive necrosis within g-(MA)NEC tumors

(20). This propensity for necrosis may be attributed to the rapid

proliferation of tumor cells and the immaturity of tumor

vasculature, leading to ischemia and subsequent necrosis within

the tumor mass.

The presence of lymph node metastasis has been validated in

multiple studies as a differential factor between g-(MA)NEC and g-

ADC (16, 21). The aggressive nature of g-(MA)NEC often leads to

more frequent lymph node metastasis, underscoring the invasive

characteristics of this tumor type. Univariable analysis in this study

also highlighted significant differences between g-(MA)NEC and g-

ADC in terms of tumor location, thickness, and △CTvp. G-(MA)

NEC tumors were predominantly located in the upper region of the

stomach (49/63, 77.8%), while g-ADC tumors were more

commonly found in the lower stomach (37/63, 58.7%). This

distribution aligns with previous research findings (2, 22, 23) and

may be related to the typical distribution of enterochromaffin-like

cells, which are abundant in the fundus and body of the stomach.
FIGURE 10

Decision curves of the three models in the training (A) and validation (B) cohort.
TABLE 3 The diagnostic performance of the three models in the training and validation cohort.

Training cohort Validation cohort

Models ACC (95%CI) SEN (95%CI) SPE (95%CI) ACC (95%CI) SEN (95%CI) SPE (95%CI)

Clinical model 0.667(0.577-0.748) 0.413(0.180-0.548) 0.921(0.757-0.972) 0.685(0.544-0.805) 0.481(0.203-0.682) 0.889(0.578-1.000)

Radiomics model 0.810(0.730-0.874) 0.825(0.444-0.921) 0.794(0.444-0.857) 0.759(0.624-0.865) 0.815(0.370-1.000) 0.704(0.444-0.816)

Combined model 0.786(0.704-0.854) 0.857(0.682-0.952) 0.714(0.523-0.841) 0.722(0.584-0.835) 0.889(0.630-1.000) 0.556(0.369-0.815)
FIGURE 9

Calibration curves of the combined model in the training and
validation cohort.
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The lower△CTvp observed in g-(MA)NECmay be associated with

the more pronounced necrosis in these tumors.

Previous studies (16, 21) have indicated that the presence or

absence of mucosal coverage on the surface of a tumor can serve as a

distinguishing feature between g-NEC and g-ADC. G-(MA)NEC, for

instance, is more likely to exhibit either a complete or partial mucosal

layer over its surface or symmetric mucosal elevation at both ends of

the tumor. This characteristic could be associated with the

distribution of neuroendocrine cells within the mucosal layer rather

than in the epithelial layer of the stomach. However, the findings of

this current study reveal that both g-(MA)NEC and g-ADC show a

mucosal coverage rate of 33.3%. This parity might be explained by the

presence of peritumoral edema in cases of g-ADC, where the
Frontiers in Oncology 10
edematous areas can also exhibit enhanced mucosal layers,

potentially leading to misinterpretation as positive tumor mucosal

coverage. Given this, the evaluation of mucosal coverage appears to

be highly subjective, and its diagnostic value remains questionable.

Radiomics analysis leverages high-throughput quantitative

features to evaluate tumor heterogeneity more objectively and

precisely than traditional imaging techniques. Existing studies have

demonstrated that venous phase images effectively display the

distribution of contrast agents within the tumor interstitium, which

holds significant value for the differential diagnosis of gastric tumors

(21, 24). In this study, 3D whole-tumor delineation based on venous

phase CT images was performed, and a large set of extracted radiomic

features underwent dimensionality reduction and stepwise selection.
FIGURE 12

ROC curves for discriminating g-MANEC and g-ADC of the combined model in the training (A) and validation (B) cohort.
FIGURE 11

ROC curves for discriminating g-NEC and g-ADC of the combined model in the training (A) and validation (B) cohort.
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Ultimately, five radiomic features were retained. The retained features

including First_Order_RootMeanSquared and GLCM_Joint energy,

which measure image uniformity and reflect the spatial distribution

of image intensities. Additional texture features from the GLRLM and

the GLDM assess the correlation of image grayscale across planes

or directions.

