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Objective: This study aimed to develop a nomogram that combines intratumoral

and peritumoral radiomics based on multi-parametric MRI for predicting the

postoperative pathological upgrade of high-risk breast lesions and sparing

unnecessary surgeries.

Methods: In this retrospective study, 138 patients with high-risk breast lesions

(January 1, 2019, to January 1, 2023) were randomly divided into a training set

(n=96) and a validation set (n=42) at a 7:3 ratio. The best-performing MRI

sequence for intratumoral radiomics was selected to develop individual and

combined radiomics scores (Rad-Scores). The best Rad-Score was integrated

with independent clinical and radiological risk factors by a nomogram. The

diagnostic performance of the nomogram was evaluated using the area under

the curve (AUC) of the receiver operating characteristic curve, along with

accuracy, specificity, and sensitivity analysis.

Results: The nomogram based on the combined intratumoral and peritumoral Rad-

Score of the dynamic contrast-enhanced MRI and clinical-radiological features

achieved superior diagnostic efficacy in the training (AUC=0.914) and validation

set (AUC=0.867) compared to other models. It also achieved a specificity and

accuracy of 85.1% and 82.3% during training and 66.7% and 76.2% during validation.

Conclusion: The nomogram encapsulating the combined intratumoral and

peritumoral radiomics demonstrated superior diagnostic efficacy in

postoperative pathological upgrades of high-risk breast lesions, enabling

clinicians to make more informed decisions about interventions and follow-

up strategies.
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Introduction

According to the latest global cancer data released by the World

Health Organization in 2024, there were approximately 2.3 million

new cases of breast cancer worldwide in 2022, underscoring its

significant impact on women’s health (1). The European guidelines

for the quality management of breast cancer screening and

diagnosis categorize breast lesions into five risk-based types

according to pathology: B1 for normal tissue, B2 for benign

lesions, B3 for lesions of uncertain malignant potential (high-risk

lesions), B4 for suspicious malignancy, and B5 for malignant (2).

High-risk lesions, which include atypical ductal hyperplasia, atypia

lobular hyperplasia, papillary lesions, complex sclerosing

adenopathy, mucinous tumors, and flat epithelial atypia, exhibit

clinical and biological heterogeneity. These lesions’ varying

malignancy risks necessitate distinct clinical diagnoses, treatment

strategies, and follow-up procedures. The management of high-risk

lesions has significantly changed over the last few years but still

faces great controversy (3). Currently, the initial diagnosis of high-

risk lesions mostly relies on core needle biopsy (CNB), which only

secures a small specimen and carries a risk of malignancy

underestimation. High-risk lesions are generally removed by

surgery. Some of them can be upgraded to malignant (B5) due to

the discovery of conditions like ductal carcinoma in situ and

invasive ductal carcinoma during the subsequent surgical

pathology. The detection rate of such lesions via CNB ranges

from 5% to 9.2% of all biopsied lesions (4, 5).

More high-risk lesions are now being detected due to the

popularity of breast cancer screening and the advancement of

imaging techniques. However, only a small ratio of high-risk

lesions are deemed to have higher levels of malignancy based on

surgical pathology, while the rest of them can be managed by

disease monitoring through regular follow-ups. This results in a

high rate of unnecessary biopsy and surgery for high-risk lesions

with a low risk of malignancy. Despite the ongoing investigations on

imaging characteristics for risk assessments of breast lesions, there

is currently no specific imaging characteristic that can stratify the

high-risk lesions based on the risk of malignancy. Malignancy risk

prediction could be assisted by applying online predictive models

(6, 7). Nevertheless, the suboptimal performance of these models

might overestimate or underestimate the risk of subsequent

malignancy after diagnosing a high-risk lesion. Early and non-

invasive assessments that can predict whether the pathological

classification of high-risk lesions will upgrade after surgery would

enable clinicians to make more informed decisions regarding

surgical and follow-up strategies. This, in turn, could minimize

unnecessary procedures, reduce medical costs, alleviate patient

pain, and ultimately benefit patients.

