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repair and mutagenesis
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Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston,
SC, United States
Aldehyde exposure has been shown to lead to the formation of DNA damage

comprising of DNA-protein crosslinks (DPCs), base adducts and interstrand or

intrastrand crosslinks. DPCs have recently drawn more attention because of

recent advances in detection and quantification of these adducts. DPCs are

highly deleterious to genome stability and have been shown to block replication

forks, leading to wide-spread mutagenesis. Cellular mechanisms to prevent

DPC-induced damage include excision repair pathways, homologous

recombination, and specialized proteases involved in cleaving the covalently

bound proteins from DNA. These pathways were first discovered in

formaldehyde-treated cells, however, since then, various other aldehydes have

been shown to induce formation of DPCs in cells. Defects in DPC repair or

aldehyde clearance mechanisms lead to various diseases including Ruijs-Aalfs

syndrome and AMeD syndrome in humans. Here, we discuss recent

developments in understanding how aldehydes form DPCs, how they are

repaired, and the consequences of defects in these repair pathways.
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Introduction

Aldehydes are reactive carbonyl compounds that are abundantly present in the

environment, ambient air, and human diets. Human cells also generate endogenous

aldehydes from a variety of sources. Because of their polar carbon-oxygen double bond,

they can react with all the major biomolecules of the cell, including DNA. Notably, multiple

aldehydes can form direct DNA base adducts and DNA-protein crosslinks (DPC). The

sources, types, adducts, and mutagenic effects of aldehydes have all been thoroughly

reviewed (1). DPCs are a highly variable class of DNA lesions that can vary in size

depending on the identity of the crosslinked protein. These bulky adducts pose a significant

threat to DNA-based processes and have the ability to block transcription if the DPC is

located on the template strand (2). DPCs can also block replication fork progression when

they are located on the leading strand by inhibiting CMG helicase movement (3, 4). Finally,

DPCs may inhibit new DNA synthesis by blocking DNA polymerases and have been shown
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to interfere with chromatin remodelling (5–7). Overall, various

studies have shown that DPCs are an extremely heterogenous class

of DNA damage that can have different impacts on the genome

depending on the identity and location of the crosslinked protein

(8, 9).

As evidence of the importance of DPC repair in maintaining

genomic stability, mutations in SPRTN, encoding a specilized DPC

protease, have been shown to be the cause of Rujis-Aalfs syndrome.

This genetic disorder leads to genomic instability, early-onset

hepatocellular carcinoma, and progeria (10, 11). This cancer

predispoisiton phenotype in the absence of efficient DPC

processing underscores how common and damaging these lesions

are in the genome.

The goal of this review is to summarize which aldehydes

generate DPCs and how these adducts are formed. We will also

review how these DPCs are repaired, the consequences of improper

repair, and avenues for future work in the field.

Aldehydes as sources of DPCs-
formaldehyde, acetaldehyde, acrolein,
methylglyoxal, and malondialdehyde

Formaldehyde

Formaldehyde is environmentally abundant from sources such

as vehicle exhaust, factories, cigarettes, nail salons and is formed

upon consumption of aspartame or methanol (12, 13). It is also

produced endogenously in close proximity to DNA by processes
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such as histone demethylation (14, 15) and repair of DNA-

methylation damage by AlkB-family dioxygenases (16, 17).

Finally, it can be generated via one-carbon metabolism (18).

Formaldehyde is highly reactive towards nucleotides and proteins,

generating various DNA adducts which contribute to genomic

instability (19, 20). Amongst the most studied adducts induced by

formaldehyde are DPCs. Formaldehyde generally creates crosslinks

by forming a covalent bond with a nucleophilic group, such as

amines, amides, thiols, and hydroxyls, which generates a methylol

adduct (21). This methylol can then be converted into a Schiff base

via a dehydration reaction. These Schiff bases are unstable and

either decompose or are stabilized when they react with a

nucleophilic group in an adjacent molecule, forming a methylene

bridge that links the two molecules (21). Formaldehyde has been

shown to react with cysteine, histidine, lysine, tryptophan, and

arginine (22). The most common formaldehyde-induced DPC

occurs between deoxyguanosine and lysine, while the most stable

DPC is between deoxyguanosine and cysteine (21) (Figure 1). It has

been suggested that formaldehyde can only crosslink proteins that

interact with DNA for greater than 5 seconds (23). For this reason,

lysine and arginine-rich histones have been identified as the most

common formaldehyde crosslinked proteins (24–26). Other

commonly crosslinked proteins include topoisomerases and

polymerases (26).

