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lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that

modulate various cellular processes, such as proliferation, differentiation,

migration, invasion, and apoptosis, via different mechanisms. An increasing

amount of research indicates that abnormal expression of lncRNA influences

the development of drug resistance as well as the genesis and advancement of

cancer, including melanoma. Furthermore, they are attractive biomarkers for

non-invasive cancer diagnostics due to their strongly modulated expression and

improved tissue and disease specificity. This review offers a succinct overview of

the present understanding concerning the potential diagnostic biomarker

potential of lncRNAs in melanoma. Cell death occurs frequently during growth

and throughout life and is an active, organized, and genetically determined

process. It is essential for the regulation of homeostasis. Controlled cell death

and non-programmed cell death are both forms of cell death. The most

prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy,

necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are

less common forms of cell death compared to necrosis, apoptosis, and

necroptosis. ncRNAs are regulatory RNA molecules that are not involved in

encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs,

and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to

modulate tumor cell autophagy, pyroptosis, and ferroptosis at the

transcriptional or post-transcriptional stage, as well as function as oncogenes

and tumor suppressor genes, which can have considerable effects on the

incidence and growth of tumors. This review concentrated on the recent

advancements in the research of the diagnostic and therapeutic functions of

ncRNAs in the regulation of programmed cell death in melanoma.
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Introduction

Melanoma is the deadliest and utmost severe kind of skin

malignancy. It has a low prognosis and comes from melanocytes

(1, 2). Melanoma can be classified into four subgroups based on

molecular features and clinical aspects: mucosal melanoma, acral

melanoma, cutaneous melanoma deprived of chronic sun

impairment, and cutaneous melanoma with chronic sun impairment

(3, 4). The most common kinds of melanoma in white individuals are

non-acral cutaneous melanomas while acral as well as mucosal

melanomas are far less common, occurring in only 1% and 5% of

cases, respectively (5, 6). It is well-established that acral and mucosal

melanomas aremore common in Asian populations compared to other

melanoma subtypes, but the exact percentage can vary depending on

the study, as one study reported about 70% (7).

The prevalence of melanoma is rising at a rate of 5% annually,

according to recent statistics (8). Even though it only makes up 10% of

skin cancers, up to 80% of them are fatal (9). The primary causes of the

high death rate are the enhanced degree of malignancy, rapid

progression, and the unsatisfactory nature of current therapies for

melanoma. Patients may experience both local lymph nodes and

distant organ metastases in the early stages. Clinically, melanoma can

be identified and treated in a variety of ways. The most effective

treatment methods at present are lymph node dissection, larger

resection, and prompt detection (10). The outlook is low with a 5-

year survival rate (< 20%) because an enormous proportion of persons

have metastasized at the interval of identification (8). However, some
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patients have benefited significantly in the past years from the medical

use of targeted and immunotherapy, particularly from targeted

treatments like BRAF (B-Raf proto-oncogene, serine/threonine

kinase; vemurafenib) as well as mitogen-activated protein kinase

kinase (MEK) (trametinib) inhibiting agents (11–13). On the other

hand, because of the subtype bias, over 50% of Asian patients cannot

advantage from targeted treatment for c-Kit and BRAF. Furthermore,

overall c-Kit and BRAF mutation frequencies are approximately 10.8%

and 25.5%, respectively, because of this cohort’s poor tumor gene

mutation burden (14, 15). Furthermore, clinical research has revealed

that immunotherapy employing anti-programmed cell death 1 (PD1)

or anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4)

antibodies offers significant medical advantages to several melanoma-

diseased persons, while medication confrontation persists (16–18).

Therefore, finding novel anti-tumor targets and melanoma-specific

markers is significant in the domain of melanoma investigation.

Numerous reports have demonstrated that lncRNAs are significant

in the growth and progression of cancer. Tumor cell proliferation,

metastasis, EMT, stemness, angiogenesis, chemotherapy resistance, and

tumor microenvironment modulation are among the biological

processes in which they are implicated (Figure 1).

ncRNAs represent a set of RNA that do not code for proteins; they

make up 98% of the human genome and are primarily classified as

miRNAs, lncRNAs, as well as circRNAs (20). Although ncRNAs are

not tangled in encoding proteins, they are essential for cell growth and

metabolism and have the ability to modulate physiological functions

like protein translation, RNA transcription, and DNA replication.
FIGURE 1

The function of lncRNAs in the development of cancer. Ultimately, the dysregulation of lncRNAs in melanoma cells regulates tumor progression by
targeting multiple genes and affecting tumor cell proliferation, chemoresistance, stemness, angiogenesis, invasion, and migration. Reproduced with
permission from (19).
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Their role as proto-oncogenes or tumor suppressor genes is crucial to

modulate the occurrence and propagation of malignancies (21–24).

