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and Bin Yang3*
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Objective: The invasiveness of pituitary neuroendocrine tumor is an important

basis for formulating individualized treatment plans and improving the prognosis

of patients. Radiomics can predict invasiveness preoperatively. To investigate the

value of multiparameter magnetic resonance imaging (mpMRI) radiomics in

predicting pituitary neuroendocrine tumor invasion into the cavernous sinus

(CS) before surgery.

Patients and methods: The clinical data of 133 patients with pituitary

neuroendocrine tumor (62 invasive and 71 non-invasive) confirmed by surgery

and pathology who underwent preoperative mpMRI examination were

retrospectively analyzed. Data were divided into training set and testing set

according to different field strength equipment. Radiomics features were

extracted from the manually delineated regions of interest in T1WI, T2WI and

CE-T1, and the best radiomics features were screened by LASSO algorithm.

Single radiomics model (T1WI, T2WI, CE-T1) and combined radiomics model

(T1WI+T2WI+CE-T1) were constructed respectively. In addition, clinical features

were screened to establish clinical model. Finally, the prediction model was

evaluated by ROC curve, calibration curve and decision curve analysis (DCA).

Results: A total of 10 radiomics features were selected from 306 primitive

features. The combined radiomics model had the highest prediction efficiency.

The area under curve (AUC) of the training set was 0.885 (95% CI, 0.819-0.952),

and the accuracy, sensitivity, and specificity were 0.951,0.826, and 0.725. The

AUC of the testing set was 0.864 (95% CI, 0.744-0.985), and the accuracy,

sensitivity, and specificity were 0.829,0.952, and 0.700. DCA showed that the

combined radiomics model had higher clinical net benefit.
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Conclusion: The combined radiomics model based on mpMRI can effectively

and accurately predict the invasiveness of pituitary neuroendocrine tumor to CS

preoperat ive ly , and prov ide dec is ion-making bas is for c l in ica l

individualized treatment.
KEYWORDS

pituitary neuroendocrine tumor, radiomics, magnetic resonance imaging, cavernous
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Introduction

Pituitary neuroendocrine tumors (PitNETs) are common

intracranial neuroendocrine tumor, with a prevalence as high as

20% on autopsy and imaging studies, have shown a significant

upward trend in recent years (1–3). Previous studies have generally

considered PitNETs to be a common intracranial benign tumor (4),

however, a portion of PitNETs are invasive, their benign nature is not

so apparent, especially when the diameter is greater than 10mm, and

their expansive growth can infiltrate into the surrounding structures.

This emphasizes the importance of a multidisciplinary and

comprehensive treatment plan (5), and how to predict its

invasiveness preoperatively is exactly the problem we need to solve.

Research has reported that nearly 25–55% of PitNETs (diameter

>10mm) are invasive, and often invade adjacent structures, especially

cavernous sinus (CS) (4, 6). The internal carotid artery (ICA) is

adjacent to the CS, and the invasion rate of PitNETs (diameter

>10mm) into the CS is 16% (7), which indirectly affects the success of

PitNETs treatment. Clinically, surgery is the preferred treatment for

most PitNETs (8). It should be noted, however, that tumor invasion

into the CS significantly increases the incidence of surgery-related

complications and postoperative mortality (9). Therefore, assisting

clinicians in accurately evaluating the degree of PitNETs invasion

into the CS before surgery is critical for formulating individualized

treatment plans. Relevant studies (10, 11) have reported that if the

tumor significantly invades the CS, preoperative adjuvant

radiotherapy combined with incomplete tumor resection is

required to avoid ICA injury when the tumor is completely

resected. Otherwise, tumors without CS invasion require complete

resection of the lesion to reduce tumor residue and recurrence. At

present, the Knosp grading standard, established by Knosp (12), is the

most commonly used method to evaluate the invasiveness of

PitNETs, in which preoperative MRI can be used to evaluate the

extent of parasellar tumor invasion. It is worth noting that the gold

standard for the diagnosis of PitNETs invasiveness the visual

observation of the erosion and destruction of the adjacent sella

bone during surgery (9). However, these two methods have

significant limitations. First, the Knosp grading standard relies on

radiologists’ MRI interpretations, which are subjective and closely

tied to the work experience of the radiologist, as well as image quality
02
and repeatability. Surgery, as a key treatment for PitNETs, is an

invasive procedure that makes it difficult to achieve the unique

requirements of preoperative evaluation of tumor invasiveness.