Formaldehyde-induced DPCs have been identified in cultured

cells , animals, and humans exposed to formaldehyde.

Formaldehyde is a known carcinogen and has been shown to be

involved in the etiology of nasopharyngeal cancer in humans and

squamous cell carcinomas in the nasal respiratory epithelium of
FIGURE 1

Formation of formaldehyde-induced (A) lysine-deoxyguanosine and (B) cysteine-deoxyguanosine crosslinks. Formation of a lysine-deoxyguanosine
crosslink requires the formation of a methylol followed by dehydration to form a reactive Schiff base. The Lys-CH2-dG crosslink is the most
common formaldehyde-induced crosslink. Formation of the cysteine-deoxyguanosine crosslink requires the formation of a S-hydroxymethyl adduct
which can then directly react with deoxyguanosine. The Cys-CH2-dG crosslink is the most stable formaldehyde-induced crosslink. R1 and R2

represent the attachment of lysine (A) or cysteine (B) to a larger polypeptide chain. R3 represents the attachment of guanine to a deoxyribose group
and DNA strand.
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rodents (27–29). Various aldehyde dehydrogenases (ALDH) and

enzymes that process aldehyde-glutathione conjugates have been

implicated in aldehyde clearance from cells (30). Mice carrying

defects in alcohol dehydrogenase 5 (ADH5) and FANCD2

demonstrated formaldehyde-induced genotoxicity in hepatocytes,

nephrons, and hematopoietic stem cells (31). Further, defects in

ADH5 and ALDH2 led to elevated formaldehyde-induced DNA

damage, mutagenesis, and carcinogenesis. Defective ADH5 and

ALDH2 led to decreased clearance of endogenously formed

formaldehyde leading to accumulation of this genotoxin (32).

While these studies did not directly assay DPCs, it is likely that

DPC formation was at least partly responsible for the observed

genotoxicity. In an effort to determine the relative contribution of

endogenous and exogenous formaldehyde in generating DPCs, rats

were exposed to isotope labeled (13CD2]-formaldehyde)

formaldehyde and various tissues were subjected to mass

spectrometry (33). The researchers observed an increase in

labeled exogenous DPCs in the nasal respiratory tissues but found

no labeled DPCs in other tissues (33). Endogenous formaldehyde-

induced DPCs were present in all the tested tissue types. This data

suggests that endogenous formaldehyde, which is present in human

blood at a concentration of ~100 µM, could be responsible for a vast

majority of DPCs (33, 34). Similarly, DPCs were detected in the

respiratory tract of rhesus monkeys exposed to formaldehyde (35).

Finally, elevated DPC levels were detected in lymphocytes obtained

from workers in hospital pathology departments who had chronic

occupational exposure to formaldehyde (36). Such DPCs likely

underlie formaldehyde-induced genotoxicity and carcinogenicity.
Acetaldehyde

Humans are exposed to acetaldehyde from cigarette smoke and

alcohol consumption. Acetaldehyde can react readily with

deoxyguanosine to generate N2-ethylidene-deoxyguanosine (37, 38).

While acetaldehyde can form DPCs, they have been shown to be

unstable under physiological conditions. Treatment of histone-bound

plasmids with acetaldehyde for one hour at 37˚C demonstrated an

increase in DPCs; however, only 25% of crosslinks persisted past eight

hours with an average half-life of 1.5-2 hours (39, 40). Nonetheless,

defective DPC repair in fission yeast led to increased acetaldehyde-

induced genotoxicity (41). Similarly, we recently demonstrated that

deletion of DPC repair proteins in budding yeast leads to increased

acetaldehyde-induced cytotoxicity and mutagenesis (42). These data

indicate that despite the relatively low stability of acetaldehyde-

induced DPCs in vitro, these moieties are potential sources of

genomic instability in vivo.
Acrolein

Acrolein, or 2-propenal, is abundantly present in cooked foods

and the environment. Some common sources of acrolein include

tobacco smoke, lipid metabolism, and fossil fuel combustion. It can

also be produced endogenously from methionine and threonine

synthesis (43). Acrolein reacts readily with nucleophiles such as
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deoxyguanosine to make mostly a- and g-hydroxy-1,N2-propano-

