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Purpose: Recent deep-learning based synthetic computed tomography (sCT)

generation using magnetic resonance (MR) images have shown promising

results. However, generating sCT for the abdominal region poses challenges

due to the patient motion, including respiration and peristalsis. To address these

challenges, this study investigated an unsupervised learning approach using a

transformer-based cycle-GAN with structure-preserving loss for abdominal

cancer patients.

Method: A total of 120 T2 MR images scanned by 1.5 T Unity MR-Linac and their

corresponding CT images for abdominal cancer patient were collected. Patient

data were aligned using rigid registration. The study employed a cycle-GAN

architecture, incorporating the modified Swin-UNETR as a generator. Modality-

independent neighborhood descriptor (MIND) loss was used for geometric

consistency. Image quality was compared between sCT and planning CT, using

metrics including mean absolute error (MAE), peak signal-to-noise ratio (PSNR),

structure similarity index measure (SSIM) and Kullback-Leibler (KL) divergence.

Dosimetric evaluation was evaluated between sCT and planning CT, using

gamma analysis and relative dose volume histogram differences for each

organ-at-risks, utilizing treatment plan. A comparison study was conducted

between original, Swin-UNETR-only, MIND-only, and proposed cycle-GAN.

Results: The MAE, PSNR, SSIM and KL divergence of original cycle-GAN and

proposed method were 86.1 HU, 26.48 dB, 0.828, 0.448 and 79.52 HU, 27.05 dB,

0.845, 0.230, respectively. The MAE and PSNR were statistically significant. The

global gamma passing rates of the proposed method at 1%/1 mm, 2%/2 mm, and

3%/3 mm were 86.1 ± 5.9%, 97.1 ± 2.7%, and 98.9 ± 1.0%, respectively.
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Conclusion: The proposed method significantly improves image metric of sCT

for the abdomen patients than original cycle-GAN. Local gamma analysis was

slightly higher for proposed method. This study showed the improvement of sCT

using transformer and structure preserving loss even with the complex anatomy

of the abdomen.
KEYWORDS

MR-linac, abdominal synthetic CT, structure consistency loss, transformer,
unsupervised learning
1 Introduction

Magnetic resonance (MR) images are widely used in

radiotherapy, which could identify target and organ-at-risks with

excellent soft tissue contrast (1). Recent studies reported the

potential benefits of MR-guided radiation therapy (MRgRT) than

computed tomography (CT) based image-guided radio therapy (2–

4). However, lack of electron density information of MR precludes

dose calculation, requiring additional CT scans for treatment

planning. The use of multimodal imaging could result in

geometric error of 2-5mm during the registration process

between CT and MR (5–11). This error could result in systematic

geometric deviations, leading to potential underdosage or

overdosage of the tumor area and thus compromising the

effectiveness of tumor control (12). Especially for the abdomen,

significant organ motion and frequent changes in intestinal gases,

such discrepancies are further amplified, increasing uncertainty

throughout the treatment (13). Additionally, the acquisition of

MR images from MR-Linac is more susceptible to degradation

due to the B0 field inhomogeneity induced by Linac components

(14). However, for clinically streamlined MR-only radiotherapy, the

use of MR-Linac is necessary for sCT.

MR-only radiotherapy has been proposed in several studies to

mitigate geometric discrepancies (15). By eliminating planning CT

imaging and relying solely on MR, MR-only radiotherapy reduces

uncertainties from the registration process, decreases the workload

of medical professionals, and protects patients from additional

radiation exposure from additional CT scans (16). However,

reconstructing synthetic CT (sCT) images is necessary to obtain

the electron density required for treatment dose calculation.

Conventional approaches of sCT are bulk density override and

atlas-based methods (17). The bulk density override approach

divides the MR into several classes, such as air, bone, soft tissue,

and fat, assigning a homogeneous electron density to each segment

(18). However, this method is time-consuming when performed

manually and does not consider tissue heterogeneity (19). The atlas-

based method uses co-registered MR-CT in an atlas to obtain the

sCT for the desired MRI, but it can lose robustness when the
02
anatomical structure significantly differs from the existing atlas, and

due to the numerous registrations required, it can be extremely

time-consuming (19, 20).

Recently, since its introduction by Han in 2017 (21), the deep

learning method has proven to be much faster and more accurate

than the previously mentioned methods. Building on this study,

many studies explored sCT generation for head and neck or pelvis

(21–26). However, few studies investigated abdominal sCT due to

challenges such as organ motion and the presence of air bubbles,

which degrade MR images (27). Furthermore, existing studies for

synthetic CT generation for MR-Linac systems have predominantly

utilized convolutional neural networks (CNNs), which, despite their

effectiveness, often fall short in capturing the complex dynamics of

abdominal anatomy (28–30). Transformer, initially applied in

natural language processing, was introduced to computer vision

as the Vision Transformer (ViT) (31, 32). ViT successfully

overcame the limitations of CNNs, which were widely used in the

medical image field, by capturing strong correlations among global

features of an image through the multi-headed self-attention

mechanism (31). Transformer-based networks for synthetic CT

generation across various modalities were reported superiority than

CNN (33–35).

