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Objectives: to construct a prediction model for clinically significant prostate

cancer (csPCa) based on prostate-specific antigen (PSA) levels, digital rectal

examination (DRE), and transrectal ultrasonography (TRUS).

Methods: We retrospectively analysed 1196 Asian patients who underwent

transrectal ultrasound-guided biopsy (TRUSB) between June 2000 and

February 2023. Patients were randomly divided into a training set of 837 cases

(70%) and a validation set of 359 patients (30%). A csPCa risk prediction model

was established using the logistic regression. The performance of the model was

examined based on calibration curves, receiver operating characteristic (ROC)

curves, decision curve analysis (DCA), and clinical impact curves (CIC).

Results: Serum PSA levels, age, DRE results, prostatic shape, prostatic border and

hypoechoic area were associated with pathological outcomes. The area under

the ROC curve of the training set was 0.890 (95%CI: 0.865-0.816). The optimal

cut-off value was 0.279. The calibration curves indicated good calibration, and

the DCA and CIC results demonstrated good clinical utility. Significantly, the

prediction model has higher negative predictive value (89.8%) and positive

predictive value (68.0%) compared with MRI. Subsequently, we developed an

online calculator (https://jiwentong0.shinyapps.io/dynnomapp/) with six

variables for biopsy optimization.

Conclusion: This study incorporated the results of three traditional diagnostic

methods to establish a cost-effective and highly accurate model for predicting

csPCa before biopsy. With this model, we aim to provide a non-invasive and

cost-effective tool for csPCa detection in Asia and other underdeveloped areas.
KEYWORDS

prostate biopsy, clinically significant prostate cancer, risk prediction model,
diagnosis, nomogram
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1 Introduction

Prostate cancer (PCa) poses a significant threat to human

health. According to 2020 statistical data, prostate cancer ranks

second in terms of cancer incidence and fifth in terms of cancer

mortality among males (1). Thus, PCa diagnosis is vital in guiding

treatment and reducing the suffering and mortality of patients with

PCa (2).

According to the European Association of Urology (EAU)

Guidelines, a biopsy is recommended if there is a suspicion of

PCa based on abnormality on digital rectal examination (DRE) or

an elevated level of serum prostate-specific antigen (PSA) (3).

However, elevated PSA level is not specific to PCa and may be

observed in other conditions such as benign prostatic hyperplasia

(BPH) and prostatitis (4). While a serum total PSA level of 4.0 ng/

mL is recommended as a cut-off value, 25% of men with PCa may

have a PSA below 4.0 ng/mL (5). For DRE, the possible signs of PCa

include induration and nodularity; however, this examination is

subjective, and the results may show considerable interindividual

variation. Consequently, only 50% of men with suspicious DRE

findings actually have PCa (6).

Therefore, to reduce overdiagnosis and potential complications

caused by unnecessary biopsies (7), the EAU, as well as the

American Urological Association, support the use of prostate

MRI for biopsy optimization (8, 9). However, the routine use of

prostate MRI prior to the initial biopsy should still be carefully

considered. On the one hand, the variable diagnostic accuracy of

clinically significant PCa (csPCa) (10) and relatively low negative

predictive value (NPV)(85%) and positive predictive value (PPV)

(27%−44%) (11) remain challenges in the clinical application of this

approach. On the other hand, using a prostate MRI would require

upfront costs (12). In some developing countries of Asia, Africa,

and Latin America, it is not uncommon that patients with elevated

PSA levels only and without any other discomfort would reject

prostate MRI for financial reasons. Given this requirement, we

realized the necessity of a cost-effective and accurate tool to provide

diagnostic information for those who cannot afford the use of an

MRI before an initial biopsy.

Compared with prostate MRI, transrectal ultrasound (TRUS) is

a cheaper and more easily accessible imaging tool used for prostate

evaluation (13). Grayscale TRUS imaging of the prostate is the basic

method for the diagnostic evaluation of PCa (14). Although PCa is

commonly asymptomatic at the early stage, many cancer foci can

still be detected using TRUS. Hypoechoic nodules on grayscale

TRUS can be used to predict PCa (15).