2’-deoxyguanosine (1, 43). These adducts have been shown to

promote the formation of DNA interstrand crosslinks and have

been used in vitro to generate acrolein-induced peptide adducts (44,

45). Finally, acrolein has been shown to react with the thiol group of

cysteine, the imidazole group of histidine, and the amino groups of

lysine and arginine to form Schiff bases and crosslinks (43, 46, 47).
Methylglyoxal

Methylglyoxal, also known as pyruvaldehyde or 2-oxo-

propanal, is an oxo-aldehyde that is generated endogenously from

triose phosphate precursors during respiration (1, 48). Humans are

also exposed to methylglyoxal from food and beverages, cigarette

smoke, and vehicle exhaust (48). Methylglyoxal generates DNA

adducts on deoxyguanosine and deoxyadenosine, and has an ability

to react with arginine, lysine, and cysteine (48, 49). The protein

and DNA adducts formed by methylglyoxal are referred to as

advanced glycation end-products (AGEs), which have been

implicated in many diseases such as cancer, diabetes, and various

neurodegenerative diseases (1, 50, 51). Methylglyoxal is a bis-

electrophile, meaning that it can form crosslinks between two

independent nucleophiles through two electrophilic centers.

Previously, it has been shown to form crosslinks in vitro between

DNA and the E. coli DNA polymerase I (52). In this study,

crosslinks were only observed between 2’-deoxyguanosine and

Nɑ-acetyllysine or N-acetylcysteine, suggesting that methylglyoxal

specifically makes deoxyguanosine-lysine or deoxyguanosine-

cysteine DPCs (52).
Malondialdehyde

Malondialdehyde is produced by polyunsaturated fatty acid

peroxidation (53–55). Under physiological conditions,

malondialdehyde is an enolate anion and is of relatively low

reactivity (56). Despite this, it has been shown experimentally to

produce DNA base adducts which are typically found on

deoxyguanosine and deoxyadenosine (57, 58). Malondialdehyde has

been shown to crosslink histones to DNA (59). Histone H1was found

to have an especially high affinity for malondialdehyde-induced

crosslinking, and the authors concluded that this was likely due to

the abundance of lysine residues within histone H1 (59). Importantly,

these crosslinks formed readily at physiological temperature and pH,

and were stable for up to 13 days. Malondialdehyde crosslinking was

found to be limited to proteins that physically bind DNA, as a control

BSA protein was unable to form crosslinks regardless of the

concentration of malondialdehyde (59).
Repair of aldehyde-induced DPCs

Various studies in vitro and in model systems have shown that

DPCs block DNA polymerases (5, 60–62). Moreover, treatment of

V79 Chinese hamster cells with formaldehyde led to elevated levels
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of sister chromatid exchange and micronuclei formation, likely due

to abundant DPCs (63). These data indicate that DPCs formed by

formaldehyde lead to genomic instability, which significantly

contributes to formaldehyde-induced carcinogenesis. As such,

mechanisms to remove DPCs are conserved from yeast to

mammals. These mechanisms will be reviewed in the

following section.
Proteolysis-dependent DNA-protein
crosslink repair

Yeast Wss1 and Ddi1

In 2014, Julian Stingele and Stefan Jentsch discovered and

characterized the protease weak suppressor of Smt3 (Wss1) (64).

This finding was significant as it was the first protease discovered to

process DPCs regardless of the identity of the crosslinked protein in

S-phase (Figure 2). Wss1 has a compact protease domain with an

active site that contains few specificity-generating features (65).

This general protease domain likely explains why Wss1 can process

such a large variety of protein substrates. Wss1 becomes activated

by DNA, and activation is most robust in the presence of single-

stranded DNA (64). The requirement of DNA for Wss1 activation

is an important regulator of function, as it limits Wss1’s protease

activity to exclusively DPCs. Once activated, Wss1 targets

SUMOylated DPCs via interactions with its SUMO-binding

domain (8, 9). Finally, Wss1 function is dependent on its
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interaction with the chaperone-like enzyme Cdc48 which likely

regulates Wss1 access to substrates (66). In the absence of this

interaction, which is mediated by Ubx5, in vivo function of Wss1 is

eliminated (66).