Therefore, it is crucial to find a simple, efficient, and accurate

method to predict the invasiveness of PitNETs preoperatively, assist

in the clinical development of individualized treatment strategies, and

achieve precise treatment and long-term management of patients.

The recent development of artificial intelligence (AI) has led to

its widespread use across various fields. Radiomics, which can high-

throughput mine quantitative image features from medical images,

such as computed tomography (CT), MRI, positron emission

tomography-CT (PET-CT), and ultrasound (US), use machine

learning algorithms to analyze the correlation between features,

and establish prediction models to achieve preoperative diagnosis,

prognosis prediction, and efficacy evaluation of diseases (13–15),

has been extensively applied as an important AI technology in the

medical field. Radiomics has been studied and applied to various

systemic diseases (16–22), and prediction models have shown high

prediction efficiency. PitNETs are common tumor of the nervous

system, and Yang et al. (14) summarized the application and

research fields of AI technology in detail as it relates to PitNETs.

Compared to CT radiomics, MRI radiomics offers better soft tissue

resolution, allowing for the display of smaller structures, and

provides clearer visualization of structures such as the CS, which

can lead to a better diagnosis of tumor invasion into the CS. Its

multi-planar imaging and dynamic contrast-enhanced scans are

also of significant value in assessing the invasiveness of PitNETs,

and its radiation-free nature can meet the clinical needs of PitNETs’

patients for multiple follow-ups. However, there are few reports, on

the preoperative prediction of tumor invasion into the CS (6, 23,

24). Liu et al. (23) showed that texture analysis, based on dynamic

contrast-enhanced MRI (DCE-MRI), can predict the vascular

heterogeneity and invasiveness of PitNETs before surgery. Wang

et al. (24) focused on the use of deep learning algorithms to develop

automatic saddle area segmentation techniques, and used various

tools to extract image features related to invasiveness. These studies,

however, only focused on a single MRI sequence, used the

prediction of invasiveness as a downstream task, and did not

establish an invasive prediction model, lacking clinical guidance.

Radiomics based on mpMRI can obtain more potential parameters,
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which can help evaluate the texture and extent of tumor invasion

from different perspectives, can more comprehensively reflect the

texture and invasion range of tumors, while single parameter MRI

may not provide such comprehensive information. Combining

radiomics features of mpMRI sequences can improve the

diagnostic performance of PitNETs, have higher efficiency in

predicting tumor invasiveness.

The purpose of the present study was to extract radiomics

features based on mpMRI to establish a radiomics model to

accurately, efficiently, and noninvasively predict the invasiveness

of PitNETs to CS preoperatively, and provide guidance for precise

individualized treatment.
Materials and methods

Patients

The present study was approved by our institutional ethics

review committee, and the need for informed consent was waived,

due to the retrospective nature of the study.

This study retrospectively gathered the data of patients with

PitNETs who underwent surgical treatment at our institution

between January 2012 and December 2020. The inclusion criteria

were as follows: (1) PitNETs confirmed via surgery and pathology;

(2) patients underwent surgical treatment for the first time; and (3)

baseline pituitary MRI was performed within one month before

surgery. The exclusion criteria were as follows: (1) poor image

quality or missing any T1-weighted imaging (T1WI), T2-weighted

imaging (T2WI), or contrast enhanced-T1 (CE-T1) sequence (n =

6); (2) extensive hemorrhage, necrosis, or cystic degeneration

observed in the tumors (n = 7); and (3) tumor diameter of < 10
Frontiers in Oncology 03
mm (n = 6). For invasive PitNETs, surgeons can observe the

tumor’s invasion of the cavernous sinus during the surgical

procedure, with all details meticulously documented in the

surgical records. After applying the exclusion criteria, a total of

133 patients were included in the present study, after screening

according to the nanofiltration criteria (Figure 1).