This study introduces a novel approach for generating

abdominal sCT for MR-only radiotherapy. First, this method

integrates the Shifted Window U-net Transformer (Swin-

UNETR) with an unsupervised cycle generative adversarial

network (cycle-GAN). Unlike conventional methods that rely

solely on CNNs structures, our approach leverages the strengths

of both transformers and u-net in capturing detailed anatomical

features and global context. Second, we applied a structure-

conserving loss to maintain geometric consistency between the

MR and sCT images. We employed the modality independent

neighborhood descriptor (MIND) loss to extract geometric

features that are consistent across different modalities (36). The

aim of this study is to assess the feasibility and performance of this

hybrid model with structure conserving loss in improving sCT

quality and accuracy, particularly in the challenging abdominal

region (36–39).
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2 Materials and Methods

2.1 Patient data characteristics

Table 1 describes the characteristics of the MR and CT images

used in this study. We collected 120 abdominal cancer patients who

underwent radiotherapy using Elekta Unity between September 2,

2021, and June 1, 2023, including their T2 MR and CT images. The

CT images were scanned with the SOMATOM Definition AS

(Siemens Healthcare, Erlangen, Germany). The MR images were

scanned using the Ingenia 1.5T MR (Philips, Amsterdam,

Netherlands) integrated in Unity (Elekta, Stockholm, Sweden).

The range of patients age was 31 to 91. The range of volume size

for MR images was (480 – 800) × (480 – 800) × (250 – 300), and for

CT images was 512 × 512 × (117 – 543).
2.2 Data preprocessing for CT and MR

Deformable registration was performed using Python 3.9 and

Simple-ITK. All images were normalized to have a size of 256 × 256

and a resolution of 0.83 × 0.83 mm2. The intensity of MR images

was normalized using histogram matching. For CT images, the

Hounsfield unit (HU) values were clipped to the range from -1024

to 3071 HU. The largest connected component within the CT image

were identified, and an algorithm creating a body mask through

binary processing was used to remove external structures. After

removing external structures from the images, all patients were

aligned based on the coordinates of the spine. The datasets were

split into 80, 20, 20 for training, validation, and testing, respectively.
2.3 Training details of proposed sCT

2.3.1 Baseline architecture
The overall architecture is illustrated in Figure 1. This study

utilized the cycle-GAN (39) comprised of two generators, which

produce CT and MR images, respectively. Additionally, there are two

Discriminators, which discriminate between generated and planning

CT and MR images. Both sets, are trained in a competitive manner.

The primary goal of CT generator is to generate sCT images that are

indistinguishable from real ones. Conversely, CT discriminator aims

to discern whether a given image is genuine or artificially created. The
Frontiers in Oncology 03
generator and discriminator of MR operate under similar principles.

The network hyperparameters for training the generator and

discriminator are as follows. The input size for the model was set

to 256 × 256 pixels to standardize the resolution of the data. Training

was conducted over a total of 100 epochs, using the Adam optimizer

with a learning rate of 0.0001. The learning rate was gradually

reduced in a linear manner from 30th epochs until it reached zero

at the end of final epoch.
2.3.2 Modified generator network of cycle-GAN
Figure 2 depicted architecture of the modified generator used in

this study. Recently, Swin-UNETR has gained prominence in

medical image segmentation tasks, achieving state-of-the-art

results on datasets such as the Medical Decathlon and the Multi-

Atlas Labeling Beyond the Cranial Vault segmentation challenge

(37). For this study, a modified Swin-UNETR was employed as the

primary generator network, tailored for 2D operations. To enhance

feature extraction, a 7 × 7 convolutional layer was added both before

and after the main Swin-UNETR network.
2.3.3 Loss functions
Cycle-GAN, being unsupervised learning, lacks a direct ground-

truth, rendering one-to-one mapping unfeasible. To overcome this

limitation, the following loss functions are incorporated as

proposed by Zhu et al. (39).

1) The adversarial loss employed is the least square loss. The

goal of discriminator is to classify real images as 1 and fake images

as 0, whereas the objective of generator is to make discriminator

classify the generated images as Equation 1. The loss functions to be

minimized for generator and discriminator are as follows:

LGMR−CT
= lG((DCT (GMR−CT (MR)) − 1)2)

LDCT
= lD((DCT (GCT (MR)))2 + (DCT (CT) − 1)2)   +  

(1)

LGCT−MR
=   lG(DMR(GCT−MR(CT)) − 1)2

LDMR
= lD((DMR(GMR(CT)))

2 + (DMR(MR) − 1)2)
(2)

GMR−CT ,GCT−MR,DCT ,DMR re fer to CT generator , MR

generator, CT discriminator, and MR discriminator, respectively.

