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Endometriosis (EMs) is a prevalent chronic gynecological condition that depends

on estrogen, marked by the presence of active endometrial tissue (glands and

stroma) outside the uterus. Although pathologically benign, it exhibits biological

behaviors such as invasion and metastasis akin to malignant tumors.

Endometriosis-associated ovarian carcinoma (EAOC), arising from malignant

transformation of EMs, poses significant clinical challenges. However, the

mechanisms underlying EAOC pathogenesis remain incompletely understood,

with a lack of reliable biomarkers for early diagnosis and personalized treatment

strategies. Considering the significant number of EMs patients and the extended

period during which malignant transformation can occur, EAOC deserves

significant attention. Current research both domestically and internationally

indicates that the pathogenesis of EAOC is complex, involving genetic

mutations, immune microenvironment, oxidative stress, epigenetic changes,

and related areas. This review summarizes the mechanisms underlying the

development of EAOC.
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1 Introduction

EMs is a chronic inflammatory disease characterized by the presence of ectopic lesions,

most commonly in the ovaries, and presenting with symptoms such as pelvic pain,

dysmenorrhea, and infertility (1). It affects 10-18% of women of reproductive age

worldwide (2). Despite its benign nature, EMs exhibits biological features akin to

malignancy, including histological infiltration and angiogenesis. EAOC, resulting from

malignant transformation of EMs, refers to specific types of ovarian cancer (3).

Epidemiological studies indicate that EMs increases the risk of developing certain

histological subtypes of ovarian cancer, predominantly ovarian clear cell carcinoma

(OCCC) and ovarian endometrioid carcinoma (OEC) (4). The lifetime risk of ovarian
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cancer in EMs patients is modest (~1.9%), yet higher compared to the

general female population (~1.4%) (5). Furthermore, clinical

diagnosis is complicated by rapid tumor growth that may obscure

benign tissues, and challenges in pathological sampling which can

lead to underdiagnosis of coexisting benign or atypical EMs lesions in

EAOC patients (6). This underscores the difficulty in studying EAOC

comprehensively. Early detection of malignant transformation of

EMs and identification of early events are crucial for improving

prognosis in EAOC. Therefore, understanding the mechanisms and

biomarkers associated with EMs malignant transformation is

essential. This review discusses current insights into the

mechanisms underlying EAOC development, and outlines future

directions for basic research and clinical translation, aiming towards

stratified management and personalized treatment of ovarian

cancer patients.
2 Malignant
transformation mechanism

2.1 Genetic mutations

AT-Rich Interaction Domain 1A (ARID1A), a tumor

suppressor gene encoding the BAF Family Member 250a

(BAF250a) protein, is a critical component of the SWI/SNF

chromatin remodeling complex. It is the most commonly

mutated gene within the SWI/SNF complex, and its loss-of-

function mutations play a crucial role in dysregulating the

expression of oncogenic and tumor suppressor genes, particularly

in the context of EAOC (7). Genetic sequencing studies have

revealed ARID1A mutations in 46% of OCCC patients and 30%

of OEC patients. Previous research has shown that ARID1A

mutations promote abnormal activation of the PI3K-Akt

signaling pathway and interact synergistically with zinc-finger

protein 217 (ZNF217), which may contribute to OCCC

development (8). The PI3K/Akt signaling pathway is a pivotal

pathway involved in tumor cell proliferation, invasion, and

metastasis (9). Guan et al. demonstrated that ARID1A,

functioning as a tumor suppressor gene, interacts with the p53

protein to inhibit cell proliferation through p53-dependent

transcriptional regulation factors. Mutations in either Tumor

Protein P53 or ARID1A can disrupt tumor-suppressive

transcription, leading to uncontrolled cell proliferation and

ultimately promoting EAOC development (10).

Phosphatase And Tensin Homolog (PTEN), located on

chromosome 10, is a tumor suppressor gene involved in cell

regulation, inhibiting tumor cell proliferation, adhesion, migration,

and angiogenesis (11). Mutations in PTEN enhance the anti-

apoptotic capability of endometrial cells, disrupt cell cycle

regulation mechanisms, and promote retrograde implantation and

survival of endometrial tissue (12). Another study indicates that low

PTEN expression increases the invasive capacity of endometrial cells,

facilitating the growth of ectopic endometrial tissue (13). Research by

Dinulescu et al. demonstrates that ovarian surface epithelium-specific

oncogenic K-ras or conditional PTEN loss of expression can lead to
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structures, suggesting mutations and expression loss may be early

drivers of OEC development (14).