The study found lower uniformity and grayscale correlation in g-

(MA)NEC compared to g-ADC, consistent with findings by Wang

et al. (21). This may be associated with the higher necrosis rates and

stronger heterogeneity in g-(MA)NEC, particularly in g-MANEC

tumors, which contain varying components of adenocarcinoma and

neuroendocrine carcinoma, thus further reducing image grayscale

correlation (25). The radiomics model developed in this research

achieved AUC of 0.809 and 0.802 in the training and validation

cohorts, respectively, and its output Rad-score can be used for

personalized quantitative analysis to more accurately assess

tumor heterogeneity.

Radiomics combined with conventional CT imaging features and

clinical features demonstrates great potential in tumor prediction and

grading. Wang et al.’s (26) research findings reveal that a combined

nomogram, which integrates radiomic signature based on plain CT

images with clinical features, can effectively predict the pathologic

grades of PNETs preoperatively with powerful predictive capability.

Combining the presence or absence of tumor necrosis, lymph node

metastasis, and the Rad-score from radiomic output, a combined

model was constructed in this study. This model showed superior

diagnostic efficacy with AUC of 0.853 and 0.812 in the training and

validation cohort, respectively, outperforming the clinical model. To

our knowledge, this is the first study to develop a combined model

specifically for differentiating g-NEC and g-MANEC from g-ADC.

Previous studies (21) have mainly focused on distinguishing

neuroendocrine tumors from adenocarcinomas, without addressing

the challenges posed by mixed tumors. We further validated our

model’s performance in distinguishing g-NEC from g-ADC and g-

MANEC from g-ADC separately. Subgroup analysis indicated that the

combined model more effectively distinguished between g-NEC and g-

ADC than between g-MANEC and g-ADC. This is likely because g-

MANEC includes adenocarcinoma components, leading to

overlapping features with g-ADC, which complicates differentiation.

In this study, 21 out of 46 g-MANEC cases were predominantly

adenocarcinoma (more than 50% adenocarcinoma components), and

10 had equal proportions of adenocarcinoma and neuroendocrine

carcinoma components, accounting for 67.4% (31/46) of the g-

MANEC cases. Nevertheless, the diagnostic efficacy of the combined

model in distinguishing g-MANEC from g-ADC remained high at an

AUC of 0.823, indicating good performance. This detailed subgroup

analysis provides valuable insights into the model’s efficacy across

different tumor subtypes, which has not been extensively explored in

previous studies.

While this study provides insightful findings, it is important

to acknowledge several inherent limitations. First, being a

retrospective study conducted at a single center, there is potential
Frontiers in Oncology 11
for selection bias. This could influence the generalizability of the

results to a broader population, as the sample may not fully

represent the diversity of clinical scenarios seen in different

geographic or institutional contexts. Second, g-(MA)NEC has a

relatively low incidence rate, which naturally limits the sample size

available for analysis. To minimize the risk of overfitting the model

with an excessive number of features relative to the number of cases,

the study deliberately retained a smaller number of radiomic

features during the selection process. While this approach

enhances the model’s robustness, it may also constrain the ability

to capture the full spectrum of potentially informative features.

Third, the CT images analyzed were obtained from different

equipment, introducing potential confounding factors due to

variations in imaging technology and protocols. Although image

preprocessing was employed to standardize the images and reduce

these confounding effects, some degree of variability inevitably

remains, which could affect the precision of the radiomic

analyses. To address these limitations and validate the findings,

future research efforts should aim for a prospective, multi-center

design involving a larger sample size. Such studies would not only

help to confirm the validity and reliability of the results but also

enhance their applicability in diverse clinical settings. A more

extensive dataset, potentially gathered from multiple centers,

would provide a more comprehensive understanding of the

radiomic profiles associated with g-(MA)NEC and g-ADC,

thereby facilitating the development of more accurate and

universally applicable diagnostic models.
Conclusion

A predictive model has been developed based on traditional CT

imaging features and radiomics, offering a non-invasive and

effective preoperative diagnostic method for distinguishing

between g-(MA)NEC and g-ADC.
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