Enzymatic DPCs are common and can occur without any

exogenous influence. For this reason, specific repair of commonly

crosslinked DNA-interacting enzymes has evolved. Tyrosyl-DNA

phosphodiesterase 1 and 2 (Tdp1 and Tdp2) have evolved to

process topoisomerase crosslinks (67). Interestingly, Wss1 can

process both enzymatic and non-enzymatic DPCs, and synthetic

sickness has been observed in Dtdp1Dwss1 yeast (64). This suggest

that Wss1 may function in a secondary pathway to Tdp1 and Tdp2

in processing enzymatic DPCs. The Candida albicans Wss1

homolog, CaWss1, has been shown to protect against

formaldehyde-induced DPCs (68). Finally, fission yeast with Wss1

or Wss2 deletions had an increased sensitivity to acetaldehyde and

formaldehyde (41, 69). Together, these data suggest that Wss1’s role

in the processing of DPCs is highly conserved.

Ddi1 is an aspartic protease that can interact with ubiquitylated

proteins and the proteasome via its Ub-like domain (UBL) (70, 71).

Humans possess a Ddi1 ortholog, and the sequence identity

between human and yeast Ddi1 is 55% (72, 73). In humans, it is

thought to promote proteasome-dependent replication fork restart

following replication stress by degrading the replication termination

factor 2 (72, 74). A role for the human DDI1 in DPC repair has not

yet been established. In yeast however, Ddi1 has been shown to aid

in the processing of camptothecin and formaldehyde-induced

DPCs (Figure 2) (71, 75). While Ddi1 has a similar function to
FIGURE 2

Aldehyde-induced DNA-protein crosslinks and their repair. Several biologically significant aldehydes can generate DPCs, and their structures can be
seen at the top of the figure. DPC repair can be carried out by dedicated proteases like Wss1 (SPRTN), Ddi1, and the proteasome. DPCs may also be
repaired by more classical pathways including nucleotide excision repair (NER) and homologous recombination (HR). Importantly, DPC repair most
likely involves a combination of these pathways. For example, partial degradation of a DPC by the proteasome followed by NER to remove the
remaining adduct. Yeast protein names are written with their human counterparts in parenthesis.
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Wss1 in yeast, DPC processing by Wss1 seems to be the primary

pathway. In the absence of the Ubx5-Cdc48-Wss1 axis, yeast

become more dependent on Ddi1, and deletion of Wss1 results in

an increase in Ddi1 protein levels (66, 71). Accordingly, Dwss1Dddi1
yeast have been shown to be extremely sensitive to crosslinking

agents (71). Deletion of either Wss1 or Ddi1 leads to increased

acetaldehyde mutagenesis, and Dwss1Dddi1 strains had a further

increase in mutagenesis (42).
SPRTN (DVC1) and other proteases in
higher eukaryotes

Shortly after the discovery of the role of Wss1 in yeast, a similar

DPC repair mechanism was identified in vitro using Xenopus laevis

egg extracts (76). In this study, Duxin et al. found that replication

coupled proteolysis could prevent persistent replication fork stalling

at a DPC (76). In 2015, reciprocal BLAST searches were performed

to find proteins with sequence similarity to Wss1 (9). The human

protein SPRTN was found to be a match, and a phylogenetic

analysis based on sequence similarity and domain organization

found that they shared N-terminal protease domains and C-

terminal tails containing motifs for binding Cdc48/P97/VCP (9).

Further, both SPRTN and Wss1 can bind ubiquitin or SUMO, and

SPRTN contains a PIP box for interactions with PCNA, supporting

the idea that SPRTN associates at the replication fork (9). Despite

the obvious similarities of these two proteins, they share very little

sequence homology, and it is most likely that their similarity is due

to convergent evolution. As such, SPRTN is generally considered to

be a functional homolog of Wss1. In 2016, SPRTN was finally

shown experimentally to be the mammalian protease responsible

for processing DPCs in cells (77, 78).

To prevent promiscuous cleavage of DNA bound proteins,

SPRTN function is tightly regulated. This regulation is dependent

on ubiquitylation, the type of DNA substrate, and autocleavage

(78). Firstly, mono-ubiquitinated SPRTN is excluded from

chromatin (78). Upon induction of DPCs by formaldehyde

treatment, SPRTN gets deubiquitinated and it can now return to

chromatin (78). SPRTN activity is also strongly regulated by DNA-

structure specificity. More specifically, it can process crosslinks at or

around disruption in the double-stranded DNA helix (79).