Therefore, in this study, we aimed to design a cost-effective,

non-invasive, and highly accurate csPCa risk prediction model to

provide an auxiliary diagnosis before initial biopsy, investigate the

combined effect of these three traditional diagnostic methods (PSA

testing, TRUS, and DRE), and explore the approaches to improve

their diagnostic value.
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2 Materials and methods

2.1 Data source

This was a single-centre, retrospective study. The study

followed the guidelines for transparent reporting of a

multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) (16). The clinical data of all patients who

underwent TRUS-guided biopsy at this centre between June 2000

and February 2023 were consecutively recorded. Data of 2477

patients were obtained for research purposes from 01/01/2024 to

01/02/2024.
2.2 Inclusion and exclusion criteria

The inclusion criteria were as follows: (i) patients who

underwent TRUSB between June 2000 and February 2023; (ii)

patients who underwent PSA, TRUS and DRE before initial

biopsy; and (iii) the patient had a definitive pathological

diagnosis. Exclusion criteria were as follows: (i) PSA> 100ng/mL

(ii) > 30% missing data (after meeting the inclusion criteria); (iii)

patients whose pathological reports were not available or the

diagnosis was unknown; (iv) the patient could not tolerate or did

not complete the biopsy.

Among the 2477 patients, two patients’ pathological reports had

indecipherable handwriting, one patient did not cooperate causing

the biopsy to fail, and 971 subjects had no pathological diagnosis or

their results were not recorded at that time. A total of 1503 subjects

were included in the study according to the inclusion criteria. A

total of 279 subjects among the 1503 patients were excluded because

of missing data, and 28 patients were excluded for PSA higher than

100ng/mL. Finally, 1196 patients were included in this study.
2.3 Parameters selection and collection

A total of 9 candidate variables were selected, including i) age,

ii) serum PSA, iii) result of DRE, iv) prostate volume, v) prostatic

border, vi) shape, vii) hypoechoic area, viii) condition of seminal

vesicle, ix) csPCa diagnosis. Among them, i, ii, and iv are

continuous variables, iii, v, vi, vii, viii are binary variables, and ix

is the dependent variable. csPCa was defined according to the EAU

guidelines: International Society for Urological Pathology (ISUP) 2

or higher (3) or the Epstein criteria: Gleason score (GS) > 6 or GS 6

with ≥ 50% of cancer per core involvement or > 2 cores with

cancer (17).

Blood samples were drawn before ultrasonography and biopsy

and before or at least one week after rectal examination, which may

have increased the serum PSA concentration. Considering DRE

results are highly subjective, we categorised apparent induration
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and nodularity as abnormal. Prostate volume, prostatic border,

shape, hypoechoic area, and the condition of seminal vesicle were

obtained from grey-scale TRUS. The prolate ellipsoid formula

estimated the volume of the prostate: (18)

length   (L)   x   height   (H)   x  width   (W)   x   p=6   (0:52)

We defined the abnormal and normal prostatic border, shape,

hypoechoic area, and the condition of the seminal vesicle according

to whether the border is clear, whether the shape is symmetrical,

whether the prostate contains a hypoechoic area, and whether the

seminal vesicle has uneven echoes and (or) indistinct border

respectively. The abnormal examples of prostatic border, shape,

hypoechoic area, and the condition of the seminal vesicle are shown

in Supplementary Material 1. To reduce errors in the process of

TRUS and DRE, every patient will undergo the first examination

after being admitted to the hospital and the second before TRUS-

guided biopsy (TRUSB). Verification during a third examination

resolved any significant differences between the two data sets. The

prostate biopsy was uniformly performed using a transperineal

approach, with 12 cores.
2.4 Statistical analysis

Statistical analyses were performed using R software V.4.3.3 (R

Core Team, Vienna, Austria, available at https://www.R-

project.org). Multiple imputations were applied to fill in missing

data (using “mice” package, m=4, method=cart, seed=1024). The

Mann-Whitney U test was used for continuous data, and the chi-

square test was used for categorical data to verify there were no

significant differences in the dataset before and after multiple

imputations. The 1196 individuals were randomly divided into

two sets: a training set including 837 males and a validation set

including 359 males. Univariate logistic regression analysis was

performed on the training set to screen for potential factors

influencing the dependent variable. Variables with a p-value >0.05

were excluded. Multivariate analysis and forward, backward, and

forward-backward stepwise logistic regression were used to

generate four novel predictive models. We chose the model with

the lowest Akaike information criterion (AIC) value. A nomogram

was used to visualize the mathematical model. The area under the

curve (AUC), goodness-of-fit test, decision curve analysis (DCA),

and clinical impact curve (CIC) were used to evaluate the

performance and clinical utility of the model.