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic

Subunit Alpha (PIK3CA), a member of the PI3K-AKT-mTOR

signaling pathway, is closely implicated in OCCC pathogenesis

through its mutations (15). Activation of PIK3CA promotes

expression of downstream genes in the PI3K-Akt pathway,

inhibiting tumor cell apoptosis and facilitating tumor initiation

and progression (16). Furthermore, PIK3CA mutations enhance

PI3K activity, promoting cell cycle progression, proliferation, and

migration (17). Co-mutation of PIK3CA and ARID1A enhances

sustained IL-6 production, driving rapid tumor growth (18). A

study by Chandler et al. in mice demonstrated that concurrent

activation of mutated ARID1A and PIK3CA genes induces OCCC

development (19).

The KRAS Proto-Oncogene (KRAS) is a major subtype of RAS

mutations, encoding a signaling protein that can be activated by

various extracellular stimuli and transduce signals through the

downstream RAS/MAPK signaling pathway, promoting

malignant biological behaviors such as cell proliferation, invasion,

and migration (20, 21). Studies have found that 42.6% of EMs cases

exhibit somatic KRAS mutations (22). Somatic mutations in KRAS

may represent critical driver events during the malignant

transformation of EMs (20). To date, all KRAS mutations

detected in EMs have been located within “hotspot” sequences,

indicating biological significance of KRAS hotspot mutations in

EMs. DNA sequencing results suggest that KRAS mutations may

represent a late event in the malignant progression of EMs,

associated with OCCC occurrence (23). Overexpression of

oncogenic KRAS in ovarian surface epithelium or conditional

PTEN loss can lead to precancerous changes in endometrial

glandular morphology; their concurrent presence can induce the

development of OEC (24) (Figure 1).

The KRAS Proto-Oncogene (KRAS), a major mutant subtype of

RAS, encodes a signaling protein activated by various extracellular

stimuli, which transmits signals to the downstream RAS/MAPK

signaling pathway. The tumor suppressor gene P53 (TP53)

mutations impact the expression of its transcription-dependent

tumor suppressor genes. Phosphatidylinositol-4,5-Bisphosphate 3-

Kinase Catalytic Subunit Alpha (PIK3CA) activation enhances the

expression of downstream PI3K-Akt pathway genes, inhibiting

apoptosis and promoting tumor development. Additionally, AT-

Rich Interaction Domain 1A (ARID1A), a frequently mutated gene

in the SWItch/Sucrose Non-Fermentable(SWI/SNF) complex, leads

to abnormal activation of the PI3K-Akt signaling pathway. Gene

mutations play a critical role in the malignant transformation of

endometrial cells by affecting DNA damage repair, cell

proliferation, and invasion. (Created with BioRender.com).
2.2 Steroid hormone action

As is widely recognized, EMs is an estrogen-dependent disease,

with estrogen and progesterone playing crucial roles in maintaining

normal uterine endometrial function. whereas in ectopic endometrial
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tissue compared to normal endometrium, mRNA levels of the

Cytochrome P450 Family 1 Subfamily B Member 1(CYP1B1) gene

are significantly elevated (25). CYP1B1 participates in estrogen

metabolism within the ectopic endometrial microenvironment,

converting androgens such as androstenedione or testosterone into

estriol and estradiol (25). High concentrations of estrogens can exert

direct toxic effects on DNA of ectopic endometrial cells. Additionally,

estrogens play critical roles in cell survival, proliferation, and

inflammatory responses (26). Substantial research suggests that

dysregulations in estrogen receptor (ER) and progesterone receptor

(PR) expression are linked to the malignant progression of

endometriosis (27). Exposure to estrogens, such as via hormone

replacement therapy (HRT) after menopause, elevates the likelihood

of ovarian cancer, notably endometrioid carcinoma (28). Conversely,

epidemiological studies show that oral contraceptives can reduce the

risk of ovarian cancer (29). Therefore, studying the role of steroid

hormones in the malignant transformation of EMs is crucial for

developing corresponding therapeutic strategies aimed at preventing

its malignant progression.
2.3 Inflammation and oxidative stress

During menstruation, declining levels of estrogen and

progesterone prepare the uterus for the shedding and expulsion
Frontiers in Oncology 03
of endometrial tissue, marking the onset of a new menstrual cycle.