Radiomics is an emerging new technique that can transform

medical images into high-dimensional and minable quantitative
Abbreviations: AUC, Area under the receiver operating characteristic curve;

BPE, Background parenchymal enhancement; CNB, Core needle biopsy; DCE-

MRI, Dynamic contrast-enhanced magnetic resonance imaging; DCA, Decision

curve analysis; LASSO Least Absolute Shrinkage and Selection Operator; NME,

Non-mass enhancement; ROI, Region of interest; TIC, Time-intensity curve.
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features by leveraging high throughput feature extraction (8). It can

provide comprehensive and precise evaluations of lesions based on

images. In addition to the characterization within the tumors, more

information can be extracted at the peritumor region using

radiomics, which has been demonstrated to improve prediction

performance on various clinical tasks (9–11). Developing a

radiomics nomogram that combines image signatures built by

radiomics with other clinical factors is one effective approach for

explainable clinical utilization. This study aimed to noninvasively

predict pathological upgrading of high-risk breast lesions after

surgery by intratumor and peritumor radiomics analysis on

multiple MRI sequences. To our knowledge, there is currently no

study applying radiomics to further stratify high-risk lesions.
Materials and method

Subjects recruitment and data collection

The study received approval from the Ethics Committee of

Shenzhen People's Hospital (LL-KY-2021624). Patients with high-

risk breast lesions confirmed by CNB at Shenzhen People's Hospital

from January 1, 2019, to January 1, 2023, were retrospectively

recruited for this study. The lesions included atypical hyperplasia,

intraductal papilloma, mucinous tumor, flat epithelial atypical

hyperplasia, and sclerosing adenopathy. Clinical data, pathology

records, and multi-parametric MRI imaging, which includes T1

weighted imaging (T1WI), T2 weighted imaging (T2WI), diffusion-

weighted imaging (DWI), and the second phase of dynamic

contrast-enhanced MR imaging (DCE-MRI), were collected. The

second phase of DCE-MRI was chosen due to the peak

enhancement within the first 2 minutes after the injection of

contrast medium, which brings richer information than other

phases (12). Inclusion criteria were: (1) complete clinical data and

a standardized preoperative breast MRI; (2) no prior CNB before

the MRI; (3) CNB confirmation of high-risk breast lesions; and (4)

detailed postoperative pathological results or complete follow-up

data. Exclusion criteria included: (1) Any MRI sequence of poor-

quality affecting image analysis and ROI contouring; (2) lesions

without enhancement or indistinguishable due to intense

background parenchymal enhancement on DCE-MRI; and (3)

prior surgery, endocrine therapy, or neoadjuvant chemotherapy

before the MRI. Ultimately, 138 patients were included in the study,

comprising 38 with postoperative lesion upgrades and 100 without

them. These participants were divided into a training set (n=96) and

a test set (n=42) using a 7:3 randomized stratified sampling method.
MRI image acquisition

All patients underwent bilateral breast DCE-MRI examination

using Skyra 3.0T and Avanto 1.5T MR scanners (SIEMENS,

Germany) and breast-specific coils. Transverse T1WI, T2WI fat

suppression, and DWI (b-value=50, 400, 800 s/mm2) were first

performed. The DCE-MRI imaging started with a scout scan,

followed by the injection of Gd-DTPA after 30 s. Five consecutive
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scans were acquired after the contrast agent injection, each lasting 1

min. The scanning parameters were TE=1.7 ms, TR=4.7 ms,

scanning field of view 360 mm, spacing=0 mm, layer

thickness=1.6 mm, number of layers=72, and acquisition

matrix=448 × 372.
Clinical and radiological feature acquisition

Clinical information included age, family history, menopausal

status, clinical manifestations (palpable mass, nipple blood/fluid

discharge, pain), and immunohistochemical indicators (ER, PR,

HER-2, and Ki-67). Patients’ breast DCE-MRI image characteristics

were analyzed by two radiologists with more than five years of

experience in breast MRI diagnosis. According to the classification

criteria of the Breast Imaging Reporting and Data System (BI-

RADS, version 5) (13) of the American College of Radiology, the

following radiological features of breast MRI were evaluated and

included in this study: Amount of fibroglandular tissue (non-dense:

almost entirely fat or scattered fibroglandular tissue, dense:

heterogeneous or extreme fibroglandular tissue), background

parenchymal enhancement (BPE) (minimal, mild, moderate, and

marked), enhancement type (mass enhancement, non-mass

enhancement), maximum lesion diameter, lymph node metastasis,

and time-intensity curve (TIC) type (persistent, plateau, washout).
Intratumoral and peritumoral
region contouring