Examples of these disruptions include short ssDNA gaps, double-

stranded breaks, mispaired DNA bubbles, or ssDNA-dsDNA

junctions (79). Notably, SPRTN is unable to process crosslinks on

strictly dsDNA or ssDNA substrates. This specificity is determined

by SPRTN containing both a basic DNA-binding region (BR) and a

zinc-binding domain (ZBD) (79). The BR domain preferentially

binds dsDNA while the ZBD domain binds ssDNA, and proper

SPRTN association and activation on DNA is dependent on both

regions binding (79). Finally, SPRTN undergoes autocleavage as a

negative regulator to its activity (78).

SPRTN function is essential to genome maintenance in higher

eukaryotes. Sprtn-/- MEF cells have higher levels of gH2Ax, 53BP1,

and RAD51 foci, as well as increased CHK2 activation (77, 78, 80).

These results illustrate the importance of SPRTN in processing

DPCs to prevent replication stress and subsequent double-stranded
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breaks (Figure 2). SPRTN expression is tightly regulated to S and G2

phases of the cell cycle where it can associate and travel with

replication forks to prevent stalling at DPCs (81). Recently, it was

shown that the helicase FANCJ is essential in promoting SPRTN

function by binding to ssDNA downstream of the DPC and

unfolding the protein adduct (82). This unfolding exposes the

DNA beneath the crosslink, enabling SPRTN cleavage of the DPC

(82). This cleavage frees most of the crosslink from the DNA but

leaves a short peptide tail which must be bypassed by translesion

synthesis. During G1, SPRTN gets degraded by APC/Cdh1 (81). It

is thought that outside of S and G2, the proteasome may dominate

in processing DPCs (83).

Mutations within SPRTN have been shown to be the cause of

Ruijs-Aalfs syndrome, a genetic disorder that leads to genomic

instability, early-onset hepatocellular carcinoma, and progeria (10,

11). Unsurprisingly, lymphoblastoid cells derived from patients

with Ruijs-Aalfs syndrome had increased levels of gH2Ax staining

compared to control cells following formaldehyde exposure (77).

The characterization of Ruijs-Aalfs syndrome has underscored the

importance of SPRTN in maintaining genomic stability and the

effect of aldehyde-induced DPCs when they cannot be

properly repaired.

Higher eukaryotes also contain the serine protease FAM111A

which can repair TOP1 and PARP1-DNA crosslinks (84).

Knockout of FAM111A resulted in only a slight sensitivity to

formaldehyde, suggesting that either it only repairs a small

portion of DPCs or that it works in a secondary pathway to

SPRTN (84). In support of this idea, work from another group

found that SPRTN, and not FAM111A, was responsible for

processing PARP1-DNA crosslinks (85). Saha et al. concluded

that these differing results were likely due to differential

expression of FAM111A among different cell types where a lower

SPRTN expression in one cell type may be compensated with higher

FAM111A expression. Importantly, FAM111A expression is

highest in late S phase (86).

Finally, the acidic repeat containing protein (ACRC/GCNA)

was found in higher eukaryotes and was determined to contain a

SprT domain like SPRTN and Wss1, and is similar to SPRTN based

on phylogenetic analysis (83, 87, 88). ACRC/GCNA has been

shown to interact with polySUMO chains and localizes to

formaldehyde-induced damage foci (89). ACRC/GCNA is

required for germ cell genomic stability in Drosophila, C. elegans,

and zebrafish (90). ACRC/GCNA seems to be especially well suited

to resolving topoisomerase II DPCs (90, 91). Despite these

discoveries, the roles of ACRC/GCNA in DPC repair remains

largely unexplored.
Proteasomal degradation of aldehyde-
induced DPCs

The 26S eukaryotic proteasome is an extremely large ATP-

dependent protease that is recruited to several cellular locations to

degrade proteins (92). For efficient degradation, proteins must pass

into the hollow 20S proteasomal core (7). Essential to the regulation

and function of the proteasome is its ability to recognize
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polyubiquitylated protein substrates using specialized ubiquitin

binding sites (92). The proteasome is intimately related to the

DPC-repair response (Figure 2). Inhibition of the 26S proteasome

in A549 cells resulted in a significant reduction in formaldehyde-

induced DPC repair (93), and sensitized cells to formaldehyde

treatment (94). In Xenopus laevis egg extract, proteasome

components were found to accumulate on replicating plasmids

containing DPCs, and degradation of DPCs was dependent on

polyubiquitylation by the E3 ligase TRAIP (95). Proteasomal and

SPRTN mediated processing of DPCs are non-redundant pathways.