Radiologist 1 (10 years’ work experience) reviewed the surgical

records, and had not seen the MRI in advance. Radiologist 2 (7 years’

work experience) reviewed the MRI, and assessed clinical radiographic

risk factors (Knosp classification, hemorrhage, cystic degeneration,

necrosis, etc.). Patients who met one of the following three criteria

were included in the invasive group (6, 11, 23, 26): (1) Hardy

classification and staging system grade III–IV or suprasellar

extensions C–E, or Knosp grading standard grade III–IV; (2)

intraoperative exploration revealed tumor invasion into the adjacent

dura mater, sellar floor, and sphenoid or bilateral cavernous sinus; and

(3) histological examination of the sellar floor or adjacent dura

confirmed tumor cell infiltration. Patients who did not meet the

above three criteria were included in the non-invasive group.
MRI protocol and image acquisition

Imaging sequences included T1WI, T2WI, and CE-T1

sequences, and sellar scans were performed on 1.5- (Signa HDe;

GE Healthcare, Waukesha, WI, USA; and Magentom Avanto;

Siemens, Erlangen, Germany) and 3.0-T (Signa Pioneer; GE

Healthcare, Florence, SC, USA; Ingenia; Philips Medical Systems,

Best, The Netherlands; and Vantage Titan; Toshiba, Tochigi, Japan)

MRI scanners using a head-phased array coil. The sequence and

scan parameters are as follows: Signa HDe equipment parameters,

T1 (repetition time [TR], 460 ms; echo time [TE], 12.6 ms), T2 (TR,
FIGURE 1

Flow diagram of patient selection and grouping.
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3,540 ms; TE, 130.2 ms), layer thickness, 3 mm, layer spacing, 3

mm; Magnetom Avanto, T1 (TR, 400 ms; TE, 8.7 ms), T2 (TR,

3,400 ms; TE, 84 ms), layer thickness, 3 mm, layer, spacing 3.3 mm;

Vantage Titan, T1 (TR, 450 ms; TE, 12.0 ms), T2 (TR, 3,000 ms; TE

90 ms), layer thickness, 3 mm, layer spacing, 3.5 mm; Ingenia, T1

(TR, 507 ms; TE, 7.5 ms), T2 (TR, 3,000 ms; TE, 80 ms), layer

thickness, 2 mm, layer spacing 2, mm; and Signa Pioneer, T1 (TR,

1,929 ms; TE, 23 ms), T2 (TR, 4,151 ms; TE, 134 ms), layer

thickness, 2 mm, layer spacing, 2.5 mm. Contrast-enhanced scans

were performed using a high-pressure syringe to inject the contrast

agent, gadodiamide, through the elbow vein, with a dose of 0.1

mmol/kg at a rate of 2.5 mL/s, followed by 20 mL of saline to flush

the lumen.
Tumor region of interest delineation

The T1WI, T2WI, and CE-T1 MRI sequences were exported

from our Patient Archive and Communication System (PACS), and

saved in Digital Imaging and Communications in Medicine

(DICOM) format after anonymization. The images were imported

into ITK-SNAP software (version 3.8.0, http://www.itksnap.org).

Each ROI was manually delineated at the maximum level of the

tumor by radiologist 2, and then reviewed by radiologist 1. When

disagreements arise over the delineation of the tumor area, the

radiologists conversed with each other to reach a consensus. When

delineating the tumor margins, the tumor areas on the T1WI and

T2WI images were delineated using the tumor area of the CE-T1

image as the reference baseline (Figure 2A).
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Image preprocessing