In addition, in order to prove that our model developed with the

combined data from PSA, TRUS, and DRE had better performance

than these three screening methods being used separately, we

developed three prediction models with PSA (serum PSA), TRUS

(prostatic border, shape, hypoechoic area) and DRE data only.

We further developed an online interface written in R using the

Shiny framework (http://www.shinyapps.io/) as a user-friendly tool.
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3 Results

3.1 Patient characteristics

The results Mann-Whitney U test and chi-square test revealed

no significant differences in the dataset before and after multiple

imputations (Supplementary Material 2). A total of 1196

individuals were included in the analysis. Based on the

pathological diagnosis, the incidence of csPCa in patients

undergoing TRUSB was 30.4% (364/1196). Table 1 lists the

baseline characteristics of patients in the training and

validation sets.
3.2 Selection of predictors and
construction of nomogram model

Univariate logistic regression analysis was performed

preliminarily for the independent variables. The following seven

factors were significantly associated with csPCa in the univariate

analysis: serum PSA level, DRE results, age, prostatic border, shape,

hypoechoic area, and seminal vesicle condition (p < 0.05). Their

association with pathological outcome were further tested by

multivariate analysis, in which “prostatic border” was removed.

Finally, six independent variables were applied to construct the

prediction model through 3 kinds of stepwise logistic

regression analysis.

The AIC for three models were all 7614.8. We decided to use

backward logistic regression to develop the final model. The regression

coefficient, standard error, odds ratio (OR), confidence interval (CI),

and p-values of the variables are summarized in Table 2A. notably, the

p value of “border”was larger than 0.05 (0.129) but considering that its

association was verified through multiple tests of the stepwise

regression analysis, we recognize its association with the outcome.

Based on this model, we used the diagnosis of csPCa as an outcome

and described the impact of each variable on the risk of developing

csPCa using a nomogram (Figure 1A).
3.3 Validation and utility of the nomogram
prediction model

To verify the predictive ability of the nomogram model for

csPCa risk, ROC analysis was performed. Figures 2A, B shows that

the AUC for the training and validation sets were 0.890 (95%CI:

0.865-0.816) and 0.918 (95%CI: 0.885-0.951), respectively. An AUC

of 0.8–0.9 is considered good for this model (19). NPV and PPV are

89.8% and 68.0% respectively. In addition, the optimal critical value

in the ROC curve was 0.279 (0.830, 0.794) in the training set and

0.302 (0.879, 0.814) in the validation set. Table 2B presents the

detailed performance metrics for the two datasets.
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The degree of calibration of the nomogram models in the

modelling and validation sets was assessed using the Hosmer-

Lemeshow (H-L) goodness-of-fit test, with a p-value of 0.899

(>0.05) in the training set and 0.135 (>0.05) in the validation set,

illustrating no significant difference between the predicted and

actual risks. We then visualized the results of the goodness-of-fit

test using a calibration curve. Figures 2C, D showed that the actual

prediction and simulation prediction were similar, indicating good

agreement between the nomogram prediction and the actual

observation results of csPCa.

DCA evaluated the model’s clinical utility (Figure 3A). The

results indicated that the model provided relatively more net

benefits when the threshold probability was greater than 10%.
Frontiers in Oncology 04
The CIC of the current prediction model is shown in Figure 3B.

The AUC of the models formed with data from PSA, TRUS, and

DRE were 0.844 (95%CI: 0.813-0.875), 0.798 (95%CI: 0.765-0.831),

and 0.703 (95%CI: 0.669-0.737), respectively (Figure 2E), all smaller

than that of the current model with combined data (0.890).