Investigating the function of various ncRNAs in controlling the growth,

metastasis, recurrence, angiogenesis, and migration of cancers has been

the subject of more research in recent years, particularly in the context

of melanoma (25, 26). In this report, current research on the function

of circRNAs, lncRNAs, and miRNAs in melanoma is extensively

discussed. Furthermore, a summary of the existing understanding of

the connection between ncRNAs and melanoma in addition to

discussing the significance and potential of ncRNAs in the

identification as well as therapy of melanoma are discussed.
Biological attributes and role
of ncRNAs

Various reports have demonstrated that approximately 1.5% of the

nucleic acid sequences in the human genome are associated with

protein-coding (27–29). The remaining sequences are ncRNA, given

their lack of involvement in encoding proteins. This discovery is made

possible by the prompt establishment of next-generation sequencing

technology and the growth of human genomics (30). The ncRNAs

consist of competitive endogenous RNA (ceRNA), circRNA, lncRNA,

miRNA, transfer RNA (tRNA), and ribosomal RNA (rRNA).

Moreover, circRNA, lncRNA, and miRNA are among several

ncRNAs that have been extensively demonstrated to have significant

functions in the emergence as well as progression of tumors (31–33).

The miRNAs, measuring approximately 18 –24 nt in length, represent
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a category of endogenous non-coding small RNAs. A large portion of

miRNAs undergo transcription from introns or miRNA DNA. The

miRNA sequence undergoes transcription into the primary transcript

termed primarymiRNA (pri-miRNA), following that RNA polymerase

II caps and polyadenylates. Drosha then cuts the pri-miRNA in the

nucleus for producing a precursor miRNA (pre-miRNA). Following

that, the pre-miRNA is bound through ran-guanosine triphosphate

(GTP) and exportin 5, facilitating its transfer from the nucleus into the

cytoplasm. Pre-miRNA is broken down by Dicer into a developed,

double-stranded, about 22-nt miRNA/miRNA duplex in the

cytoplasm. Therefore, the RNA-induced silencing complex (RISC)

attaches to a double-stranded miRNA complex. Following the

complementary strand’s removal as well as degradation from the

RISC, functional miRNA is generated. Its main mechanism of action

is to form the miRISC complex by combining with RISC, and then it

selectively binds to the mRNA that codes for the protein. This process

either degrades the target mRNA or prevents it from being translated,

controlling post-transcriptional gene expression (Figure 2) (35–37).

A subset of ncRNAs featuring transcripts longer than 200 nt are

known as lncRNAs. They can function as a “molecular sponge,” by

competing with miRNAs, DNAs, or transcription factors to either up or

down-regulate the expression of target proteins. Transcriptional output

can be directly impacted by lncRNAs through their ability to either

attract or inhibit the binding of transcription factors and transcriptional

elements. Moreover, lncRNAs have a role in the nucleus’ post-

transcriptional control. For instance, lncRNAs can control certain

splicing patterns by interacting with the splicing equipment or with

nascent RNAs. LncRNAs can affect translational output in the
FIGURE 2

The route of miRNA biogenesis and miRNA in gene modulation. Reproduced with permission from (34).
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cytoplasm in a variety of manners. Firstly, they can influence the

internal ribosomal entry sites or modulate polysome loading to an

mRNAmolecule to control the translational rate. Furthermore, they can

govern the gene activity by either promoting or inhibiting mRNA

degradation (Figure 3) (38–40). The circRNAs represent a new group of

endogenous non-coding RNAs that lack a poly(A) tail at the 3′ end and
a 5′ end cap and instead have a unique covalent closed loop structure.

Various forms of circRNAs can be formed from introns or exons,

including intronic, exonic, and exon-intron circRNAs. Pre-mRNA

splicing produces the exonic circRNA. When the 3′ splice donor and
5′ splice acceptor are combined, the exonic circRNA is produced. The

resultant circular transcript is known as exon-intron circRNA when the

introns between the exons remain reserved. Intronic lariats, which are

resistant to being broken down by debranching enzymes, are capable of

producing intronic circRNAs. Their role as a miRNA sponge allows

them to control the ceRNA process, protein translation, alternative

splicing, and gene transcription (41–43).

Function of lncRNAs in tumor cell
mortality for tumorigenesis, growth,
and treatment

lncRNAs and autophagy

lncRNAs primarily play a role in autophagy and impact a variety

of cancers, including pancreatic cancer, prolactinoma, osteosarcoma,

OSCC, NPC, thyroid papillary carcinoma, PCa, ovarian malignancy,
Frontiers in Oncology 04
bladder cancer, NSCLC, HCC, hepatoma, chronic myelogenous

leukemia (CML), glioma, glioblastoma, breast cancer (BC), gastric

cancer, acute myelogenous leukemia (AML), CRC, and uveal

melanoma. For instance, uveal melanoma cells express the lncRNA

ZNF706 neighboring transcript 1 (ZNNT1) at a reduced extent.