T1WI, T2WI, DWI, and DCE-MRI for all patients were

retrieved from the PACS at Shenzhen People's Hospital in

DICOM format. Breast lesions were manually delineated layer by

layer to define the three-dimensional intratumor region of interest

(ROI) using the 3D-Slicer software (version 5.2.1, https://

www.slicer.org) (14). The peritumoral ROI was established

through a 5-mm automatic isotropic expansion (Figure 1). The

contours were set directly at the enhancement boundaries for
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lesions exhibiting mass enhancement. For non-mass-enhancing

lesions, contours were drawn at the junction between the lesion

and normal tissue. After the segmentation of ROI, the repeatability

of ROI between two radiologists was evaluated by the intra-class

correlation coefficient (ICC) among all the recruited 138 patients.
Radiomics feature extraction

A comprehensive set of radiomics features was extracted from

T1WI, T2WI, DWI, and the second phase of DCE-MRI within the

two ROIs (intratumor and peritumor) by the DARWIN, which is a

highly flexible platform for imaging research in radiology (15).

Images were preprocessed by an isotropic resampling (1×1×1mm)

using the B-spline interpolation method to ensure the same image

resolution across patients before feature extraction. Both shape,

first-order, and texture features were extracted. Texture features

were acquired from the gray level co-occurrence matrix (GLCM),

gray level dependence matrix (GLDM), gray level run length matrix

(GLRLM), gray level size zone matrix (GLSZM), and neighboring

gray-tone difference matrix (NGTDM).
Feature preprocessing and selection

Feature values were standardized using min-max normalization

to scale the data within the range of [-1, 1] across patients. The Least

Absolute Shrinkage and Selection Operator (LASSO) regression was

employed for dimensionality reduction, identifying the optimal

feature set for predicting postoperative pathological upgrading of

high-risk breast lesions (Figure 2). LASSO reduces regression

coefficients towards zero, effectively nullifying many irrelevant

features based on the regularization parameter l was determined

using 10-fold cross-validation with criteria set to minimize cross-

validation error. Features with non-zero coefficients were retained,

and their parameters were used to fit the regression model, forming

a radiomics signature.
FIGURE 1

The workflow for processing and analyzing.
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Model development and
performance evaluation

Intratumoral radiomics models were developed using logistic

regression applied to the independently selected radiomics features

from the intratumor ROI for all four MRI sequences. The MRI

sequence with the best diagnostic efficacy in the training set was

selected for further development. The peritumoral radiomics model

was developed using the selected radiomics features extracted from the

best-performing MRI sequence within the peritumor ROI, and the

combined intratumoral-peritumoral model was developed using the

merged feature set of the twoROIs. Radiomics scores (Rad-Scores) were

calculated for each patient as the outputs from these three radiomics

models. A clinical and radiological model was developed using logistic

regressionontheclinical andradiological features identifiedaspredictive

through univariate and multivariate logistic regression analyses.

The discriminative abilities of the developed models were

evaluated by the ROC and quantitative metrics, including the

AUC, accuracy, sensitivity, specificity, negative predictive value

(NPV), and positive predictive value (PPV). Multivariate logistic

regression was performed on the best-performing Rad-Score along

with predictive clinical and radiological features selected by

univariate analysis, and a final nomogram was constructed from

the independently predictive factors. The calibration and decision

curve analysis (DCA) were performed to assess the nomogram’s

calibration and clinical net benefits.
Statistical analyses

Continuous variables adhering to a normal distribution were

presented as mean ± standard deviation and compared using the

independent Student’s t-test; discrete variables were reported as

frequencies and compared using the c2 test or Fisher’s exact test.

The DeLong test was employed to assess any statistical differences in

the AUC. A P-value of less than 0.05 was deemed significant for all
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statistical comparisons. During the selection of independent predictive

variables, thresholds were set at P<0.1 for univariate logistic regression

and P<0.05 for multivariate logistic regression. All statistical analyses

were conducted using SPSS software (version 27.0). Logistic regression

analysis and plotting were performed using the “Glm” package in the R

language environment (version 4.3.2, https://www.r-project.org/). The

“rms” package was utilized for both nomogram development and

calibration analysis, while the “rmda” package was used for DCA.