Because the original MRI scans were acquired on equipment of

different manufacturers, models, and field strengths, the diversity of

scanning parameters resulted in image heterogeneity. It was

therefore necessary to preprocess the original images before

extracting the radiomics features, to improve the normalization

and standardization of the images. The specific steps were as

follows: (1) N4 bias field correction was performed on the image

to eliminate low-frequency intensity inhomogeneity; (2) the image

voxel space was resampled and adjusted to 1 × 1 × 1 mm3 to

improve the comparability of the texture features; (3) the z-score

method was used to standardize the image gray level, and the

maximum and minimum gray levels were limited to three gray

standard deviations; and (4) image grayscale underwent discrete

transform with a bandwidth set to five (Figure 2B).
Radiomics feature extraction

Quantitative radiomics features were automatically extracted

from the ROI of T1WI, T2WI, and CE-T1 sequences using the

Pyradiomics platform (27) (version 3.0.1, http://pypi.org/project/

pyradiomics). The extracted features included first-order statistical,

shape, and texture features (Figure 2B). The texture features

included a gray-level co-occurrence matrix (glcm), gray-level run-

length matrix (glrlm), gray-level size zone matrix (glszm), gray-level

difference matrix (gldm), and neighborhood gray-tone difference

matrix (ngtdm) (27).
FIGURE 2

Flow chart of the present study. (A) Collect the original T1WI, T2WI and CE-T1 sequence images and use ITK-SNAP software to draw ROI.
(B) Pyradiomics software was used to extract radiomics features. (C) Wilxon rank sum test and minimum absolute contraction sum selection operator
(LASSO) are used for feature selection. (D) Establish a prediction model, and analyze the prediction efficiency of the best model through the ROC curve.
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Radiomics feature screening

The high-dimensional information of radiomics quantitative

features is closely related to high-level redundant and irrelevant

information, which may lead to overfitting, thereby reducing the

performance of machine learning algorithms and seriously affecting

the performance of prediction models (28). It was necessary, therefore,

to screen the extracted quantitative features before constructing the

prediction model. Based on the features extracted from the training set,

the feature screening process included the following three steps. First,

theWilcoxon rank sum test was used to retain the characteristics of P <

0.01. Second, the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm, based on five-fold cross-validation, was used to

remove redundant features from the images. Finally, a multivariate

stepwise regression analysis was used, and the feature set with the

smallest Akaike information criterion (AIC) was retained (Figure 2C).
Construction and verification of radiomics
signature model

From the optimal radiomics features selected, logistic regression

(LR) classifiers were used to construct single-sequence (T1WI,

T2WI, CE-T1) and combined multi-sequence (T1WI + T2WI +

CE-T1) radiomics signature models in the training set. The area

under the curve (AUC), accuracy, sensitivity, specificity, and

positive and negative predictive values were used to evaluate the

performance of the training set model, and then verified in the

testing set. Additionally, a receiver operating characteristic (ROC)

curve (29) was constructed to evaluate the predictive efficacy of the

model. We also established a calibration curve to evaluate the

goodness of fit of the prediction model, which was verified in the

testing set. The DeLong test was used to compare the prediction

efficiency between the models, and the decision curve analysis

(DCA) was used to evaluate the clinical net benefit rate (Figure 2D).
Construction and validation of
clinical model

Clinical radiological risk factors included sex, age, and

maximum tumor diameter. The most relevant clinical features of

tumor invasiveness were identified using univariate analysis.

Independent predictors were analyzed using multivariate LR

regression, and a clinical model was established. The performance

of the model was evaluated in the training set, and then verified in

the testing set (Figure 2D).
Statistical methods

All statistical analyses were performed using R software (version

4.1.0, https://www.rproject.org). Pearson’s chi-squared or an

independent sample t test was used to analyze the demographic

characteristics. LASSO used the “glmnet” package for analysis, and
Frontiers in Oncology 05
the Wilcoxon test used the “base” package analysis. ROC curves

were plotted using the “pROC” package. Statistical significance was

two-tailed, and set at P < 0.05. The AUC, accuracy, sensitivity,

specificity, and positive and negative predictive values were used to

compare and evaluate the predictive efficacy of each model.
Results

Clinical characteristics

Table 1, a total of 133 patients were included for analysis in the

present study, 62 invasive (median age, 49 years; 31 males and 31

females) and 71 non-invasive cases (median age, 43 years; 23 males

and 48 females). There were no significant differences in sex, age, or

surgical method between the two groups (P = 0.059–0.573). There

was, however, a significant difference in the maximum tumor

diameter (P < 0.01), which may be because invasive tumors

expand to the surrounding area and have a larger volume.