To provide easy access to the proposed model, we developed an

online website https://jiwentong0.shinyapps.io/dynnomapp/ to

calculate the precise probability of csPCa in patients before

prostate biopsy. An example of one patient in our study is

demonstrated as an example in Figure 1B.
4 Discussion

4.1 Interpretation of results

This study developed a csPCa risk prediction model based on

six predictors (serum PSA level, DRE results, age, prostatic shape,

border, and hypoechoic area) recorded using traditional diagnostic

methods. The best critical value in the ROC curve was 0.279, and

the AUC of the training set was 0.890, indicating a good

discriminative ability. The H-L goodness-of-fit test and

calibration curve showed good calibration. The DCA and CIC

demonstrated good clinical practicality. Data from this study

suggest that it would be beneficial for patients with a risk of

<27.9% of csPCa to receive active surveillance and dynamic
TABLE 2A Coefficients of the prediction model.

Predictors Coef. Std.err OR (95%CI) p value

Hypoechoic area 1.050 0.225 2.857 (1.842-4.460) <0.001

Shape 0.660 0.252 1.935 (1.175-3.171) 0.009

Border 0.365 0.240 1.440 (0.895-2.299) 0.129

DRE 0.836 0.226 2.307 (1.479-3.592) <0.001

PSA 0.045 0.004 1.046 (1.038-1.054) <0.001

Age 0.025 0.012 1.025 (1.002-1.049) 0.033
DRE, digital rectal examination; PSA, prostate-specific antigen; OR, odd ratio; CI,
confidence interval.
TABLE 1 Basic demographic and clinical characteristics of the training and validation sets.

Variables Total (n=1196) Training set (n=837) Validation set (n=359) p value

DRE, n, (%) 0.87

Normal 819, (68.48) 572, (68.34) 247, (68.80)

Abnormal 377, (31.52) 265, (31.66) 112, (31.20)

Border, n, (%) 0.31

Clear 762, (63.71) 541, (64.64) 211, (61.56)

Blurred 434, (36.29) 296, (35.36) 138, (38.44)

Shape, n, (%) 0.92

Symmetrical 894, (74.75) 625, (74.67) 269, (74.93)

Asymmetrical 302, (25.25) 212, (25.33) 90, (25.07)

Hypoechoic area, n, (%) 0.71

Not found 650, (54.35) 452, (54.00) 198, (55.15)

Found 546, (45.65) 388, (46.00) 161, (44.85)

Seminal vesicle, n, (%) 0.64

Normal 1054, (88.13) 740, (88.41) 314, (87.47)

Abnormal 142, (11.87) 97, (11.59) 45, (12.53)

Age (IQR, year) 71, (64.76) 71, (65,76) 70, (63,76) 0.17

PSA (IQR, ng/ml) 17.10, (8.80, 39.70) 17.50, (9.00,40.90) 16.00, (8.30, 35.00) 0.31

Prostate volume (IQR, cm3) 55.90, (36.60,88.00) 56.00, (35.80,88.00) 55.35, (37.70,87.70) 0.26
DRE, digital rectal examination; PSA, prostate-specific antigen; IQR, interquartile range.
p>0.05 indicates that there is no statistically significant difference of data between training set and validation set.
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monitoring of PSA. Patients with a risk of >27.9% should opt for

prostate MRI or biopsy to obtain a definitive diagnosis.

Univariate and multivariate logistic regression analyses showed

that seminal vesicle conditions and prostate volume are irrelevant to

csPCa. First, uneven echoes and/or indistinct border of seminal

vesicles were defined as abnormal; however, they could have been

influenced by benign lesions of the seminal vesicles. A common

cause of uneven echoes in ultrasound imaging of seminal vesicles is

the presence of stones, which typically appear as well-defined strong

echoes with clear boundaries that contrast sharply with normal

seminal vesicle tissue. Stones also may be accompanied by acoustic

shadowing (20). In contrast, unclear boundaries of the seminal

vesicles are often associated with inflammation (21). Park et al.

applied bacterial culture to seminal fluid from patients with chronic

prostatitis. They determined that approximately 34% of patients

exhibited varying degrees of seminal vesicle bacterial infections

(21). However, since chronic bacterial prostatitis can also lead to

elevated PSA levels, these findings indicate that using only the

border clarity of the seminal vesicles is insufficient for

differentiating cPCa. Regarding prostate volume, our results were
Frontiers in Oncology 05
consistent with previous studies about the association between

prostate volume and PCa (22). Although BPH and csPCa

frequently coexisted among patients in our analysis, volume was

not considered an influencing factor for csPCa.