When SPRTN was depleted in Xenopus extract, translesion

synthesis across the DPC was impaired even when the

proteasome was unchanged, suggesting that SPRTN was the

preferred pathway to process the crosslink (95). Given that DPCs

can not readily enter the proteasomal 20S core, there are a few

models for how it may contribute to DPC proteolysis. Firstly, it is

possible that the proteasome partially degrades a DPC into a smaller

peptide crosslink which may be removed by nucleotide excision

repair (7). It is also likely that proteasomal degradation depends on

specialized proteases such as SPRTN or TDP1 to cleave the bulk of a

DPC off of DNA, with the now freed protein being a more

manageable substrate for the proteasome (7). Because aldehydes

can generate a heterogenous class of DPCs, it is most likely that

coordination between different repair pathways are required to

efficiently resolve aldehyde-induced DPCs (Figure 2).
Nuclease-dependent DNA-protein
crosslink repair

Global nucleotide excision repair

Nucleotide excision repair (NER) can recognize helix distorting

lesions and involves the removal of the lesion and surrounding

nucleotides, leaving a single-stranded DNA gap (Figure 2). Early

studies in bacteria showed that NER was involved in processing

formaldehyde-induced DNA damage as uvrA mutants showed an

increased sensitivity (96). Studies in yeast have shown that NER

defective strains (Drad1 and Drad4) were highly sensitive to acute

formaldehyde treatment (60 mM for 15 minutes), but were not

especially sensitive to chronic formaldehyde treatment (1.5 mM for

48 hours) (97). Similarly, deletion of the NER pathway in fission

yeast led to increased sensitivity of cultures to formaldehyde and

acetaldehyde (41, 69). These data were echoed by our recent study

demonstrating a role for NER in the repair of acetaldehyde-induced

lesions (42). These results suggest that NER is an important ‘first

line of defense’ to aldehyde-induced DPCs, but if given adequate

time, other repair pathways can compensate for loss of NER. In

human cells, NER was able to repair partially digested DPCs but was

unable to repair certain full sized DPCs (98). In fact, mammalian

NER is limited to relatively small 8-10 kDa (~70-90 amino acids)

crosslinks (99). For this reason, it is likely that NER works

cooperatively with the DPC proteases described earlier in this

review, where the DPCs are cleaved and the remaining peptide

tail is then removed by NER in a subsequent step.
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Transcription-coupled repair of aldehyde-
induced DPCs

Recently, it was shown that transcription-coupled repair is

involved in processing formaldehyde-induced DPCs. Cells were

treated with 600 µM formaldehyde for one-hour followed by zero-

and four-hour recovery times. After four hours, there was a marked

reduction in DPC-seq derived sequencing reads within gene bodies

(100). This result suggests that DPCs within transcribed regions are

being efficiently repaired. To further support the hypothesis that

transcription promotes DPC repair, the RNA polymerase II

transcribed genes PKM, TK1, AFMID, and TCF7L2 were analyzed

in cells treated with an RNA polymerase II inhibitor. Upon

inhibition of RNA polymerase II, there was a reduction in DPC

processing within the targeted gene bodies, suggesting that

crosslink repair was dependent on active transcription (100).

Immunoprecipitation of elongating RNA polymerase II in the

presence of formaldehyde followed by mass spectrometry showed

that RNA polymerase II was associated with the transcription-

coupled nucleotide excision repair factors CSA, CSB, UVSSA, and

TFIIH (100). In the absence of CSB, cells were unable to recover

RNA synthesis, suggesting that transcription-coupled repair is

required for rescuing DPC-stalled transcription machinery (100).