ZNNT1 induces autophagy by enhancing the expression of ATG12,

which displays a tumor-inhibitory impact (44). One prominently

conserved self-degradation mechanism in eukaryotic cells which is

significant in controlling cell division, maturation, aging, and death is

autophagy. Autophagy sometimes contributes to cell death, a process

known as autophagic cell death. Lysosomes are used by autophagic

cells to break down macromolecules and impaired organelles to

preserve homeostasis. The cells initially produce a mono or bilayer

membrane, which matures into an autophagosome that resembles a

vesicle. This autophagosome combines with a lysosome to produce an

autolysosome, which causes the material inside to be broken down by

lysosomal hydrolase and the products to be recycled (45, 46).

Reduced expression of the lncRNA urothelial cancer-associated 1

(UCA1) prevents the growth and autophagy of CRC cells (47). EIF3J

divergent transcript (EIF3J-DT) is significantly upregulated in gastric

malignancy cells following exposure to chemotherapeutic medications.

EIF3J-DT selectively modulates the levels of ATG14, resulting in the

stimulation of autophagy, and thereby inducing medication resilience

in gastric malignancy cells (48). LN18 and U138 cell lines contain the

lncRNA growth arrest-specific 5 (GAS5), which improves cisplatin

susceptibility by triggering mTOR signaling, thereby preventing

autophagy (49). Glioma cells have increased levels of tumor protein

translation regulator 1 antisense RNA 1 (TPT1-AS1), and autophagy is
FIGURE 3

(A) Long non-coding RNAs (lncRNAs) can activate gene transcription by facilitating the recruitment of transcription factors to enhancers or promoters
and suppress transcription by sequestering transcription factors away from these regulatory regions. (B) They influence mRNA function through base
pairing, which can modify splicing patterns. (C, D) lncRNAs act as “sponges” by binding to complementary microRNAs (miRNAs), thereby inhibiting their
activity. In the cytoplasm, lncRNAs regulate mRNA expression by competing with miRNAs for binding sites or blocking their function. (E, F) Additionally,
lncRNAs modulate mRNA expression by affecting mRNA stability or translation through base pairing interactions in the cytoplasm.
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mediated by the miR-770-5p/TPT1-AS1/stathmin 1 (STMN1) alliance

in glioma cells. This corresponds to the directed therapy of glioma (50).

Tamoxifen-resistant MCF7 cells’ autophagy is prevented by

downregulating H19 imprinted maternally expressed transcript

(H19) activity. H19 causes autophagy via S-adenosyl-L-homocysteine

hydrolase (SAHH)/DNA methyltransferase 3 beta (DNMT3B)

alliance, enabling clarification of the biochemical trail of tamoxifen

confrontation in BC (51). Decreased RNA in malignancy prevents

glioblastoma-derived cell lines from invasively entering the cell and

triggers adenosine monophosphate-triggered protein kinase (AMPK)

through the downregulation of glucose transporter 1 (GLUT1) levels.

This, in turn, suppresses the expression of mTOR and stimulates

autophagy (52). Glioma cell movement and development are enhanced

by H19 overexpression, and H19 stimulates glioma cell autophagy and

proliferation via Unc-51/mTOR- like autophagy-triggering kinase 1

(ULK1) trail (53). The increased expression of HAGLROS in HCC

could be associated with the mTOR/AKT/PI3K signaling trail and the

ATG12/miC-5095 alliance, which are implicated in autophagy and

apoptosis (54). The activities of metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) are downregulated in HCC

cells, which influences the expression of miR-146a and facilitates

apoptosis and autophagy (55). The increased expression of HOX

transcript antisense RNA (HOTAIR) improves the development of

cervical malignancy. Neuroblastoma-associated transcript 1 (NBAT1)

activity is downregulated in NSCLC cells, which inhibits autophagy.

Moreover, the association of NBAT1 with proteasome 26S subtype,

non-ATPase 10 (PSMD10) improves autophagic disintegration (56).

The invasion, growth, along autophagy of bladder malignancy cells are

all favorably connected with enhanced activity of the small nucleolar

RNA host gene 1 (SNHG1), which acts via the ATG14/miR-493-5p

trail (57). HOXA transcript antisense RNA, myeloid-specific 1

(HOTAIRM1) enhances growth as well as autophagy of AML cells.