This carefully coordinated process engages the innate immune

system, where neutrophils, macrophages, and natural killer cells

collaborate to aid in the clearance of apoptotic endometrial tissue

(30). Retrograde menstruation can lead to the retention of

biologically functional ectopic endometrial fragments within the

peritoneal cavity, triggering periodic immune reactions (31).

Research indicates heightened levels of inflammatory cytokines,

growth factors, neutrophils, and prostaglandins in the peritoneal

fluid of EMs patients (32). Elevated levels of Prostaglandin E

Receptor 2(PGE2), tumor necrosis factor-a (TNF-a), nerve

growth factor (NGF), C-C Motif Chemokine Ligand 5(CCL5),

interleukins (IL), Interleukin8(IL-8), and Interleukin 1b(IL-1b)
within ectopic lesions can activate sensory nerve endings, thereby

contributing to chronic pelvic pain (33–35), which may transmit

pain sensations to the central nervous system (36). Therefore,

understanding cellular inflammatory responses is crucial for

elucidating the pathological processes of EMs, offering insights

into potential therapeutic strategies for this condition.

The extracellular matrix cells of ectopic endometrium are often

in a microenvironment characterized by iron overload, with high

levels of free iron in cyst fluid. Iron can catalyze Fenton reactions

generating hydroxyl radicals, which damage DNA and other

biomolecules, promoting carcinogenesis (37). Fenton reaction

accelerates the production of reactive oxygen species (ROS),
FIGURE 1

Mechanisms of gene mutations in EAOC.
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oxidative stress resulting from imbalance between excessive ROS

and antioxidant defense systems within cells (38). Superoxide

anions and hydrogen peroxide (H2O2) are principal components

of ROS, closely linked to inflammation and extracellular matrix

degradation. Oxidative stress plays a crucial role in the pathogenesis

of EMs (38), damaging normal cell functions, causing DNA

damage, stimulating angiogenesis, and thereby promoting EAOC

(39). Excessive oxidative stress activates the NF-kB signaling

pathway, promoting the production of inflammatory mediators,

exacerbating the pathological processes of EMs through Th1 and

Th2 immune responses (40). Interleukin10(IL-10) plays a pivotal

role in this process by modulating Matrix Metallopeptidase (MMP)

activation in serum and peritoneal fluid, ECM remodeling, and

angiogenesis. Increased oxidative stress may upregulate oncogenic

genes like Cytochrome C Oxidase-2 (COX-2), inhibiting apoptosis

and promoting excessive proliferation of ectopic cells

(41).Furthermore, oxidative stress enhances the expression of

glycoproteins to stimulate vascular endothelial growth factor

(VEGF) production, fostering neovascularization and aggravating

the disease process (42). Additionally, ROS-activated ERK1/2

protein kinase alters the proliferation and survival of endometrial

cells, exhibiting malignant biological behaviors akin to tumor cells

(43). In conclusion, the development of EMs is closely associated

with oxidative stress, involving multiple cell signaling pathways and

regulation of inflammatory mediators, providing a theoretical basis

for future therapeutic strategies (Figure 2).