Overall, this work establishes a novel role for transcription-coupled

nucleotide excision repair in the processing of formaldehyde-

induced DPCs. Whether other aldehyde-induced DPCs can be

repaired via a similar transcription-coupled mechanism remains

to be seen. In the future, it would be interesting to test if

proteasomal or SPRTN function is required for the DPC-

processing role of transcription-coupled nucleotide excision

repair, and whether this pathway is under the same DPC size

restrictions as global nucleotide excision repair.
Homologous recombination in DPC repair

Early studies in bacteria showed that recA mutants were

sensitive to formaldehyde treatment, establishing a role for

homologous recombination (HR) in the repair of aldehyde-

induced damage (96). Interestingly, HR in yeast was shown to aid

DPC processing following chronic, low dose exposure to

formaldehyde while not contributing significantly to the repair of

acute, high dose treatment (97). HR was also shown to be required

for tolerance to acetaldehyde and formaldehyde in fission yeast (41,

69). HR has been implicated in the processing of DPCs in higher

eukaryotes as well. A study in chicken DT40 cells that were defective

in the BRCA/FANC pathway and HR were hypersensitive to low

doses of formaldehyde and acetaldehyde, but were not sensitive to

acrolein, crotonaldehyde, glyoxal, or methylglyoxal (101). There are

a few ways in which HR may contribute to DPC repair. Firstly, HR

may assist in the processing of DPCs in close proximity to double-

stranded breaks with the help of the MRE11-RAD50-NBS1 (Xrs2 in

yeast) complex (Figure 2) (102). The MRN/MRX complex has been

shown to remove Spo11-generated crosslinks from the ends of a

double-stranded break in yeast and in mouse testis extract,
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confirming that DPCs can be efficiently processed from double-

stranded break ends (103). Finally, Xenopus egg extracts have been

used to show that MRN, CtIP, and BRCA1 work together in the

removal of TOP2-DPCs at double-strand break ends (104), and

very similar results have been observed in mammalian cells (105,

106). HR may also assist in DPC tolerance via the template

switching pathway. When forks stall at a DPC, the sliding clamp

PCNA can be polyubiquitinated which leads to template switching

initiation (107). In this model, the stalled polymerase uses the

nascent sister strand as a template, allowing for extension beyond

the adduct. The resulting structure can then be resolved via a classic

HR dissolution reaction (107, 108). It is important to note that

template switching is a DNA damage tolerance pathway, and

following bypass the DPC will persist and must be repaired later.

Given that aldehydes generate DPCs which can lead to double-

stranded breaks if they persistently block replication forks, it is

likely that homologous recombination plays a significant role in

processing DPCs both at break ends and via template switching to

restore chromosomal integrity.

In summary, efficient nucleotide excision repair depends on the

recruitment of various bulky protein complexes. As such, DPCs can

only be repaired by NER if they do not impede the recruitment of

the NER factors. It is possible that NER works in concert with DPC

proteases or the proteasome, wherein the proteases partially process

the DPC, enabling NER to excise the remaining peptide bound

DNA. Importantly, DPC processing by NER can likely occur

throughout the cell cycle. HR does not face the same size

constraints as NER, but generally can only resolve crosslinks near

double-stranded breaks using the nuclease activity of the MRN

complex. Repair of DPCs by HR requires the presence of a double-

strand break and homologous DNA, likely limiting this repair to S/

G2 phases of the cell cycle. Given that aldehydes can crosslink a

variety of proteins to DNA, it is likely that an elaborate combination

of protease- and nuclease-based repair pathways are required for

efficient processing of aldehyde-induced DPCs. A graphical

summary of protease- and nuclease-dependent DPC repair

pathways can be seen in Figure 2.
DNA-protein crosslink-induced
genotoxicity in cancers

ALDH2 is a key enzyme that removes acetaldehyde and various

other endogenous aldehydes from the cell. Defects in ALDH2 have

been linked to increased alcohol-associated cancers (109).

Interestingly, low ALDH2 levels are also predictive for poor

survival in lung and liver cancer patients, likely due to elevated

cellular aldehydes. Inhibition of ALDH2 has been shown to cause

an increase in DPCs in cancer cell lines (110). As such, DPC-

induced genome instability from endogenous aldehydes is common

in cancers with defective aldehyde clearance pathways.

Germline mutations in SPRTN have been seen in patients with

Ruijis-Aalfs syndrome which is characterized by increased risk of

hepatocellular carcinoma (10, 111). SPRTN hypomorphic mice

were also shown to have elevated levels of DNA damage, DPCs,

and spontaneous development of liver tumors (112). These studies
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demonstrate that the liver is the primary site of carcinogenesis in

patients with SPRTN deficiencies. However, why these patients

develop liver cancers has remained unclear. We hypothesize that

lipid peroxidation by cytochrome P450 enzymes in the liver lead to

elevated cellular aldehydes and DPCs.