Moreover, nuclear HOTAIRM1 facilitates early growth response 1

(EGR1) breakdown by acting as a support for promoting MDM2

(Murine double minute 2)-EGR1 complex development. On the other

hand, cytoplasmic HOTAIRM1 serves as a decoy for miR-152-3p,

thereby enhancing the activity of ULK3 (Unc-51 resembling kinase 3)

(58). Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1)

overexpression improves autophagy in CML K562 cells, but its

suppression reduces autophagy and increases imatinib susceptibility.

Furthermore, it improves autophagy-associated imatinib resilience in

CML cells via miR-30e-5p/ATG12 alliance (59). Metformin enhances

SNHG7 expression, facilitates autophagy in ovarian malignancy cells,

and reduces the survival of ovarian malignancy cells treated with

paclitaxel. Paclitaxel is more likely to affect these cells because

metformin increases the miR-3127-5p/SNHG7 alliance, which

controls autophagy (60). Autophagy in PCa cells is extensively

inhibited when PCa docetaxel resistance-associated lncRNA1

(PCDRlnc1) levels are reduced. PCDRlnc1 networks with ubiquitin-

resembling plant homeodomain as well as ring finger domain 1

(UHRF1), thereby stimulating its expression in PCa cells, which

activates autophagy-associated Beclin-1 protein (61). Downregulating

lncRNA RP11-476D10.1 levels increases autophagy along with

apoptosis in papillary thyroid malignancy cells. This lncRNA

interrelates with miR-138-5p, thereby facilitating the activity of

leucine-rich repeat kinase 2 (LRRK2) (62). The upregulation of
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LINC01207 levels in OSCC cells facilitates apoptosis along with

autophagy. Furthermore, lactate dehydrogenase A (LDHA)/miR-

1301-3p/LINC01207 governing alliance stimulates OSCC cell growth

(63). SNHG15 focuses on GDNF family receptor alpha 1 (GFRA1)/

miR-381-3p activity to increase autophagy, thereby improving the

confrontation of osteosarcoma cells to doxorubicin. SNHG15 is

increased in doxorubicin-resilient cell lines, and the elimination of

SNHG15 activity prevents autophagy as well as the growth of

osteosarcoma cells (64). ClRN1 antisense RNA 1 (CLRN1-AS1)

suppresses prolactinoma autophagy and growth while forkhead box

protein P1 (FOXP1) activates CLRN1-AS1 activity that retains miR-

217 as well as influences pituitary prolactinoma cell activity via b-
catenin signaling trail/Wnt/Dickkopf WNT signaling trail inhibitor 1

(DKK1) (65). Gemcitabine-resilient pancreatic malignancy cell lines

have increased PVT1 oncogene expression, which enhances ATG14

activity and Pygopus genus PHD finger 2 (Pygo2). The b-catenin/
Wnt/miR-619-5p/PVT1 alliance stimulates cellular autophagy, thereby

reducing gemcitabine confrontation (66).
lncRNAs affecting melanoma drug
resistance and therapeutic reaction

Various studies have demonstrated that lncRNAs may affect

melanoma cell responses to various treatment modalities including

immunotherapy, targeted therapies, and chemotherapy, thereby

regulating the development of medication confrontation. Silencing of

the lncRNA H19 renders cisplatin-resilient melanoma cell (MC) lines

more susceptible to this medication. H19 suppression prevents

cisplatin-resilient MCs from forming colonies and induces apoptosis,

which is reversed by IGF1 overexpression ormiR-18b suppression (67).

MCs susceptible to dacarbazine (DTIC) have increased

expression of LINC01158. MCs that overexpress LINC01158 can

withstand DTIC medication, but depletion of LINC01158 reinstates

susceptibility to this medication (68). Suppression of TUG1, which

is overexpressed in melanoma, improves the chemosensitivity of

humanMCs cell line to 5-fluorouracil (5-FU), and DDP in vitro and

slows the growth of tumors in vivo (69).

Enhanced expression of XIST serves as a predictive indicator of

oxaliplatin therapy failure (70). The platinum-based drug displays

reduced poisonousness in comparison to cisplatin and is successful

in electrochemotherapy for murine melanoma cases (71).

Numerous clinical trials have lately explored its efficacy in

treating people with melanoma.

Kolenda et al. carried out a retrospective clinical trial wherein

plasma samples from patients receiving vemurafenib for BRAF-

mutated melanoma were used to assess the expression of 90

lncRNA that may have an association with the development and

growth of cancer (72). Three lncRNAs are potential predictive

indicators of the effectiveness of vemurafenib therapy in persons

with melanoma: IGF2 antisense (IGF2AS), MEG3, along with zinc

finger AE-binding homeobox 2-natural antisense transcript

(Zeb2NAT) (72).