Results

Baseline patient characteristics

All 138 included patients were female, aged between 25 and 83

(48.8 ± 12.6) years old. There were 36 cases of atypical hyperplasia,

70 cases of intraductal papilloma, 2 cases of mucinous tumor, 4

cases offlat epithelial atypical hyperplasia, and 26 cases of sclerosing

adenopathy. The biopsy methods include core needle biopsy in 93

cases, vacuum-assisted excision in 3 cases, and surgical excision

biopsy in 42 cases. One hundred and seventeen cases underwent

surgical excision after biopsy, and at least 2 years of imaging follow-

ups were available for the 21 cases in patients who did not undergo

surgical excision. Thirty-eight patients were found to have ductal

carcinoma in situ and invasive ductal carcinoma components in the

subsequent surgical pathology, with an upgrade rate of 27.5% (38/

138). No statistically significant differences in the clinical and

radiological characteristics between the training set and the test

set were found (P>0.05) (Table 1).
Univariate and multivariate analysis

During univariate logistic regression, the maximum lesion

diameter, amount of fibroglandular tissue, Ki-67, and BPE were

selected to predict postoperative pathology upgrading (Table 2).

Three variables, the maximum lesion diameter, Ki-67, and BPE,
FIGURE 2

(A) Variable trace plot of LASSO regression. The lower x-axis indicates the log l value, and the upper x-axis indicates the number of features. The y-
axis represents the coefficient value of each variable. (B) Cross-validation loss plot of LASSO regression.
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TABLE 1 Baseline characteristics of the included patients with high-risk breast lesions and their comparisons between the training and test set.

Training set (n=96) Test set (n=42) t/c2 P-value

Age (years old, ± s) 48.53 ± 12.17 49.38 ± 13.54 t=-0.365 0.716

Maximum lesion diameter (mm, �x± s) 24.80 ± 14.06 20.81 ± 13.23 t=1.562 0.768

Menopause c2 = 0.728 0.393

Yes 37 13

No 59 29

Family history c2 = 0.028 0.866

Yes 2 0

No 94 42

Fibroglandular tissue c2 = 1.673 0.196

Non-dense 26 16

Dense 70 26

Enhancement type c2 = 0.190 0.663

Mass enhancement 51 24

Non-mass enhancement 45 18

Palpable mass c2 = 0.032 0.857

Yes 26 12

No 70 30

Nipple blood/fluid discharge c2 = 0.002 0.964

Yes 14 6

No 82 36

Pain – 0.561

Yes 0 3

No 38 97

Lymph node metastasis c2 = 0.182 0.670

Yes 0 1

No 96 41

ER c2 = 0.000 1.000

Positive 92 40

Negative 4 2

PR c2 = 0.616 0.433

Positive 62 30

Negative 34 12

HER-2 c2 = 0.000 1.000

Positive 86 38

Negative 10 4

Ki-67(%) c2 = 0.405 0.524

≥20 18 6

<20 78 36

TIC curve type c2 = 3.771 0.152

(Continued)
F
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TABLE 1 Continued

Training set (n=96) Test set (n=42) t/c2 P-value

Persistent 22 10

plateau 63 22

Washout 11 10

BPE c2 = 2.289 0.130

Minimal or mild 58 31

Moderate or marked 38 11
F
rontiers in Oncology
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For fibroglandular tissue: non-dense includes categories a and b, and dense includes categories c and d; �x± s: mean ± standard deviation.
TABLE 2 Distribution and univariate logistic regression results of the clinical and radiological factors on postoperative pathological upgrading of
breast lesions in the training set.