In the present study, the patients scanned on 3.0T equipment

were used as the training set (n = 92; 51 non-invasive and 41

invasive) to establish the radiomics prediction model, and the

patients scanned on 1.5T equipment were used as the testing set

(n = 41; 20 non-invasive and 21 invasive) to verify the prediction

efficiency of the radiomics model.
Feature extraction, screening, and analysis

A total of 306 radiomic features were extracted from the T1WI,

T2WI, and CE-T1 sequences. The radiomics features extracted from

single-sequence images included 18 first-order statistic, 9 shape, and

73 texture features (24 glcm, 16 glrlm, 16 glszm, 14 gldm, and 5

ngtdm). Through feature consistency analysis, five-fold cross-

validation LASSO regression (Figure 3), and multivariate stepwise

logistic regression, the best of three features from the T1WI and

T2WI sequences respectively, and the best four features from the CE-
TABLE 1 Comparison of clinical baseline characteristics of patients with
invasive and non-invasive tumors.

Non-
invasive

Invasive P-

Gender (No.) 0.059

Male 23 (32.4%) 31 (50.0%)

Female 48 (67.6%) 31 (50.0%)

Age (years) 43.0 (33.5–55.0) 49.0 (37.0–54.5) 0.107

Maximum tumor
diameter (mm)

22.0 (15.5–27.0) 33.0 (26.0–37.1) < 0.001

Surgery method 0.573

Nasopalpebral 63 (88.7%) 52 (83.9%)

Trans-temporal bone 8 (11.3%) 10 (16.1%)
fron
Categorical variables are presented as numbers (percentages). Otherwise, median and quartile
values are shown. P < 0.05 was statistically significant.
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T1 sequence were selected. After removing the collinear features from

the 10 best features, three features were selected to establish a

combined radiomics model (Table 2). The heat map showed the

best characteristics for each sequence (Figure 4).
Predictive efficacy of clinical model

Maximum tumor diameter was used as the main clinical risk

factor to establish a multivariate regression clinical model. The

AUC in the training set was 0.799 (95% confidence interval [CI],

0.708–0.890), and the AUC in the testing set was 0.758 (95% CI,

0.604–0.912) (Table 3, Figures 5A, B).
Predictive performance of single and
combined radiomics signature models

The AUCs of the T1WI model in the training and testing sets

were 0.857 (95% CI, 0.781–0.932) and 0.821 (95% CI, 0.692–0.951),

respectively. The AUCs of the T2WI model in the training and

testing sets were 0.857 (95% CI, 0.778–0.935) and 0.848 (95% CI,

0.725–0.970), respectively. The AUCs of CE-T1 model in training

and testing sets were 0.888 (95% CI, 0.820–0.956) and 0.829 (95%

CI, 0.703–0.954), respectively. The AUCs of the combined

radiomics signature model in the training and testing sets were

0.885 (95% CI, 0.819–0.952) and 0.864 (95% CI, 0.744–0.985),

respectively. The accuracy, sensitivity, specificity, and positive and

negative predictive values of the four predictive models are shown

in Table 3. The ROC curve of the prediction model is shown in

Figures 5A, B. The bar chart in Figures 5C, D shows the prediction
Frontiers in Oncology 06
accuracy of the prediction model in the training and testing sets.

The AUC of the CE-T1 model was the highest of the training sets,

while that of the combined radiomics signature model was the

highest of the testing sets. The performance of the prediction model

was comprehensively analyzed and evaluated, and the combined

radiomics signature model was selected to achieve the best

predictive performance for PitNETs invasiveness. Additionally,

the DeLong test showed that the performance of the radiomics

model was better than that of the clinical model (P = 0.03).
Model calibration curve and DCA

The calibration curve shows that the prediction efficiency of the

model is in good agreement with clinical observations (Figure 6).