It has been determined that RMEL3 is a melanoma-controlled

lncRNA whose activity is strongly associated with mutations in

BRAFV600E and NRASQ61L (73, 74). The lncRNA is an advantageous
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modulator of MAPK as well as PI3K signaling in melanoma because

its suppression raises PTEN extents, as well as lowers, activated

AKT, ERK, and RAF extents (73, 75). In BRAFV600E melanoma

cell lines, RMEL3 depletion considerably decreases colony-forming

potential. Furthermore, almost 70% of the investigated sequences of

RMEL3 present in TCGA display the UV mutational pattern, which

consists of C > T replacements in dipyrimidine positions, like CC >

TT. These mutations have been correlated to low patient existence

rates, although they have no association with RMEL3 expression

(73). In the end, vemurafenib, an inhibitor of BRAFV600E,

considerably reduces the expression of RMEL3, causing an

increase in FOXD3 and a reduction in ERK phosphorylation (73).

MCs that have developed resistance to the BRAFV600E inhibitor

PLX4720 have a substantial downregulation of TLSCN8 lncRNA.

Furthermore, TSLNC8 reduction prevents apoptosis in melanoma

cells sensitive to BRAF inhibitors following PLX4720 therapy (76).

MIRAT displays overexpression in numerous NRAS-mutated MC

lines resilient to the MEK surpassing agent trametinib. Moreover,

its presence shows a dose- and time-reliance on enhancement

following trametinib therapy (77).

The activity of MOB kinase stimulator 3B (MOB3B) in MCs is

enhanced by the induction of EMICERI (EQTN MOB3B IFNK

C9orf72 enhancer RNA I) lncRNA. A paralog of MOB1A/B kinases,

MOB3B is a beneficial modulator of the Hippo signaling trail whose

stimulation results in vemurafenib resilience (78). Large tumor

suppressor kinase 1 (LATS1) is downregulated when MOB3B is

overexpressed, which triggers the Hippo signaling trail (79).

Numerous studies demonstrate that different lncRNAs, including

NKILA, NEAT1, and XIST, are typically engaged in controlling the

human immune system as well as infiltrating tumor-immune cells

(80–82). Recently, immune-associated lncRNAs have been identified

via the TCGA dataset known as SKCM, which includes clinical and

molecular data for 470 melanoma patients (83, 84). Ping et al.

identified 28 immune-associated lncRNAs in melanoma-affected

persons employing an altered least absolute shrinkage and selection

operator (LASSO) regression model. Of these, 17 pairings of co-

expressed lncRNAs can separate the SKCM populace into low and

high-risk groups (83). Such as, in the SKCMmodel, co-expression of

the lncRNA pair U62631.1 and MIR205HG is related to an increased

risk factor (p-value < 0.001) while co-expression of the class II

primary histocompatibility complex, DQ beta 1 antisense 1 (HLA-

DQB1-AS1), and ubiquitin-resembling activating enzyme 6 antisense

1 (UBA6-AS1) is associated with a shielding effect (p-value < 0.001).

Furthermore, there is a relationship (p-value < 0.01) between the

high-risk set and the activity of particular mutant genes, like KIT

and BRAF (83). Wang et al. identified eight immune-associated

lncRNAs with predictive value in the SKCM cohort using the

Cox regression model and survival analysis (84). Moreover, the

expression of MIR205HG is associated with a poor result (p-value

< 0.001), while HLA-DQB1-AS1 is associated with immune

defense (p-value = 0.048). Despite the convergent findings in the

studies, these 2 computational techniques possess constraints: it

is imperative to carry out more clinical trials involving a large

number of melanoma patients. Furthermore, the raw data from the

TCGA SKCM is not sufficient to make inferences about novel

melanoma biomarkers.
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Lastly, in adenocarcinoma and melanoma, the presence of

MIR155HG is favorably correlated with the presence of immune

checkpoint genes like TIM3, CTLA4, LAG3, and PD-1 (85), and

increased circ_0020710 expression. Therefore, cytotoxic lymphocyte

depletion as well as the resilience to anti-PD-1 melanoma therapy are

associated with CXCL12 increase (86). As a result, immune checkpoint

inhibitor-based melanoma immunotherapies may be compromised by

increased expression of circ_0020710 and MIR155HG.

In melanoma treatment, several lncRNAs may also be taken as

direct targets. Mice treated with intravenous and intratumor doses of

SAMMSON antisense nucleotides showed an extensive inhibition of

tumor development. Furthermore, mice exposed to dabrafenib and

SAMMSON antisense nucleotides have demonstrated tumor shrinkage,

with no significant adverse effects or weight loss observed, unlike mice

subjected to a regimen comprising dabrafenib and trametinib (87). The

findings demonstrate that SAMMSON can be a significant selective

therapeutic site against melanoma and a diagnostic tool for cancer.