Upgraded (n=27) Non-upgraded
(n=69)

t/c2 P-value

Age (years old, �x± s) 46.96± 11.92 49.14± 12.29 t=-0.79 0.432

Maximum lesion diameter (mm, ± s) 31.15± 15.67 20.29± 10.62 t=3.316 0.002

Menopause c2 = 0.553 0.457

Yes 12 25

No 15 44

Family history – 0.077

Yes 2 0

No 25 69

Fibroglandular tissue c2 = 5.928 0.015

Non-dense 3 25

Dense 24 44

Enhancement type c2 = 0.374 0.541

Mass enhancement 13 38

Non-mass enhancement 14 31

Palpable mass c2 = 0.743 0.389

Yes 9 17

No 18 52

Nipple blood/fluid discharge c2 = 0.079 0.778

Yes 3 11

No 24 58

Pain – 1.000

Yes 0 2

No 27 67

Lymph node metastasis – 1.000

Yes 0 1

No 27 68

ER c2 = 0.000 1.000

(Continued)
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remained after multivariate logistic regression (Table 3) and were

used for the clinical-radiological model development.
Model performance evaluation
and comparison

The DCE-MRI intratumor radiomics model achieved the best

training AUC of 0.755 compared to the rest of MRI sequences (T1WI:

0.649, T2WI: 0.665, DWI: 0.597), as shown in Table 4. Therefore,

DCE-MRI was selected to construct the peritumoral radiomics and

combinedmodels. The combined intratumoral-peritumoral radiomics
Frontiers in Oncology 07
model displayed superior diagnostic performance compared to the

single intratumoral and peritumoral radiomics models. It achieved the

highest training AUC of 0.836 and test AUC of 0.768, as detailed in

Table 5 and illustrated by the ROC curves in Figure 3. Consequently,

the combined Rad-Score and three selected clinical and radiological

features were incorporated into the multivariate analysis. Ultimately,

the combined intratumoral-peritumoral Rad-Score, maximum lesion

diameter, Ki-67, and BPE were identified as independent predictors of

postoperative pathological upgrading and were utilized in

constructing the nomogram.

Integrating the intratumoral-peritumoral Rad-Score with

clinical and radiological features, the nomogram demonstrated
TABLE 2 Continued

Upgraded (n=27) Non-upgraded
(n=69)

t/c2 P-value

Positive 26 66

Negative 1 3

PR c2 = 2.859 0.091

Positive 21 41

Negative 6 28

HER-2 c2 = 0.000 1.000

Positive 3 7

Negative 24 62

Ki-67 (%) c2 = 21.311 <0.001

≥20 13 5

<20 14 64

TIC curve type c2 = 0.018 0.991

Persistent 6 16

Plateau 18 45

Washout 3 8

BPE c2 = 13.609 <0.001

Minimal or mild 10 53

Moderate or marked 17 16
For fibroglandular tissue: non-dense includes categories a (almost entirely fat) and b (scattered fibroglandular tissue), and dense includes categories c (heterogeneous fibroglandular tissue) and d
(extreme fibroglandular tissue); �x± s, mean ± standard deviation; TIC, time-intensity curve.
TABLE 3 Multivariate logistic regression results of the candidate predictive factors for postoperative pathological upgrading of high-risk breast
lesions in the training set.

b Waldc2 OR (95%CI) P-value

Maximum lesion diameter -0.074 5.209 0.929 (0.871-0.990) *0.002

Ki-67 1.580 4.329 4.854 (1.096-21.500) *0.037

BPE 2.112 5.589 8.265 (1.435-47.603) *0.018

Combined intratumoral-peritumoral Rad-Score 0.965 8.999 2.625 (1.397-4.931) *0.003
OR, odds ratio; CI, confidence interval; Rad-score, radiomcis score.
b, regression coefficient.
*, P-value <0.05.
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the highest diagnostic performance. In the training set, the

nomogram reached a higher AUC value of 0.914, compared to

0.829 (P=0.022) by the clinical and radiological model, 0.755

(P=0.009) by the intratumoral radiomics model, 0.729 (P=0.006)

by the peritumoral radiomics model, and 0.836 (P=0.034) by the

combined radiomics model. The nomogram also recorded the

highest AUC of 0.867 in the test set. Furthermore, the nomogram

exhibited superior specificity and accuracy relative to other models,

as reported in Table 5, Figure 3. The visualization of the nomogram

is depicted in Figure 4. Calibration analysis, shown in Figure 5,

demonstrated a high consistency between predicted and actual

probabilities of the nomogram model in forecasting postoperative

pathological upgrading across training and test sets. DCA indicated

that the nomogram provided greater clinical benefit than
Frontiers in Oncology 08
interventions for all patients, with significant net benefits shown