Changes in the ovarian microenvironment can induce malignant

transformation of EMs. Excessive accumulation of estrogen and the

imbalance between estrogen receptor-a (ERa) and estrogen receptor-
b(ERb) can cause DNA toxicity in ectopic endometrial cells.
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Additionally, oxidative stress plays a crucial role in EAOC

formation by inducing DNA damage, abnormal cell signaling, and

disrupting antioxidant defenses through excessive intracellular

reactive oxygen species (ROS). Elevated levels of inflammatory

cytokines, such as interleukin (IL) and tumor necrosis factor-a
(TNF-a), along with increased Prostaglandin E Receptor 2(PGE2)

at ectopic sites, can activate sensory nerve endings at the lesion site,

leading to chronic pelvic pain. (Created with BioRender.com).
2.4 Epigenetic changes

Unlike genetic mutations, epigenetics does not alter the DNA

sequence of genes but influences gene expression through

mechanisms such as DNA methylation, histone modifications,

and abnormal expression of microRNAs. Current research

indicates that epigenetics plays a crucial role in the onset and

progression of ovarian cancer, with its aberrant modifications

closely associated with the grading and staging of the disease (44).

2.4.1 DNA methylation
High methylation of gene promoter regions can lead to gene

silencing, whereas low methylation promotes gene transcription and

protein expression. In studies of EMs malignant transformation,

abnormal methylation of CpG islands (CGIs) in many cancer-

related genes has been identified, indicating a significant role of

epigenetic changes in this process (45). Research has demonstrated

high methylation in the promoter region of the E-cadherin gene (46),

as well as loss of PTEN homologs on chromosome 10 and p16, which

promote the malignant transformation of EMs (47). Additionally,
FIGURE 2

Mechanisms of steroid hormones and oxidative stress in EAOC.
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abnormal methylation in the promoter regions of Long Interspersed

Elements-1 (LINE-1) and interleukin-1 is also associated with this

process (48). Researchers have found that abnormal methylation

plays a critical role in the malignant transformation of EMs. Using

Methylation CpG Island Amplification Combined with Differential

Analysis (MCA-RDA), nine differentially methylated candidate genes

associated with the malignant transformation of ovarian EMs were

successfully screened, including Ras Association Domain Family

Member 2(RASSF2), SPARC (Osteonectin), Cwcv And Kazal Like

Domains Proteoglycan 2(SPOCK2), RUNX Family Transcription

Factor 3(RUNX3), Glutathione S-Transferase Zeta 1(GSTZ1),

Cytochrome P450 Family 2 Subfamily A (CYP2A), Globoside

Alpha-1,3-N-Acetylgalactosaminyltransferase 1(GBGT1), NADH:

Ubiquinone Oxidoreductase Core Subunit S1(NDUFS1), ADAM

Metallopeptidase Domain 22(ADAM22), and Tripartite Motif

Containing 36(TRIM36) (49). The DNA methyltransferase

(DNMT) family plays a crucial role in mediating DNA

methylation. Fang et al. found that estrogen upregulates DNMT1,

promoting high methylation of the RUNX3 promoter and playing an

important role in the malignant transformation of EMs (50). Thus,

abnormal methylation, particularly in promoter regions, is a common

epigenetic event in the malignant transformation of EMs, playing a

significant role in EMs progression.

2.4.2 Histone modifications
Histones play a crucial role in chromatin structure by

influencing the packaging of DNA around nucleosomes and

controlling gene expression. Examples of post-translational

modifications (PTMs) on histones include acetylation,

phosphorylation, methylation, ubiquitination, among others (51).

Among these, histone acetylation and methylation are the most

extensively studied. Although there is no definitive evidence linking

histone modifications to the process of EMs malignant

transformation, intriguingly, inhibition of the methyltransferase

Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit

(EZH2) and the acetyltransferase Histone Deacetylase (HDAC),

which regulate histone modifications, can lead to tumor regression

in ovarian cancer mouse models with ARID1A mutations (52).

Mutations in the ARID1A gene are found in over 50% of OCCCs

(53), suggesting a potential role of histone modifications in the

malignant transformation of EMs. Studies indicate significant

upregulation of histone deacetylases and their encoded proteins in

EMs and ovarian cancer (OC) (54, 55). Additionally, histone

methyltransferase enhancer of EZH2 can activate methylation of

lysine 27 on histone H3 within nucleosomes, promoting cell

proliferation and suppressing transcription of tumor suppressor

genes in both conditions (56). Thus, these findings imply a potential

correlation of histone modifications between EMs and OC,

suggesting these modifications may contribute to the progression

of epithelial ovarian malignancy.