2) The definition of cycle consistency loss is to compare the

image reconstructed back to the original domain from the synthetic

image with the real input image using the L1 loss. The equation is as

follows:

LcycleMR
= lcycle MR − GCT−MR GMR−CT (MR)ð Þk k1

LcycleCT = lcycle CT − GMR−CT GCT−MR(CT)ð Þk k1
(3)

3) Identity loss in cycle-GAN measures how well the generator

preserves the original image’s features when transforming images

within the same domain. It ensures that when an image is processed

by its corresponding generator, the resulting output image remains

similar to the input. This similarity is quantified using the L1 loss:

LidtCT = lidt CT − GMR−CT (CT))k k1
LidtMR

= lidt MR − GCT−MR(MR))k k1
(4)
TABLE 1 Data characteristics of magnetic resonance (MR) and
computed tomography (CT) images.

MR CT

Number of patients 120 120

System Ingenia 1.5T SOMATOM Definition AS

Mean volume size 800 × 800 × 250 512 × 512 × 203

Mean resolution (mm3) 1.02 × 1.02 × 2.60 0.57 × 0.57 × 1.19

Sequence T2 3D Tra 5min -
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values for lD, lG, lcycle, and lidtwere set to 0.5, 1, 10 and

5, respectively.

2.3.4 Structure Conserving Loss function
This task involves performing style transformation while

preserving the geometric structure between MR and sCT. In the

abdominal region, obtaining paired data is often challenging, and

since this study is conducted using unsupervised learning, there is

no explicit constraint between MR (input) and sCT (output). To

increase the geometric consistency between the input image and the

target image, Modality Independent Neighborhood (MIND) loss

was applied (36). This method has been shown to improve

performance in generating Head and Neck sCT (40). MIND
Frontiers in Oncology 04
compares local image structures instead of intensity-based

comparisons. MIND for an image I is defined as follows (36).

MIND(I,   x,   r) =
1
n
exp −

Dp(I,   x,  x + r)

V(I,  x)

� �
(5)

Dp(I,   x, x + r) = o
p∈P

(I(x + p) − I(x + r + p))2 (6)

V(I,   x) =
1
N o

n∈N
Dp(I, x,  x + n) (7)

Here, N is the number of pixels surrounding pixel x, which was

set to 8. Dp represents the distance between patches, and V is the
FIGURE 1

Two distinct cycles include generating synthetic CT (sCT) images and synthetic MR (sMR) images. Each cycle performed a series of transformations
between the MR and CT domains to ensure bidirectional synthesis and consistency. In the testing phase, the trained MR-to-CT generator was used
to produce synthetic CT images.
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mean of the distances of the N neighboring patches. Direct

computation of Dp is computationally expensive; thus, it was

implemented using convolution operations as follows.

DP(I,   x,   x + a) = C ∗ (I − I0(a)) (8)

C is a kernel with all weights set to 1 and the same size as P, and

I0(a) is the image I translated by a. This operation simplifies the
Frontiers in Oncology 05
calculation of the derivative. A visual example of MIND features is

depicted in Figure 3.

Structure conserving loss that employing MIND is defined as

follows:

LmindsCT = MIND(MR) −MIND GMR−CT (MR)ð Þk k1
LmindsMR

= MIND(CT) −MIND GCT−MR(CT)ð Þk k1
(9)
FIGURE 3

Illustration of the magnetic resonance (MR), synthetic computed tomography (CT), and modality independent neighborhood (MIND) features of
them. First row presents real MR image and MIND features in three different positions (A-C). Second row depicts sCT image and MIND features in
same positions as MR image.
FIGURE 2

Illustration of proposed generator architecture. The model begins with a convolutional layer for input image processing, followed by Swin transformer
blocks that enhance feature extraction. The features are then merged and passed through the encoder-decoder pathway to reconstruct synthetic images.
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2.3.5 Total Loss
GMR−CT and GCT−MR were ultimately trained to minimize the

follows:

LsCT = LGMR−CT
+ LcycleMR   + LidtCT + LmindsCT

LsMR = LGCT−MR
+ LcycleCT   + LidtMR

+ LmindsMR

(10)