in the risk curves for thresholds greater than 0 and 0.15 in both

training and test sets, as shown in Figure 6.
Discussion

In recent years, the management of high-risk lesions has

sparked debate. Some scholars advocate for surgical excision of

high-risk lesions, citing the potential for cancerous tissues beyond

the biopsy site and the risk of malignancy upgrade (16). However,

many lesions resected surgically are ultimately confirmed as benign

in postoperative pathology, prompting proposals for more

conservative approaches, such as vacuum-assisted biopsy or

excision and observational follow-up, to prevent unnecessary

surgeries (17, 18). The non-invasive and precise prediction of

postoperative escalation in high-risk lesions using radiomics at

the diagnostic stage could aid clinicians in formulating

appropriate treatment or surveillance strategies.

Currently, there are few studies on the correlation between

breast MRI and the postoperative pathological upgrading of high-

risk lesions. Preibsch et al. (19) found that the rate of upgrading of

lesions >20 mm was low, whereas Crystal et al. (20) concluded that

the size and morphology of the lesions on MRI had no diagnostic
TABLE 5 Performance of the developed models on predicting the postoperative pathological upgrade in the training and test sets.

AUC (95%CI) SEN SPE ACC PPV NPV

Training

Clinical-radiological model
0.829

(0.724-0.933)
0.913 0.704 0.854 0.887 0.760

Intratumoral radiomics model
0.755

(0.644-0.865)
0.754 0.667 0.729 0.852 0.514

Peritumoral radiomics model
0.729

(0.616-0.842)
0.841 0.556 0.760 0.829 0.577

intratumoral-peritumoral
radiomics model

0.836
(0.755-0.917)

0.797 0.815 0.802 0.917 0.611

Nomogram
0.914

(0.859-0.969)
0.811 0.851 0.823 0.933 0.639

Test

Clinical-radiological model
0.804

(0.629-0.937)
0.613 0.909 0.690 0.950 0.455

Intratumoral radiomics model
0.765

(0.614-0.917)
0.909 0.581 0.667 0.947 0.435

Peritumoral radiomics model
0.727

(0.549-0.906)
0.818 0.677 0.714 0.913 0.474

intratumoral-peritumoral
radiomics model

0.768
(0.628-0.909)

0.645 0.909 0.714 0.952 0.476

Nomogram
0.867

(0.760-0.973)
0.933 0.667 0.762 0.609 0.947
CI, confidence interval; SEN, Sensitivity; SPE, Specificity; ACC, Accuracy; PPV, positive predictive value; NPV, negative predictive value.
TABLE 4 Comparison of training diagnostic efficacy of intratumoral
radiomics models built from different MRI sequences.

AUC (95%CI) SEN SPE ACC PPV NPV

T1WI 0.649 (0.538-0.760) 0.491 0.767 0.614 0.722 0.550

T2WI 0.655 (0.560-0.778) 0.547 0.744 0.635 0.725 0.571

DWI 0.597 (0.483-0.712) 0.755 0.442 0.614 0.625 0.594

DCE-MRI 0.755 (0.644-0.865) 0.754 0.667 0.729 0.852 0.514
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value for the rate of upgrading of high-risk lesions. The results of

this study showed that the maximum diameter of the lesion was an

independent risk factor for the upgrading of high-risk lesions with a

positive correlation, which is different from those reported in the

literature. This observation could be attributed to the biological

characteristics of rapid and infiltrative growth of high-risk breast

lesions with subsequent upgrading. You et al. (21) found that high-

risk lesions with high degrees of BPE in DCE-MRI had a high rate of

pathological upgrade by the univariate and multivariate regression

analysis. Our study also suggests that moderate to marked BPE is an

independent risk factor for upgrading. Previous studies have

confirmed that the degree of BPE is closely related to estrogen

level, which changes with the menstrual cycle and is a predictor

associated with breast cancer risk (22). Therefore, BPE may suggest

a correlation between high-risk breast lesions and the risk of breast
Frontiers in Oncology 09
cancer development. In addition, our study found that the level of

expression of Ki-67 was correlated with the upgrading of high-risk

lesions. Previous studies have shown that, as a cell proliferation-

associated protein, Ki-67 expression in breast cancer is closely

related to the degree of malignancy, invasiveness, and prognosis

of the tumor (23). Therefore, the higher the value of Ki-67, the

stronger the proliferative activity of tumor cells, and the higher the

risk of malignancy and probability of upgrading the high-risk

lesions could be.