Furthermore, the lowering of SAMMSON considerably lowers the

clonogenicity of the malignancy cells that express it, irrespective of

their BRAF, NRAS, or TP53 status. In drug-resistant cell lines, this

improves the cytotoxic impact of vemurafenib along with the MEK

inhibitor pimasertib (87). Furthermore, one of themechanisms that give

melanoma cells resistance to directed therapy in contradiction of the

MAPK trail may be the transcriptional activation of SAMMSON by

SOX10 through vemurafenib. SAMMSON deletion caused p53

signaling and made BRAF-mutant melanoma more susceptible to

BRAF inhibitors both in vivo and in vitro (88).

Particular antisense oligonucleotides (ASO) are employed in

several solid tumors like melanoma, ovarian, prostate, breast, and

lung malignancies for targeting mitochondria-resultant nuclear

lncRNAs, including antisense non-coding mitochondrial RNAs

ASncmtRNA-1 as well as ASncmtRNA-2 (89). In vivo and in vitro

models of murine melanoma, suppression of both ASncmtRNAs by

ASO results in suppression of cell growth, thereby promoting apoptosis

(90, 91). An ASO medication, Andes-1537, has been evaluated in 2

clinical studies targeting progressive solid tumors, including cervical,

pancreatic, and gastric malignancies: NCT02508441 (first submitted

on July 15, 2015. It met quality control criteria on July 23, 2015, and

was first presented on July 27, 2015 (ICHGCP) (ANDES |

BIOTECHNOLOGIES)) as well as NCT03985072 (employing).

Resveratrol, quercetin, genistein, and curcumin are examples of

phytochemicals that have been shown to have anti-tumor impacts.

This is another method of treating lncRNAs. These and other

substances may be considered potential anti-cancer medications

since it has been revealed that they influence the expression of

lncRNAs linked to cancer (92).
Long non-coding RNA as a possible
biomarker for prognosis and diagnosis
in melanoma

Several reports have demonstrated that lncRNAs are important

for many biological processes in various malignancies, like

melanoma. Based on research, lncRNAs are useful as a biomarker
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for melanoma prompt identification, prognosis, as well as therapy

(19, 93–95). Recently, a variety of RNA variants have been used as

biomarkers to identify disorders (96, 97). However, there are still very

few specialized detection panels. Finding common lncRNA

dysregulation may provide new therapy targets and provide insight

into the detection and prognosis of the early patient. Many studies

have demonstrated over- or under-expression of particular types of

lncRNAs, such as HOXA6, FDG5-AS1, PVT1, and NKILA in

patients with melanoma as a result of developments in sequencing

methods (72, 98, 99). However, demonstrating its detection efficacy is

crucial for the clinical applicability of biomarkers. Furthermore, for

upcoming clinical applications, these biomarkers’ predictive accuracy

needs to be determined (72).

The role of lncRNAs in melanoma has been investigated in

numerous studies using melanoma cell lines. In a study by Bian et al.,

NKILA decreased in melanoma tissue, thereby, reducing the

development of the cell cycle and growth. Moreover, NKILA

effectively reduced invasion and triggered apoptosis in melanoma

cell lines by controlling the nuclear factor kappa B (NF-qB) signaling
trail (98). The decreased expression of HOTAIR was found to be

linked to melanoma cell growth inhibition and apoptosis induction

via NF-/B control (100). HOTAIR increases the development and

spread of melanoma cells by absorbing miR-152-3p, thereby

triggering the PI3k/Akt/mTOR signaling cascade (101).

Investigating the lncRNA PVT1 mechanism in uveal melanoma

(UM) cell lines, it was found that suppressing lncRNA PVT1

effectively reduced the clonogenic ability of the cells. Furthermore,

it was shown that EZH2 expression was downregulated by PVT1

suppression, which suppressed UM cell growth and enhanced

apoptosis (102). PRRT3-AS1 has been proposed as a possible

diagnostic and predictive indicator for melanoma by Zhang et al.,

employing data from the GEO, and TCGA databases (Figure 4) (103).
LncRNAs as melanoma biomarkers

Cells can release LncRNAs, which can be identified in a variety

of bodily fluids including urine, serum/plasma, and blood (104).

They are either released by living cells via extracellular vesicles, or

they come from apoptotic and necrotic cells. Since secreted vesicles

shield LncRNAs from the destruction of RNAses. As a result, they

become excellent contenders for persistent prognostic or detection

markers (105).