The CT discriminator and MR discriminator were trained to

minimize LDCT
and LDMR

as presented in (1).
2.4 Evaluation of proposed method

2.4.1 Image quality
The similarity between the sCT and planning CT images was

quantitatively evaluated using commonly used metrics: mean

absolute error (MAE), peak signal-to-noise ratio (PSNR), and the

structural similarity measure index (SSIM). MAE provides an

overall difference by comparing the voxel-wise value between the

sCT and planning CT, and its value decreases as the image gets

closer to the real one. PSNR is an indicator that measures the

amount of noise in the sCT relative to the planning CT signal, with

a higher value indicating better image quality. SSIM compares

luminance, contrast, and structure between planning CT and sCT

images. It produces a value between 0 and 1, with values closer to 1

indicating better similarity and image quality. Additionally, the

histogram of intensity for CT and sCT images were compared using

the Kullback-Leibler (KL) divergence (41). KL divergence measures

the difference between two distributions, quantifying howmuch one

distribution diverges from the other. A lower KL divergence implies

that the those have similar distribution. Image metrics were

calculated only within the external mask of the planning CT

mask. Wilcoxon rank-sum test was used for statistical analysis

(42). To qualitatively evaluate the sCT images, two certified

radiation oncologists from authors’ institution rated the images

using a 5-grade scale.

2.4.2 Dosimetric evaluation of synthetic CTs
For each of the 20 test patients, dose calculations on sCT were

performed using the same clinical plan applied to the planning CT,

utilizing the Monte Carlo algorithm in the treatment planning

system MONACO 5.51.11 (Elekta, Stockholm, Sweden) for Unity.

The dose grid resolution was 2.0 × 2.0 × 2.0 mm3, and the statistical

uncertainty per calculation was 1%. For dosimetric evaluation,

gamma analysis was conducted between the dose distributions

based on planning CT and sCT (43). The delivery quality

assurance (DQA) criteria of authors’ institution was local gamma

analysis with a 3%/3 mm, 10% dose threshold. Additionally, we

conducted 1%/1 mm, 2%/2 mm, and 3%/3 mm gamma analysis for

further evaluation, with the same dose threshold. To investigate the

impact of anatomical differences between CT and MR on dose

distribution, the 20 cases were divided into two groups: 10 for

Group 1, where MR and CT showed good anatomical alignment,

and 10 for Group 2, with less anatomical alignment. Subsequently,

gamma analysis was conducted for each group, followed by a

comparison of intensity distributions utilizing KL divergence.
Frontiers in Oncology 06
Additionally, for 10 patients with same organ-at-risks (OARs),

planning target volume (PTV) and gross tumor volume (GTV)

the average dose volume histogram (DVH) differences for each

structure were calculated and evaluated. The OARs, PTV and GTV

delineated on the planning CT by a certified radiation oncologist

were rigidly copied to the sCT for assessment.

2.4.3 Ablation study
Ablative study was performed for structure-conserving loss and

generator. The comparisons were made between the baseline

(original cycle-GAN), Swin only (modify cycle-GAN generator as

Swin-UNETR), MIND only (cycle-GAN with MIND loss), and the

proposed method (modify generator and use MIND loss).
3 Results

3.1 Image quality

Figure 4 compared scanned MR, scanned CT, and generated

sCT images of various methods. The proposed model produced sCT

images with greater geometric consistency relative to the MR image

and improved texture homogeneity with the planning CT image,

especially in regions such as the kidney. The MAE, PSNR, and SSIM

of proposed method were highest than other methods. Table 2

indicates that applying Swin-UNETR and MIND loss individually

did not result in statistically significant differences compared to the

baseline. However, the combination of both methods led to

statistically significant improvements in MAE and PSNR. The

SSIM values were better with the proposed method, although the

differences were not statistically significant. The KL divergence

between the intensity histograms of CT and sCT demonstrated

statistically significant differences from the baseline sCT across all

cases: when using the proposed method, applying only Swin-

UNETR, and applying only MIND loss. Figure 5 depicted the

histograms of MR, CT, and generated sCT images from various

methods. Table 3 presents the results of the qualitative evaluation of

each sCT, conducted by two certified radiation oncologists.
3.2 Dose evaluation

Dosimetric evaluation was performed by comparing dose

distribution of the planning CT and sCT generation methods.

Table 4 describes the results of local and global gamma analysis

for 20 patients based on a 10% threshold, conducted at 1%/1 mm,

2%/2 mm, and 3%/3 mm criteria.

Figures 6 and 7 presents the relative DVH differences for the

same OARs and GTV structures in 10 patients. The proposed

method demonstrated a relative DVH difference within 5%

compared to the planning CT, except for the spinal cord and

stomach. This indicates that the dose distributions based on sCT

from the proposed method closely matched those from the

planning CT-based clinical plans, showing high consistency in

dosimetric accuracy across various structures.
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Figure 8 presents a comparison of dose distributions for (A)

Real planning CT, (B) Proposed sCT, (C) Swin only sCT, (D)

MIND only sCT, and (E) Baseline sCT methods. The figure shows

the axial slices of the dose distribution with overlaid contour lines

for critical structures and the target region.