In Figure 2E, the AUC of the PSA model was 0.844, better than

those of the DRE and TRUS models, highlighting the value of PSA

testing. Per convention, the cut-off value of total PSA is 4 mg/mL.

However, according to the online calculator, a 71-year-old (median

age of the dataset) patient with a PSA of 4 mg/ml and without any

other positive index only has a probability of 3.6% to be diagnosed

with csPCa. We then attempted to assign the figures of total PSA in

the gray zone (4–10 ng/mL) (23) to the calculator and found that

the probability increased from 3.6% to 4.6%, which was still lower

than the cut-off value of 27.9% in the prediction model. Therefore,

for asymptomatic patients with mildly elevated (4–10 ng/ml) PSA

levels, our results moderately opposed immediate prostate biopsy

and supported short-term monitoring. In order to provide

convenience for clinicians to check the risk of csPCa quickly for

suspicious patients with PSA within gray zone and accompanying

another single abnormality, we designed Figure 3C for reference.
FIGURE 1

The nomogram prediction model (A) and an example of nomogram to predict the risk of prostate cancer via the online calculator (B). PSA, prostate-
specific antigen; DRE, digital rectal examination; csPCa, clinically significant prostate cancer. Note: To use the nomogram, please first drew a line
from each parameter value to the score axis, added the scores of all parameters, and finally drew a line from the total score axis to determine the
probability of csPCa.
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The number of eligible patients in the dataset and true positive

figures were also shown.
4.2 Existing csPCa prediction models

We conducted a systematic search of PubMed, Embase, and

MEDLINE databases using the subject headings “clinically

significant/high-grade prostate cancer,” “risk assessment,” and

“model/prediction/score” and were able to identify multiple

csPCa prediction models with various predictors. The first two

csPCa risk prediction models to be developed were PCa Prevention

Trial Risk Calculator 2.0 for high-grade PCa (PCPTRC-HG) and

the European Randomized Study of Screening for PCa Risk

Calculator for high-grade PCa (ERSPCRC-HG). However, Asian

investigators found that racial, environmental, and genetic

differences yielded unsatisfactory results when these Western

calculators were applied to Asian patients (24). This issue

prompted the development of csPCa models tailored specifically

to Asian patients, but there were two main concerns. Firstly, the
Frontiers in Oncology 06
majority of subsequently developed csPCa prediction models were

based onMRI results, aligning with the recommendation of MRI for

biopsy optimization from the European Association of Urology and

American Urological Association (8, 9). However, the necessity of

routine pre-biopsy MRI has been challenged. A study suggested that

negative MRI results are insufficient to omit biopsy because of

relatively low NPV (approximately 85%) (11), and other studies

concluded that the diagnostic accuracy and PPV of prostate MRI for

csPCa was widely variable (26%−75% and 27%−44% respectively)

(10, 25). On the one hand, prostate MRI can increase the upfront

diagnostic costs, making patients from developing and

underdeveloped areas reluctant to undergo MRI, especially after

informing them that a biopsy cannot be omitted even if prostate

MRI yields negative results. Hospitals in rural areas or primary care

clinics may lack MRI facilities, limiting the applicability of these

prediction models. These concerns highlight the importance of

developing more cost-effective models, which lead to the second

issue. After systematic search, we identified four csPCa models

based on inexpensive tests (26–29), such as serum PSA, DRE,

TRUS, and post-void residual urinary volume. Only one study
FIGURE 2

Receiver operating characteristics curves determined by the nomogram model of the training set (A) and the validation set (B), the calibration curve
of training set (C) and validation set (D) and receiver operating characteristics curves of four models (E). DRE, digital rectal examination; TRUS,
transrectal ultrasound; PSA, prostate-specific antigen.
TABLE 2B Performance metrics of the prediction model in training and validation sets.