SPRTN was shown to be involved in the unfolded protein

response (UPR) and interacts with GRP78 in HepG2 liver cancer

cells (111). SPRTN depleted cells exhibit increased sensitivity to ER

stress and the UPR. Increased ER stress was shown to lead to DNA

damage that was epistatic to DNA damage induced by SPRTN

deficiency (111). It could thus be possible that increased ER stress

leads to DNA damage that is repaired via SPRTN-induced

proteolysis. ER stress and the UPR also results in fatty acid

accumulation in cells (113). Cytochrome P450 enzymes have been

shown to directly lead to oxidation of lipids forming lipid

hydroperoxides (114). Moreover, activity of the cytochrome P450

enzymes leads to elevated free radical generation that can further

lead to lipid peroxidation (115). Lipid peroxidation in liver cells is

expected to generate reactive aldehydes like malondialdehyde, 3-

hydroxynonenal, acrolein, and acetaldehyde (54, 55, 116). It is likely

that the reactive aldehydes produced upon cytochrome P450

mediated lipid peroxidation in hepatocytes induce DPCs which

are targets for SPRTN processing. In the absence of SPRTN, these

persistent DPCs lead to DNA damage and mutagenesis, likely

contributing to the development of hepatocellular carcinoma in

patients with Ruijis-Aalfs syndrome.

Alternately, livers from SPRTN hypomorphic mice demonstrate

an accumulation of topoisomerase I cleavage complexes (112). Such

adducts also lead to acute DNA damage and genome instability

culminating in carcinogenesis. Interestingly, lipid peroxidation

products including 4-hydroxynonenal have been shown to modify

TOP1 active site residue C630 leading to TOP1 entrapment on

DNA (117). In the absence of SPRTN, TOP1-DPCs would

accumulate leading to genome instability.

These studies demonstrate the importance of SPRTN in

mitigating DNA damage from aldehyde-induced DPCs in

liver cancers.
Conclusions

Aldehydes are present ubiquitously in the environment, and

several are generated endogenously by cells. These aldehydes have

been shown to generate a variety of DNA damage including base

adducts, interstrand and intrastrand DNA crosslinks, and DPCs.

DPCs can have a variety of deleterious effects on genome integrity;

inhibiting DNA synthesis, transcription, and chromatin

remodeling. As such mechanisms for repair of DPCs are

evolutionarily conserved. These include proteolysis-dependent

repair with the specialized proteases Wss1/SPRTN and Ddi1, or

more general proteolysis using the proteasome. Cells can also

employ nuclease-dependent repair of DPCs which include global

and transcription-coupled nucleotide excision repair, as well as

homologous recombination. Defects in any of these repair pathways

greatly sensitize cells to aldehyde-induced DPCs, and evidence of
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this can be seen in Rujis-Aalfs syndrome, a cancer predisposition

disorder that results from hypomorphic mutations in SPRTN.

Research on reactive aldehydes has been challenged by several

technical limitations. Firstly, many of these aldehydes are highly

volatile so maintaining consistent experimental conditions can be

challenging. DPC research has long been limited by the ability to

detect DPCs. Relatively new detection methods such as rapid

approach to DNA adduct discovery (RADAR) and purification of

x-linked proteins (PxP) promise to increase reliability and

sensitivity of DPC detection (26, 118, 119). Finally, these

reactive aldehydes can generate a variety of adducts, making it

difficult to determine the impact of DPCs specifically. While the

field of DPC repair has seen significant advances in recent years,

several questions remain. Much of the work done on aldehyde-

induced DPCs has used formaldehyde. It is still unknown if the

damage generated by other aldehydes are processed by SPRTN in

similar ways. While many studies have looked at double-stranded

breaks following the loss of DPC repair, the mutagenic

consequences of losing DPC repair are relatively unknown.

Finally, it is not well understood why reactive aldehydes and

SPRTN function are drivers for liver cancer specifically. It remains

to be seen if aldehyde levels are higher in SPRTN deficient cells or

if SPRTN deficiency in conjunction with non-alcoholic fatty liver

disease cause increased DPC formation and hepatocellular

carcinoma development.
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