Table 5 illustrates the impact of anatomical differences on dose

distribution. In local gamma analysis, no statistically significant

differences were found between the two groups at the 3%/3 mm and

2%/2 mm criteria. However, in global gamma analysis, statistically

significant differences were observed at the 3%/3 mm and 2%/2 mm

levels, except for the baseline sCT. Figure 9 provides a qualitative

comparison of dose distribution differences related to anatomical

variation. In contrast, as illustrated in Table 6, there was no

statistically significant difference between the two groups in the

comparison of KL divergence results.
4 Discussion

In this study, we developed sCT generation from MR images of

abdominal cancer patients using the unpaired data from 1.5 T MR-
Frontiers in Oncology 07
Linac. The primary task is image translation process that transforms

style while preserving the content of MR images. However, image

synthesis in abdominal region is often challenging than other body

parts due to anatomical changes such as peristalsis and intestinal

gas. To reduce anatomical difference, minimizing the time interval

between the CT and MR scans are crucial. However, this study

utilized retrospective data, and due to the predefined clinical

protocol, it is procedurally challenging to acquire additional data

beyond this framework. As shown in Figure 10, we conducted

deformable registration as a preliminary step to mitigate anatomical

differences between CT and MR.

This study focuses on stabilizing GAN training, addressing

challenges of training instability and optimization difficulties in

both the generator and discriminator (44). To achieve this, we

employed the Adam optimizer with a learning rate of 0.0001,

maintaining for the first 30 epochs. Subsequently, the learning

rate was linearly decayed over the remaining 70 epochs. These

configurations were designed to ensure smoother convergence

during training. Additionally, patient data varied considerably in

shape, resolution, and setup which could adversely affect the

stability of cycle-GAN. To address this, we aligned the back
TABLE 2 Mean ± standard deviation of MAE, PSNR, SSIM and KL divergence for synthetic CT images compared to planning CT images.

MAE (HU) ↓ PSNR (dB) ↑ SSIM↑ KL divergence ↓

Proposed 79.5 ± 11.7* 27.1 ± 0.1* 0.845 ± 0.034 0.230 ± 0.070*

Swin only 83.6 ± 9.7 26.4 ± 0.8 0.832 ± 0.031 0.225 ± 0.053*

MIND only 80.5 ± 11.3 26.9 ± 1.0 0.841 ± 0.033 0.339 ± 0.090*

Baseline 86.1 ± 11.5 26.4 ± 0.9 0.828 ± 0.034 0.448 ± 0.070
Asterisks denote the statistically significant difference of metrics between proposed and the baseline method.(p-value < 0.05; Wilcoxon rank sum test). Bold values indicate the best values.
FIGURE 4

Comparison of computed tomography (CT) images as follows: (A) real MR, (B) real planning CT, sCT images generated by (C) proposed method,
(D) Swin only, (E) MIND only, and (F) baseline models. The first and second row depict images and mean absolute error (MAE) with planning CT. The
third and fourth row illustrate magnified right kidney (indicated by yellow square box) and MAE with planning CT. Red arrows highlighted the
anatomical differences.
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positions of all patients based on the head-first supine position.

Additionally, deformable registration was performed to enhance

geometric correspondence between MR and planning CT images, as

demonstrated in Figure 10. These preprocessing steps were crucial

in improving the stability and reliability of our GAN-based

approach, allowing network to focus on specific features while

maintaining consistency in other aspects of the data.

Effective utilization of both global and local features was made

using Swin-UNETR as a generator. Swin-UNETR combines the

transformer structure of UNETR, which integrates a transformer

into the traditional U-Net, with the Swin transformer (37, 38, 45).

The Swin transformer extract both global and local features by

leveraging both global and local attention (32, 45). Especially, as

shown in Figure 4, applying Swin-UNETR as a generator

maintained MR content in sCT images. Additionally, in the

histogram analysis of MR, planning CT, and sCTs generated by

each method in Figure 5, the proposed method qualitatively
Frontiers in Oncology 08
demonstrates successful style transformation between MR and

planning CT.

Additionally, we employed MIND loss to further preserve

structure since Kieselmann et al. (46) reported that cycle-GAN

alone can result in subtle differences between MR and sCT. This is

particularly important for this study since abdominal MR and CT

often exhibit anatomical discrepancies due to factors such as

imaging modality and peristalsis. While deformable registration

can partially alleviate, it was challenging to mitigate them entirely

(47). Therefore, it is necessary to utilize constraints on the

geometric information between the input and output. MIND

utilizes features extracted independently from MR and sCT

intensities as in Figure 3, allowing direct structural comparison

between MR and sCT (36). This method was previously applied in

generating head and neck synthetic CTs using cycle-GAN and

demonstrated better performance compared to when MIND loss

was not applied (40). The proposed method showed a slight

improvement in gamma analysis and DVH difference.