Patients with melanoma have been found to have multiple

circulating LncRNAs. Patients with advanced melanoma have

plasma lncRNA HOTAIR, and there is a significant association

between the state of the tumor and HOTAIR expression in

melanoma tumors (106). The lncRNA LINC01638 is considerably

overexpressed in the plasma of malignancy patients, indicating a

normal recurrence (107). The SPRY4-IT1 activity is enhanced in the

plasma of melanoma-diseased persons in comparison to healthy

persons, with its levels showing a strong correlation with tumor spot

along with state (108). Furthermore, the plasmacytoma variant

translocation 1 (PVT1) lncRNA was found as enhanced in the

serum of melanoma-affected individuals, with its activity

corresponding with tumor state as well as serving as an indicator
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of postoperative disorder dynamics (109). Kolenda et al. found a

signature of 17 lncRNAs in the plasma of melanoma-affected

persons, which serves to differentiate between healthy persons

and those with melanoma. These three LncRNAs- ZEB2-AS1,

MEG3, IGF2AS—were recognized as separate predictive elements

in BRAF-mutant progressive melanoma-affected persons sera cured

using vemurafenib (72).
Combination of circulating lncRNAs
for improved diagnostic efficacy and
emerging tools for enhanced
lncRNA identification

Numerous reports have integrated the identification potential of

multiple circulating lncRNAs to improve their diagnostic

performance while compensating for the poor sensitivity/specificity

of some lncRNAs. Hu et al., incorporated lncRNAs SPRY4-IT1,

NEAT1, and ANRIL on nonsmall-cell lung (nscl) cancer, achieving

an AUC (ROC) (area under the ROC curve - receiver operating

characteristic), sensitivity, and selectivity of 0.876, 82.8%, and 92.3%

respectively (110). Serum XIST and HIF1A-AS1 collectively also

showed good nonsmall-cell lung cancer detection capabilities (111).

SPRY4-IT1 demonstrated a specificity and sensitivity of 89,4% and

72.8% respectively (AUC: 0.842) in the identification of esophageal

squamous cell carcinoma (ESCC) when paired with POU3F3 and

HNF1AAS1 (112). Yu et al. demonstrated the combining circulating

lncRNAs PVT1 along with uc002mbe.2 indicated the existence of

hepatocellular malignancy featuring a sensitivity and selectivity of

60.5% and 90.6% respectively (113). The combined assessment of

plasma concentrations of LOC152578, XLOC_006844, as well as

XLOC_000303 facilitated the identification of colorectal malignancy,

achieving AUC (0.975), a sensitivity (80%), and a specificity (84%)

(114). Further instances such as the integration of lncRNAs RP11-

160H22.5, LOC149086, and XLOC_014172 achieved a specificity and

sensitivity of 73% and 82% respectively (AUC: 0.896) for the

identification of hepatocellular carcinoma (115). Several reports

have explored the identification pattern of higher in comparison to

3 circulating lncRNAs. In another study, Yan et al., demonstrated that

a 4-lncRNA ensemble, inclusive of PEG10, ESCCAL-1, POU3F3, and

UCA1, presents an outstanding diagnostic approach for the precise

identification of ESCC. This multi-lncRNA composite effectively

discriminates ESCC patients from healthy individuals, achieving

AUC, specificity, and a sensitivity of 0.853, 80.20%, and 80.20%

respectively (116). They showed that the 4-lncRNA group

outperformed each lncRNA in terms of diagnostic efficacy, hence

confirming the clinical importance of using such a combination

method. Furthermore, Zhang et al. found a set of 5 plasma

lncRNAs (TINCR, BANCR, LINC00857, CCAT2, and AOC4P)

that outperformed CEA biomarkers for distinguishing GC-affected

persons from healthy individuals achieving an AUC of 0.91 (117).

Wu et al. demonstrated that a pattern of five lncRNAs displays the

capacity to effectively discriminate serum specimens from patients

afflicted with renal cell carcinoma (RCC) when contrasted with

samples obtained from healthy persons (118). The amalgamation
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of lncRNA-LET, PANDAR, PVT1, PTENP1, as well as linc00963,

discriminated RCC specimens having an AUC of 0.823. Particularly,

none of the individual lncRNAs displayed the same level of diagnostic

accuracy as the composite 5-lncRNA pattern. Plasma specimens from

patients having pancreatic ductal adenocarcinoma have been

investigated for PANDAR and PVT1 within an 8-lncRNA

signature (119). A customized nCounter Expression Assay

(Nanostring Technologies, USA) that enables simultaneous qPCR

analysis employing TaqMan probes was employed to identify the 8-

lncRNA pattern. Enhanced diagnostic efficacy can potentially be

achieved by the enhanced identification of lncRNAs in human

specimens. Recently, new and significantly sensitive techniques

have emerged to address this objective. Chen et al. established a

new biocompatible electrochemical biosensor called “SPCE Au NCs/

MWCNT-NH2” for the identification of lncRNA MALAT1 in nscl

cancer (120). They emphasized that this innovative approach has

numerous significant advantages over conventional RT-PCR, such as

rapid recognition, cheaper costs, and ease of use. Morlion et al.