2.4.3 MicroRNA
miRNA is a class of short, endogenous single-stranded RNA

molecules, typically ranging in length from 19 to 25 nucleotides. At

the level of the endometrium, miRNA plays a role in regulating the
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and reproductive disorders such as EMs and recurrent miscarriage

(57). These RNA fragments function by inhibiting the synthesis of

specific proteins, thereby influencing various biological processes

including cell growth, development, differentiation, metabolism,

aging, inflammation, and immune responses (58). Despite

extensive literature reviews on the importance of miRNA in EMs

and its malignant transformation, consensus on research findings

remains elusive.

Common miRNA dysregulations in EMs include the miR-200

family, miR-143, miR-145, miR-20a, and miR-199a. Particularly,

dysregulation of the miR-200 family is observed in both EMs and its

malignant transformation, suggesting its close association with EMs

progression (59). Furthermore, studies have focused on exploring

miRNA expression profiles in different tissue types of malignant

transformation of EMs. It has been found that miR-21, miR-203,

and miR-205 are significantly upregulated in OEC, while miR-222 is

downregulated (60). A second-generation sequencing study has also

reported specific upregulation of miRNAs such as miR-9, 96, 182,

183, 196a, 196b, 205, and 375 in OEC, and miR-30a, 30a*, and 486-

5p in OCCC (61). Additionally, research indicates that oxidative

stress, as an important factor inducing malignant transformation of

EMs, interacts with miRNAs to affect multiple processes in the

development of EAOC (62). Thus, identifying specific miRNAs that

promote the malignant transformation of EMs and exploring

related molecular pathways may offer new strategies for

preventing this progression (Figure 3).

Abnormal hypermethylation of tumor suppressor gene promoters,

such as E-cadherin and Phosphatase And Tensin Homolog (PTEN),

inhibits tumor suppressor gene expression, while hypomethylation of

oncogenes like Long Interspersed Elements-1 (LINE-1) promotes

oncogene expression and is associated with EAOC development.

Inhibition of methyltransferase Repressive Complex 2 Subunit

(EZH2)and acetyltransferase Histone Deacetylase(HDAC), which are

involved in regulating histone modifications, can lead to tumor

regression in AT-Rich Interaction Domain 1A (ARID1A) mutant

ovarian cancer mouse models. ARID1A is a commonly mutated

gene in EAOC, suggesting that histone modifications may play a role

in EAOC. Additionally, microRNAs are crucial post-transcriptional

regulators of gene expression; miR-21, miR-203, and miR-205 are

significantly upregulated in ovarian epithelial carcinoma (OEC), while

miR-222 is downregulated. Conversely, miR-30a, miR-30a*, and miR-

486-5p are significantly upregulated in ovarian clear cell carcinoma

(OCCC). (Created with BioRender.com).
3 Treatment options

Current treatment approaches for EAOC are primarily

informed by research on epithelial ovarian cancer (EOC). The

standard initial treatment for EAOC includes adjuvant platinum-

based chemotherapy following surgery (63). If first-line

chemotherapy fails or disease recurs, salvage chemotherapy is

administered. However, the prognosis for advanced and recurrent

cases is generally poor, and chemotherapy efficacy significantly
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declines (64). Therefore, the current treatment strategy focuses on

enhancing the efficacy of initial treatments, particularly through

improved surgical quality and the integration of chemotherapy

drugs, targeted therapies, or immunotherapy.
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Despite ongoing advancements, clinical outcomes for OCCC

remain poorer compared to those for OEC, largely due to its strong

resistance to chemotherapy (65). Researchers have long aimed to

improve the treatment outcomes for advanced ovarian cancer
FIGURE 3

Mechanisms of epigenetic alterations in EAOC.
FIGURE 4

Overview of Mechanisms in EAOC Development. Various mechanisms contribute to the malignant transformation of endometriosis (EMs), including
gene mutations, oxidative stress, inflammation, and epigenetic changes related to DNA methylation, histone methylation, and microRNAs. (Created
with BioRender.com).
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through intraperitoneal chemotherapy. Despite the completion of

several early clinical trials by the Gynecologic Oncology Group

(GOG), including GOG-104,GOG-172, and GOG-252,

intraperitoneal chemotherapy has not yet been established as a

standard first-line treatment (66–68). This is largely because of

issues related to trial design, limited statistical evidence, and the

need for more investigation into potential adverse effects.