Specifically, Figure 7 indicates that the use of a Transformer

structure helped in mitigating outliers, enhancing the overall

robustness of the generated sCT images, leading to statistically

significant improvements in image quality.

There are several related studies of sCT for MR-only

radiotherapy. Cusumano et al. (28) utilized a conditional GAN

(cGAN) on 20 test patients. They evaluated the image metrics using

MAE and mean error (ME), achieving an MAE of 78.71 HU in the

abdominal body region and an ME of 10.83 HU. In the dose

evaluation, they achieved a gamma passing rate of 99% under the
TABLE 3 Results of the qualitative evaluation of sCTs generated by
each method.

Proposed Swin-only MIND-only Baseline

Expert 1 2.85 ± 0.85 2.15 ± 0.85 2.50 ± 0.74 2.65 ± 0.79

Expert 2 3.30 ± 1.14 2.95 ± 1.07 3.25 ± 1.13 3.15 ± 1.11

Total 3.08 ± 1.03 2.55 ± 1.05 2.88 ± 1.03 2.90 ± 0.99
Certified radiation oncologists assessed the images using a grade scale ranging from 1 (very
bad) to 5 (very good). The results are presented as the mean ± standard deviation of the scores.
FIGURE 5

Histogram analysis of MR, CT, and sCT generated by each method. The sCT histogram generally aligns with the CT histogram, differing from the MR,
indicating that style transformation has been effectively achieved.
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2%/2 mm criteria and the mean dose difference in the PTV was

-0.28%. Fu et al. (48) employed both cGAN and cycle-GAN

networks, validating their results using leave-one-out cross-

validation on 12 abdominal tumor patients. They evaluated the

image metrics using MAE and PSNR, with the cGAN achieving an

MAE of 89.8 HU and a PSNR of 27.4 dB, while the cycle-GAN
Frontiers in Oncology 09
achieved an MAE of 94.1 HU and a PSNR of 27.2 dB. In the dose

evaluation, both cGAN and cycle-GAN achieved a gamma passing

rate of 99% under the 3%/3 mm criteria and the mean dose

difference in the PTV was -0.17%. The MAE values of proposed

method (79.5 ± 11.7 HU) were comparable to those in Cusumano

et al. (28) and slightly higher than the 89.8 ± 18.7 HU reported by

Fu et al. (48). However, the gamma passing rates were not as high as

the 99.8 ± 0.2% reported by Cusumano et al. or the 99.5 ± 0.7% Fu

et al. (28) (48)There are several possible reasons for the differences.

First, the regional difference between MAE and dose calculation.

While the MAE was calculated within the patient body, dose

calculation was conducted in relatively smaller regions than MAE

due to dose thresholding. Second, MR imaging sequence. The

previous studies predominantly utilized breath-hold MR images

(28, 30, 48). In contrast, this study employed free-breathing MR

images without breath-hold which includes more artifacts. Despite

of this, our results demonstrate a comparable quantitative results.

Lastly, local gamma pass ratio. This study utilized local gamma

analysis, providing a stricter assessment of geometric alignment and

intensity consistency compared to the conventional global gamma

analysis (49).

In the case of DVH difference, 5% is generally considered as the

action level according to the TG-119 report and TG-218 report (50,

51). However, to the best of the authors’ knowledge, no specific

guidelines for acceptable differences between calculation methods

are clearly defined. Therefore, in this study, the dose criteria were

referenced for different treatment plans for each patient, and

Figure 6 shows that the synthetic CT satisfies the dose criteria

used in the planning CT. This judgement is informed by radiation

oncologists’ and physicists’ expertise, clinical experience, and the

specific anatomical and functional considerations relevant to each

case. Thus, the observed differences in DVH values are interpreted

within the context of these patient-specific clinical priorities,

allowing for variability in assessment depending on the unique

circumstances of each treatment plan. Furthermore, as illustrated in

Figure 7, the proposed method demonstrated robust performance,

with differences within 5% for PTV and OAR overall except

stomach and GTV. The mean dose differences were -0.09 ±

1.16%, -2.10 ± 2.96%, -0.98 ± 1.40%, and -0.02 ± 1.10 for

Proposed, Swin-only, MIND-only, and baseline, respectively, in

the PTV; -0.38 ± 1.20%, -2.46 ± 3.37%, -1.31 ± 1.68%, and -0.30 ±

1.28% in the GTV; and 0.58 ± 2.99%, -1.28 ± 3.59%, -0.87 ± 2.95%,

and -0.04 ± 3.44% in the duodenum. One case in the stomach

showed an outlier for all methods. This was attributed to the

limitations of the unpaired dataset, where a high signal in the CT

intestine resulted in a dose discrepancy in the stomach.

In this study, we referred to the manufacturer ’s

recommendations for acceptable gamma passing rates due to the

lack of specific criteria for gamma passing rates among calculations.