Additionally, DCA showed that when the threshold probability was
FIGURE 3

Convergence diagram of characteristic coefficients (A–C) of T1WI, T2WI and CE-T1 sequences using LASSO to screen the image group
characteristics. Using five-fold cross validation, we screened the most effective histological characteristic map (D–F), and all three sequences
obtained the characteristics required by the most simplified model.
TABLE 2 LASSO analysis screened the most relevant radiomics features
to invasiveness.

Best image features

T1WI
T1W_shape2D_MinorAxisLength;
T1W_shape2D_Sphericity;
T1W_glrlm_LowGrayLevelRunEmphasis

T2WI
T2W_shape2D_Sphericity;
2W_firstorder_TotalEnergy; T2W_glcm_SumEntropy

CE-T1
CE-T1_shape2D_PixelSurface; CE-T1_shape2D_Sphericity;
CE-T1_firstorder_TotalEnergy; CE-T1_glszm_ZoneEntropy

Combined
radiomics

CE-T1_shape2D_Sphericity;
T1W_glrlm_LowGrayLevelRunEmphasis;
T2W_firstorder_TotalEnergy
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greater than 0.786, the net benefit of using the combined radiomics

model to predict the invasiveness of PitNETs was significantly

higher than that of the other radiomics models (Figure 7).
Discussion

In the present study, a predictive mpMRI-based radiomics

signature model was established to predict the invasiveness of

PitNETs and provide a preoperative individualized patient

evaluation. The results of the present study showed that the

predictive efficiency of the combined radiomics signature model

was better than that of the clinical and single radiomics signature

models, and could accurately and efficiently predict the invasiveness

of PitNETs.

Previously, the evaluation of MRI-based Knosp grading played

an important role in the analysis of the invasion of PitNETs into the

CS, which is an important reference for the formulation of clinical

treatment plans. Preoperative prediction of PitNETs invasiveness

can assist in creating an individualized clinical treatment with
Frontiers in Oncology 07
precision medicinal treatment. Niu et al. (6) studied the

preoperative prediction of the invasiveness of Knosp II and III

PitNETs into the CS, based on CE-T1 and T2WI images. The AUCs

of the nomogram established by combining radiomics features and

clinical risk factors in the training and testing sets was 0.899 and

0.871, respectively, indicating a high prediction efficiency. In the

invasive prediction model based on LR created in the present study,

the AUCs of the combined radiomics signature model in the

training and testing sets were 0.885 and 0.864, respectively. This

model also had a high prediction efficiency. In contrast to previous

studies, the present study divided the PitNETs into an invasive and

a non-invasive group, which expanded the scope of tumor research

and could be applied to all tumor patients with different Knosp

grades. According to relevant literature (7), 25% of Knosp grade I

PitNETs will extend into the parasellar region, while approximately

1.5% of these tumors are observed to have significant invasiveness

into CS during surgery. Therefore, the present study included a

wider range of subjects, and the results were more reliable and

robust. Additionally, Liu et al. (23) conducted a texture analysis of

preoperative DCE-MRIs to evaluate the vascular heterogeneity and
FIGURE 4

The best feature heat map of the training (A) and testing (B) sets after feature screening.
TABLE 3 Comparison of prediction efficiency of clinical model, single radiomics signature model, and combined radiomics model.

Model Performance AUC (95% CI) ACC SEN SPE PPV NPV Cut-off

Clinical
Training set 0.799 (0.708–0.890) 0.761 0.561 0.922 0.852 0.723

0.583
Testing set 0.758 (0.604–0.912) 0.707 0.667 0.750 0.737 0.682

T1WI
Training set 0.857 (0.781–0.932) 0.804 0.976 0.667 0.702 0.971

0.284
Testing set 0.821 (0.692–0.951) 0.756 0.905 0.600 0.704 0.857

T2WI
Training set 0.857 (0.778–0.935) 0.826 0.756 0.882 0.838 0.818

0.445
Testing set 0.848 (0.725–0.970) 0.780 0.905 0.650 0.731 0.867

CE-T1
Training set 0.888 (0.820–0.956) 0.815 0.951 0.706 0.722 0.947

0.316
Testing set 0.829 (0.703–0.954) 0.756 0.905 0.600 0.704 0.857

Combined radiomics
Training set 0.885 (0.819–0.952) 0.826 0.951 0.725 0.736 0.949