Additionally, global clinical trials, such as JGOG-3016, GOG-262,

MITO-7, and ICON-8, have adjusted the cycle and frequency of

paclitaxel chemotherapy from every three weeks to weekly, or

weekly with carboplatin (69–71). These adjustments have their

own advantages and disadvantages, and their impact on

treatment efficacy needs further clinical trial validation.

Currently, there is no definitive standard for targeted therapy in

EAOC. However, targeted therapies may play a crucial role in

improving the prognosis of OCCC, particularly in cases resistant to

chemotherapy (72). Furthermore, immunotherapy related to EAOC

remains a hot research topic.

PIK3CA is a commonly mutated gene in EAOC, which activates

the PI3K/AKT/mTOR pathway (73). Inhibitors targeting this

pathway, such as PI3K, AKT, and mTORC1 inhibitors, have been

evaluated in clinical trials (74), but no standard treatment drug has

emerged yet. However, the potential for targeted therapy remains

promising. A study involving exome sequencing of 48 OCCC

patients indicated that existing molecular targeted drugs may be

effective for some patients, highlighting the value of exome

sequencing in EAOC research (75).

Additionally, PARP inhibitors have demonstrated efficacy in the

treatment of ovarian cancer (76), particularly in populations with

homologous recombination deficiencies due to BRCA1/BRCA2

gene mutations (77). Although only 6-8% of EAOC cases have

BRCA1/2 mutations (78), PARP inhibitors might be effective in

these mutation cases.

In EAOC, the expression of the angiogenesis factor VEGF is

significantly elevated compared to EMs (79). Anti-VEGF

antibodies, as angiogenesis inhibitors, play a role in ovarian

cancer treatment (80).There is no evidence suggesting that anti-

VEGF antibodies are more effective for EAOC compared to other

histological types, their potential for combination with other drugs

may be further explored in future treatments (81).

(Created with BioRender.com).
4 Discussion

Despite ongoing interest in the study of EAOC, progress remains

slow. The diagnostic criteria for endometriosis-associated malignancy

have long adhered to those established by Sampson and Scott (82).

However, given the strong pathological heterogeneity of EMs, the

probability of detecting residual ectopic endometrial cells decreases

with disease severity. Notably, the disordered growth of tumor cells

following malignancy and the potential oversight of atypical or

ectopic endometrial cells can lead to misdiagnosis as primary

ovarian cancer, significantly increasing the likelihood of such

errors. Consequently, the foundational research on EAOC is

heavily constrained by the availability of clinical samples, unlike
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EMs, lack of characteristic clinical symptoms and non-invasive

diagnostic methods, and difficulties in predicting the risk of

endometriosis malignancy. Therefore, further research into the

relevant molecular mechanisms is urgently needed to guide clinical

treatment. This review provides a comprehensive overview of the

mechanisms underlying EAOC and the latest therapeutic strategies.

There have been relatively few high-quality reviews on EAOC in

recent years, with some focusing solely on specific mechanisms. This

article updates the relevant literature and mechanism diagrams,

offering guidance for further research into EAOC.
5 Summary

EMs, due to its progressive and invasive growth characteristics,

is considered to have potential malignant features. The process of

malignant transformation in EMs is complex and may result from

various factors acting alone or in combination, including estrogenic

effects, immune microenvironment, persistent inflammatory

responses, oxidative stress, and genetic mutations (Figure 4). For

populations of EMs patients at high risk of malignant

transformation, the development of early detection methods and

close monitoring is crucial to achieve early detection, diagnosis, and

treatment, thereby improving patient prognosis and survival

outcomes. In-depth analysis of the pathogenesis and malignant

transformation mechanisms of EMs can provide new perspectives

and strategies for diagnosis and treatment. Future research could

explore advanced technologies like next-generation sequencing and

whole transcriptome sequencing for personalized diagnostics,

aiming to identify driver mutations and candidate genes linked to

EMs’ malignant transformation. Such endeavors may enhance the

precision of targeted therapies and immunotherapeutic options for

EMs patients, underscoring the need for continued investigation.
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