They recommend a gamma criterion of 3%/3mm with a 10%

threshold and global gamma analysis for delivery quality

assurance, noting that a passing rate above 95% is considered

acceptable under these criteria (52). Under the 3%/3mm criterion

with global gamma analysis, we achieved a gamma passing rate of
TABLE 4 Results of local and global gamma analysis for dose
distribution obtained from proposed, Swin only, MIND only, and
baseline sCT.

Gamma
passing rate

p-value

Local gamma analysis (3%/3 mm)

Proposed 0.974 ± 0.012 -

Swin only 0.970 ± 0.013 0.43

MIND only 0.976 ± 0.011 0.32

Baseline 0.975 ± 0.013 0.53

Global gamma analysis (3%/3 mm)

Proposed 0.989 ± 0.008 –

Swin only 0.988 ± 0.008 0.70

MIND only 0.991 ± 0.007 0.59

Baseline 0.990 ± 0.009 0.63

Local gamma analysis (2%/2 mm)

Proposed 0.923 ± 0.027 –

Swin only 0.915 ± 0.029 0.37

MIND only 0.928 ± 0.027 0.47

Baseline 0.925 ± 0.029 0.73

Global gamma analysis (2%/2 mm)

Proposed 0.971 ± 0.027 –

Swin only 0.967 ± 0.018 0.48

MIND only 0.974 ± 0.015 0.34

Baseline 0.972 ± 0.018 0.50

Local gamma analysis (1%/1 mm)

Proposed 0.727 ± 0.064 –

Swin only 0.716 ± 0.065 0.53

MIND only 0.739 ± 0.067 0.47

Baseline 0.731 ± 0.066 0.79

Global gamma analysis (1%/1 mm)

Proposed 0.861 ± 0.059 –

Swin only 0.850 ± 0.062 0.50

MIND only 0.870 ± 0.060 0.47

Baseline 0.864 ± 0.061 0.68
Best value highlighted in bold. The p-values between the proposed method and the other
methods were listed in the table.
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99%, exceeding the 95% threshold typically used for comparing

calculations and measurements. In our study, the gamma passing

rates for global gamma analysis were as follows: 86.1 ± 5.9% for 1%/

1mm, 97.1 ± 2.7% for 2%/2mm, and 98.9 ± 0.8% for 3%/3mm.

These results showed consistency with previous studies, even
Frontiers in Oncology 10
though our studies employed free-breathing abdominal MR

which have more artifacts. For example, Olberg et al. (30)

reported a gamma passing rate of 98.3% ± 1.3% for the 3%/3mm

criterion. Similarly, Fu et al. (48) demonstrated passing rates of

98.5% ± 2.8% for 2%/2mm and 99.5% ± 0.7% for 3%/3mm.
FIGURE 6

Comparison of dose volume histograms (DVH) for 2 cases, showing the comparison of the proposed method, Swin only, MIND only and baseline
sCT and planning CT (solid lines) against the planning CT for the same OARs and each PTV. The PTV dosimetric criteria for Case 1 were V4.75Gy >
95%. The V4.75Gy in real CT was 99.20%, while the values in Proposed, Swin-only, MIND only, and Baseline were 99.25%, 99.43%, 99.38%, and 99.11%,
respectively. In Case 2, with the same criteria, the V4.75Gy in real CT was 98.91%, while the values in Proposed, Swin-only, MIND only, and Baseline
were 98.09%, 99.11%, 98.82%, and 98.31%, respectively.
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FIGURE 7

Relative dose volume histogram (DVH) differences for the PTV, GTV and organ-at-risks across the 10 patients. The DVH from proposed method had
less than 5% average differences for all structures except the spinal cord and stomach.
FIGURE 8

Comparison of dose distributions for magnetic resonance (MR), computed tomography (CT), and synthetic CT (sCT) images for three subjects (A–C).
Each subpanel includes an overlay of dose distribution on the images in first row and the dose differences in the second row.
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TABLE 5 Gamma passing rates for Group 1 (CT and MR with good anatomical alignment) and Group 2 (CT and MR with poor anatomical alignment),
with p-values indicating differences between the groups.

Group 1
Gamma passing rate

Group 2
Gamma passing rate

p-value

Local gamma analysis (3%/3 mm)

Proposed 0.976 ± 0.011 0.971 ± 0.012 0.29

Swin only 0.973 ± 0.012 0.967 ± 0.013 0.29

MIND only 0.978 ± 0.011 0.974 ± 0.010 0.26

Baseline 0.978 ± 0.012 0.972 ± 0.013 0.26

Global gamma analysis (3%/3 mm)

Proposed 0.993 ± 0.006 0.986 ± 0.008 0.04

Swin only 0.992 ± 0.006 0.984 ± 0.008 0.03

MIND only 0.994 ± 0.006 0.988 ± 0.007 0.04

Baseline 0.994 ± 0.006 0.987 ± 0.008 < 0.05

Local gamma analysis (2%/2 mm)