established a novel custom lncRNA sequencing method employing

an ensemble of 565,878 targeting agents targeting 49,372 human
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lncRNA genes. This approach showed enhanced detection sensitivity

(121). The use of a custom enrichment strategy represents a major

advancement in the field of lncRNA identification meanwhile it

facilitates the identification of a large number of lncRNAs with

greater repeatability and accuracy in comparison to traditional total

RNA-sequencing techniques.

In summary, the composite signature formed by integrating

multiple blood-based lncRNAs is purportedly superior in diagnostic

efficiency compared to distinct circulating lncRNAs. Concurrently,

the advent of novel approaches heralds promising prospects for

enhanced recognition of lncRNAs in human biofluids.
Conclusion and future prospects

Research efforts in clinical and fundamental oncology,

addressing cancer as a significant global public health concern,

have yielded numerous advancements in recent times. However, the

challenge of effectively managing tumor-related morbidity and

mortality persists. The primary and paramount objective of
FIGURE 4

DNA methylation analysis of PRRT3-AS1 in TCGA-SKCM. (A) PRRT3-AS1 CpG islands in the human genome. (B) PRRT3-AS1 expression and
methylation distribution. (C) The expression level of PRRT3-AS1 and the distribution of methylation. (D) Survival analysis using the Kaplan–Meier
curve between the high-methylation and low-methylation groups. Reproduced with permission from (103).
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tumor research is to develop strategies that precisely target and

eliminate tumor cells while safeguarding usual cells from harm. As

our comprehension of intracellular molecules advances, numerous

molecules involved in tumor progression have been identified.

Particularly, non-coding RNAs are significant in cell death,

significantly influencing tumor onset and growth. However,

controlled cell death may have rather distinct biological functions

in various biological contexts. The majority of the genes associated

with cellular death in cancer have not had their functions well

investigated and the signal of controlled cell demise in tumors also

remains unclear. Thus, understanding the modulating trials of

ncRNAs in cancer-linked cellular demise, detecting significant

therapeutic targets for cell death in cancer, and creating new

immunotherapies relying on these non-coding RNAs are of

immense and lasting importance in the fight against cancer.

The biology of lncRNAs with a specific focus on recent findings

pertinent to managing melanoma was explored. LncRNA

investigation is progressing rapidly. At present, 13 lncRNA genes

are found in the pathogenesis of melanoma. Their particular

expression designs in certain cell or tumor types enable them

promising contenders for diagnostic markers or therapeutic targets.

Markers that identify or track the response to novel and costly

treatments for metastatic melanoma are also needed, in addition to

innovative, more potent, and less toxic therapeutic approaches. Further

study is required to explore the role of lncRNAs in achieving this goal.

One drawback of the currently available data is that inconsistent

findings have been documented for various lncRNAs. For instance,

Tian et al. (122) found no statistically major variance in HOTAIR

expression between major melanoma specimens and nearby usual

tissues, although the data-mining of publicly accessible gene

expression data displayed an enhanced level of HOTAIR presence

in melanomas in comparison to nontumor tissues (123). The

framework of the study and the experimental procedures may have

further restrictions. Frequently, there are not enough samples to

reach definitive inferences, or the cell lines that were chosen are only

typical of a small portion of the melanomas that individuals have

been reported to have. Findings derived from underpowered

experiments require sovereign validation through adequately

powered experiments before advancing scientific understanding.

In conclusion, melanoma serves as a prime example of the

promptly advancing understanding of the significance of lncRNAs

in oncology. One or more lncRNAs may be adopted for use as

melanoma biomarkers in the near future, provided there is sufficient

clinical validation. This approach has already been put into practice

in prostate malignancy through the incorporation of lncRNA PCA3
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into a commercially available urine-based diagnostic assay (124).

Further applications could be the therapeutic implications of this

study. Similar to miRNAs, inhibiting lncRNAs might also hold

therapeutic promise. The considerable tumor selectivity of a

number of the lncRNAs may be a major factor in the success of

this effort.

In summary, although the investigation of circulating lncRNAs is

in its nascent phase, the global surge in interest surrounding lncRNAs

along with the advent of novel tools to enhance their identification,

specificity, and clinical applicability undoubtedly enhance the

likelihood of eventually identifying dependable blood-based

biomarkers. These biomarkers hold the potential for early and

precise cancer identification across various types of malignancies.
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