0.328
Testing set 0.864 (0.744–0.985) 0.829 0.952 0.700 0.769 0.933
fr
AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative prediction value; 95% CI, 95% confidence interval.
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invasiveness of PitNETs. The results of their analysis showed that

the total model had the highest prediction efficiency (AUC = 0.957)

and could effectively and accurately predict PitNETs invasion. It is

worth noting that their study included fewer patients (n = 50), no

validation set for the testing model, and the prediction model had

the risk of overfitting. In the present study, the inclusion of data
Frontiers in Oncology 08
diversification prevented overfitting of the model, and the

prediction results were, therefore, more stable and reliable.

Clinical demographic information statistics showed that there

was a statistically significant difference in the maximum tumor

diameter between the invasive and non-invasive groups (P < 0.01),

indicating that tumor diameter was an important shape feature for
FIGURE 5

The ROC curves for the single radiomics signature model, clinical model, and combined (CE-T1 + T1WI + T2WI) radiomics signature model,
constructed based on an LR classifier in the training (A) and testing (B) sets, bar diagrams of the training (C) and testing (D) sets.
FIGURE 6

The calibration curve shows that there is a good fit between the prediction model and the actual results in the training (A) and testing (B) sets.
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distinguishing PitNETs invasiveness. Shape features are an

important quantitative feature, as they can describe the shape and

geometric characteristics of the ROI, such as volume, maximum

diameter along different orthogonal directions, maximum surface

area, tumor density, and sphericity (30). Additionally, some studies

have not only outlined the tumor itself but also the surrounding

peritumoral region. The research found that obtaining information

about the peritumoral tissue can more accurately determine the

tumor’s invasiveness to the surrounding tissues. This indicates that

the radiomics information of the peritumoral region is important

equally (31). In the present study, after feature screening, it was

determined that the shape features showed a higher discrimination

ability. The larger the tumor diameter and the more irregular its

shape, the greater the possibility of invasion, which is consistent

with the conclusion reached Liu et al. (23). In addition to the tumor

shape, texture analysis, an image post-processing technique that

uses representation algorithms to analyze the distribution and

arrangement of all pixels in medical images and convert them

into quantitative features (23, 24, 32–36), plays an important role in

evaluating tumor heterogeneity. In the present study, a large

number of texture features were extracted to establish the

prediction models. It is worth noting that previous studies have

confirmed that the classification performance of prediction models

trained with multi-center data from different institutions is greatly

reduced compared with the use of data from the same institution

(37, 38). Therefore, multi-center research to improve model

stability is very important and has clinical significance. Compared

with previous single-center data sources and single-sequence

extraction features used to establish prediction models (39, 40),

the present study collected multi-center and diversified data, and

through multi-dimensional feature extraction and mpMRI analysis,

more quantitative tumor information can be obtained. The
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established combined radiomics signature model has higher

prediction efficiency, better robustness, and versatility than

previous models, and can be used in clinical multi-center

applications to provide an objective and credible basis for

treatment planning.

Like most studies, our study has several limitations: first, the

study was a retrospective case collection, and there may be case

selection bias, which requires prospective case inclusion in future

studies; second, the number of cases in this study was relatively

small, and rich clinical data could improve the performance of the

prediction model; third, this study is a single-center study.

Including more diverse dataset from multiple institutions could

enhance the model’s generalizability, and we will further investigate

this in the future; finally, manual segmentation of the tumor ROI is

a time- and energy-consuming task, for which recent studies (25)

have achieved significant success in automatically segmenting the

background of the sellar region using deep-learning algorithms, an

important direction for the future development of radiomics.

In conclusion, the mpMRI-based radiomics model is feasible for

predicting the invasiveness of PitNETs before surgery, which can

provide a basis for the clinical formulation of surgical plans and

individualized treatment plans, improve the quality of life of

patients after surgery, and mitigate postoperative tumor

progression or recurrence, to a certain extent.
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