Proposed 0.924 ± 0.028 0.921 ± 0.026 0.55

Swin only 0.918 ± 0.029 0.913 ± 0.029 0.50

MIND only 0.929 ± 0.027 0.927 ± 0.026 0.65

Baseline 0.927 ± 0.029 0.922 ± 0.029 0.45

Global gamma analysis (2%/2 mm)

Proposed 0.978 ± 0.013 0.963 ± 0.017 0.04

Swin only 0.975 ± 0.014 0.959 ± 0.018 < 0.05

MIND only 0.981 ± 0.012 0.967 ± 0.015 < 0.05

Baseline 0.980 ± 0.013 0.964 ± 0.018 0.07
F
rontiers in Oncology
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Statistically significant results are highlighted in bold.
FIGURE 9

Visualization of dose differences according to anatomical structures. (A) shows a slice with relatively minor anatomical differences between CT and
MR (Group 1), while (B) depicts a slice with more significant differences (Group 2). In (B), distinct dose differences can be observed between the real
CT and sCT due to differences in gas structures.
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Cusumano et al. (28) reported gamma passing rates of 90.8% ±

4.5%, 98.7% ± 1.1%, and 99.8% ± 0.2% for 1%/1mm, 2%/2mm, and

3%/3mm, respectively. However, they did not specify their gamma

analysis global or local.
Frontiers in Oncology 13
Although proposed method successfully generated sCT, there

are few limitations. First, uncertainties of evaluation between sCT

and CT. Since MR images are not scanned immediately after the

planning CT, there are inherent geometric discrepancies between

the sCT generated from online MR and the planning CT (22).

Those anatomical discrepancies including intestinal gas and weight

change result in inaccurate evaluation of image and dosimetric

evaluations. Figure 9 and Table 5 demonstrates the dose differences

attributable to anatomical discrepancies between MR and CT, but

Table 6, which compares the intensity distributions of the images,

shows no statistically significant differences between groups 1 and 2.

Second, artifacts in the MR images limited the quality of the sCT.

The MR data used in this study were online MR images captured

during abdominal treatment with Unity. However, artifacts caused

by respiratory and organ movements were still present, and the

kidneys were not well distinguished from surrounding organs in the
TABLE 6 KL divergence for Group 1 (CT and MR with good anatomical
alignment) and Group 2 (CT and MR with poor anatomical alignment),
with p-values indicating differences between the groups.

Group 1
KL divergence

Group 2
KL divergence

p-value

Proposed 0.231 ± 0.089 0.229 ± 0.044 0.33

Swin only 0.225 ± 0.067 0.225 ± 0.034 0.13

MIND only 0.343 ± 0.093 0.335 ± 0.086 0.82

Baseline 0.430 ± 0.058 0.466 ± 0.075 0.23
FIGURE 10

The anatomical differences between CT and MR, and between CT and deformed MR, are shown. (A, B) display axial views, while (C, D) show coronal views,
illustrating that anatomical differences with CT are reduced when deformation is applied to the MR compared to the original MR. The yellow arrows indicate
alignment of internal gas structures between CT and MR after deformable registration, while the red arrows show approximate alignment of the body
external contour between CT and MR. However, the blue arrows highlight regions where intestinal gas structures still do not align between CT and MR.
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MR images. These limitations in the input MR conditions resulted

in a decrease in the overall quality of the sCT. These artifacts could

be mitigated by breathing considered sequences (e.g., shallow

breathing, breath holding) or using software-based corrections

(53–56). Lastly, while the proposed method’s sCT showed the

best results in terms of image metrics and qualitative comparison,

there were no statistically significant differences in gamma passing

rates compared to the other methods. Although correlation between

the MAE and the gamma passing rate was reported, unpaired

dataset and different calculation region between MAE and gamma

pass ratio due to the dose thresholding, the correlation between

gamma pass rate and MAE could be weaker (57). Similarly, in the

comparison of cGAN and cycle-GAN conducted by Fu et al. (48),

the MAE values were 89.8 ± 18.7 HU and 94.1 ± 30.0 HU,

respectively, while the 3%/3 mm gamma analysis with a 30% dose

threshold showed passing rates of 99.5 ± 0.8% and 99.5 ±

0.7%, respectively.
5 Conclusion

This study proposed the generation of sCT images from MR

images obtained from 1.5T MR-Linacs using cycle-GAN. By

modifying the generator to Swin-UNETR and incorporating a

structure-conserving loss, proposed method was able to enhance

both image quality and dosimetric accuracy for abdominal cancer

patients. An ablation study demonstrated that the proposed method

improves geometric consistency and texture homogeneity of sCT

images compared to other models. This study underscores the

importance of considering both local and global features, and

structure preservation for sCT.
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