Although T1WI and T2WI are superior in displaying

anatomical structures, they fall short of DCE-MRI in revealing

the complex vascular network of tumors and differentiating

between benign and malignant tissues (24, 25). Meanwhile, 45.7%

(63/138) of the cases in this study exhibited non-mass enhancement

(NME); thus, it is difficult to display NME lesions of the breast on
FIGURE 4

Nomogram composed of the independent predictive factors, including maximum lesion diameter (size), intratumoral-peritumoral Rad-Score,
background parenchymal enhancement (BPE), and Ki-67, for the risk of postoperative pathological upgrade.
FIGURE 3

Receiver operating characteristic curves (ROCs) of the clinical-radiological model, intratumoral radiomics model, peritumoral radiomics model,
Combined intratumoral-peritumoral radiomics model, and nomogram model on the (A) training and (B) test set.
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T1WI, T2WI and DWI images. DCE-MRI provides in-depth

insights into the tumor vasculature and biological characteristics,

addressing these limitations of T1WI and T2WI.

No studies have endeavored to predict the postoperative

pathological upgrade of high-risk breast lesions using radiomics.

Moreover, most existing clinical research utilizing radiomics has

focused solely on the tumor interior, neglecting the radiological and

biological data from the surrounding tumor area. The peritumor

region of breast cancer can hold crucial biological insights that are

challenging to capture with traditional diagnostic imaging

techniques, such as angiogenesis, peritumor infiltration of

lymphatic and blood vessels, and mesenchymal reactions (26).

Several studies have shown high diagnostic efficacy from

radiomics models constructed using a 5-mm peritumor region

(27, 28). Hence, in this study, we used the 5-mm peritumor area

to extract radiomics features and develop radiomics models. The

clinical and radiological, intratumoral radiomics, peritumoral

radiomics, combined intratumoral-peritumoral radiomics, and the

radiomics nomogram model were constructed, with the nomogram
Frontiers in Oncology 10
demonstrating the highest diagnostic efficacy in both the training

set (AUC=0.914) and the test set (AUC=0.867). Thus, the

nomogram, which combines the breast DCE-MRI intratumor and

peritumor radiomics score with clinical and radiological features,

exhibits optimal diagnostic efficacy, providing a solid basis for

clinical treatment decisions.

This study, however, has several limitations that necessitate

further refinement. Firstly, as a single-center retrospective study,

it may exhibit selection bias, potentially reducing the stability

and generalizability of the model in other clinical settings.

Secondly, this study requires that enrolled cases possess both

biopsy and postoperative pathological results, as well as

comprehensive MRI imagery and clinical documentation. This

rigorous criterion inevitably resulted in a limited data set. Future

research endeavors necessitate the ongoing accumulation of an

external validation cohort to substantiate the model’s efficacy.

Thirdly, using a 5-mm expansion for the peritumor ROI means

that some potentially informative peritumor tissue beyond this

margin was excluded from the radiomics feature extraction,

which could further enhance the predictive performance for

the pathological upgrade.
Conclusion

The radiomics nomogram model developed from intratumoral

and peritumoral DCE-MRI radiomics, combined with clinical and

radiological features, has demonstrated high diagnostic

performance for predicting the postoperative pathological

upgrade of high-risk breast lesions. This capability to stratify risk,

particularly in forecasting whether high-risk lesions will upgrade

upon surgical resection, aids clinicians in making personalized

clinical decisions for patients with high-risk lesions. It helps select

the most beneficial treatment or follow-up regimens, reducing

healthcare costs and unnecessary surgeries.
FIGURE 5

Calibration curves of the final constructed nomogram model in predicting postoperative pathological upgrade in the (A) training and (B) test set.
FIGURE 6

Decision curve analysis of the nomogram in the training and test set.
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