Threshold Specificity Sensitivity Accuracy NPV PPV

Training set 0.279 0.830 0.794 0.818 0.898 0.680

Validation set 0.279 0.864 0.824 0.852 0.925 0.706
NPV, negative predictive value; PPV, positive predictive value.
The cut-off value of training set (0.279) was assigned into the threshold of validation set.
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used TRUS results as predictor (29), they defined abnormality as

hypoechoic area. However, as a basic and simple diagnostic tool for

PCa, TRUS could provide not only condition of echo, but also

information about shape, border, and seminal vesicle. Existing

studies did not incorporate all these diagnostic information into

prediction models to improve the clinical value of TRUS.
4.3 Strengths and limitations

In response to the above problems, the characteristics and

advantages of the current prediction model are in two folds.

First, our model was developed based on clinical data of Asian

patients, thus making it suitable for application in Asia to prevent

unnecessary biopsy, especially in communities and primary hospitals,

because the variables used to construct the predictive model are cheap

and simple to obtain. Second, our model improved the diagnostic

value of three traditional diagnostic methods, particularly included all

available diagnostic information about prostate in TRUS.

However, this study had some limitations. First, the model we

developed was based on a retrospective study at a single centre.

Thus, we were subject to the inherent biases of this type of analysis.

Because the majority of patients were Chinese, we could not rule out

the possibility that the generalizability would not be applicable to

other regions. Finally, the PSA model exhibits a relatively higher

AUC (0.844), compared with the AUC of PSA from previous
Frontiers in Oncology 07
literatures (ranging from 0.660 to 0.799) (30, 31), suggesting a

potential selection bias in the patient cohort. This bias might stem

from the fact that the majority of patients included in the study

come from underdeveloped cities of Northeast China Region,

having relatively weak health awareness, especially in the

beginning of 2000s. When they seek medical intervention in our

centre, they accordingly have higher PSA (median: 17.00 ng/mL)

and age (median: 71 years) compared with other studies. In the

future, with the gradual improvement of health consciousness, this

discrepancy is expected to narrow. We will continue to record new

patients and expand our database to improve the accuracy of our

model and validate above. explanation.
4.4 Future prospects

Due to the difference of environment and race, current model

might not provide highest accuracy for patients in other countries.

Based on previous comparison studies about Western and Asian

models, this flaw might be widespread in the majority of modelling

studies. What we truly hope is that our study design could serve as a

template to encourage investigators from various continents and

countries to develop models specific for their local patients. The

extensive usage of these models could play a role of triage test for

further MRI or biopsy and significantly reduce upfront cost for

patients in developing countries and undeveloped regions. We
FIGURE 3

Decision curve analysis (A), clinical impact curve of the model (B) and a reference diagram to check the predicted risk (C). In decision curve analysis,
X-axis indicates the threshold probability for clinically significant prostate cancer and Y-axis indicates the net benefit of accepting prostate biopsy. In
clinical impact curve, the red curve indicates the number of people who are classified as positive; the blue curve represents the number of true
positives at each threshold probability. In the reference diagram, clinicians could get the risk of csPCa for patients with only one or two
abnormalities. The median age of 71 was applied to calculate the risk.
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would provide the guideline of constructing prediction models via R

software in Supplementary Material 3. Additionally, in the process

of literature search, we noticed that other csPCa prediction models

applying biomarkers like gene mutations, PCA3 and [-2]proPSA

could illustrate good diagnostic power (32–34). With the

development of clinical laboratory science and decreasing of the

cost of laboratory tests, it is hopeful to incorporate novel biomarkers

into current model and get better diagnostic capability.

5 Conclusion

In summary, we constructed and validated a csPCa risk

prediction model by analysing patients’ clinical data. This model

successfully incorporated the results of PSA, DRE, and TRUS and

had a good predictive ability. With this prediction model, we aim to

provide a cost-effective, non-invasive, and highly accurate risk

prediction tool to facilitate early csPCa detection and reduce

overdiagnosis in Asia and other underdeveloped areas.
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